EP0207119B1 - Lumineszente keramikplatten - Google Patents

Lumineszente keramikplatten Download PDF

Info

Publication number
EP0207119B1
EP0207119B1 EP86900204A EP86900204A EP0207119B1 EP 0207119 B1 EP0207119 B1 EP 0207119B1 EP 86900204 A EP86900204 A EP 86900204A EP 86900204 A EP86900204 A EP 86900204A EP 0207119 B1 EP0207119 B1 EP 0207119B1
Authority
EP
European Patent Office
Prior art keywords
plate
water glass
powder
borate
dough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86900204A
Other languages
English (en)
French (fr)
Other versions
EP0207119A1 (de
Inventor
Peter Jeremy Born
Daniel Stewart Robertson
Iain Malcolm Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10571322&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0207119(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Priority to AT86900204T priority Critical patent/ATE53400T1/de
Publication of EP0207119A1 publication Critical patent/EP0207119A1/de
Application granted granted Critical
Publication of EP0207119B1 publication Critical patent/EP0207119B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens

Definitions

  • This invention relates to luminescent ceramic plates capable of luminescing when irradiated by electrons, X-rays, ultra-violet rays or y-rays.
  • Such plates are useful as cathode ray tube (C.R.T.) face plates, thermoluminescent plates, or scintillators.
  • C.R.T. cathode ray tube
  • Face plates for cathode ray tubes are usually a layer of a phosphor powder in a binder settled onto a glass plate. Electrons strike the phosphor layer resulting in emission of light. A disadvantage of these powder layers in their susceptibility to damage when high energy electron beams are used to obtain high light outputs. In addition under the latter conditions the glass face plate can be damaged.
  • Thermoluminescent plates may be used in radiology apparatus. This is described for exmaple in G.B. Patent Application 83 27883.
  • a plate of thermoluminescent material is exposed to an X-ray pattern in the same manner as X-ray photographic film. The plate is heated and radiates visible light corresponding to the X-ray pattern. This visible light is of low intensity and needs to be detected by a sensitive detector such as a photomultiplier. Subsequent heating clears the pattern and the plate can then be reused.
  • detector materials can be used.
  • single crystal materials such as lithium tetraborate, and doped with copper or manganese, etc.; or recrystallised glass.
  • the detector plate can be a single large plate or a mosaic of smaller plates. In all cases the cost of a detector plate is high. Also it is difficult to produce a plate sensitive enough by the above processes.
  • Scintillators are used in various systems to provide detection of X-rays.
  • a sheet of scintillator material can be used as a backing for X-ray film to enhance the image formed on the film on exposure to an X-ray pattern.
  • the invention provides luminescent plates capable of production in quite large sizes, e.g. up to 50x50 cms at relatively low cost.
  • a luminescent plate comprises a powdered material bonded with water glass preferably or any other low melting point glass and formed into a ceramic.
  • the powder material may be selected from:-
  • Activators for the powders may be ions of rare earth elements such as Tb, Tm, Ce, Eu, Pr, Yb, Gd, or the ions of Mn, Cu, Ag, Pb and may be added by up to 15% by weight.
  • the water glass may be sodium or potassium hydroxy silicate, or sodium or potassium borates.
  • a method of producing luminescent plates comprises the steps of:-
  • the powder is preferably less than 50 pm particle size.
  • the activators may be added as an oxide to the other components and milled together. Following milling the mixture may be heated in air for 8 hours or longer at 1,000°C or more. The final mixture may then be milled to reduce the mean particle size to less than 50 pm.
  • the plate may be ground, and polished, to the required shape, and finish, flat or curved.
  • the pressure applied to the dough is typically between 8-10 kg cm- 2 (100 and 150 Ib/inch 2 ) applied for 4 to 24 hours.
  • the firing temperature is typically above 950°C e.g. 950° to 1,150°C held for around eight hours.
  • step (ii) the dough is allowed to dry before being pressed as in step (iii).
  • the water glass is diluted with water prior to step (ii).
  • Different moulds may be used for drying and pressing.
  • the plates may be prepared as follows:-
  • FIG. 1 shows a partly sectional view of a cathode ray tube (C.R.T.) comprising an evacuated glass envelope 1 and a ceramic face plate 2.
  • This face plate 2 is typically 2 mm thick and is fixed to the glass by a malleable silver chloride sealant 3 melted into place.
  • the face plate 2 is prepared as described earlier.
  • the powder material may be:-
  • Multi-colour operation may be achieved by forming a face plate of undoped material and selectively implanting dopants e.g. by ion implantation. This doping can be done in different areas or to different depths (penetron operation).
  • the cathode ray tube 2 may be used in head-up displays (HUD) or other high brightness displays. Being a ceramic material the face plate 2 can withstand high electron beam currents without burning.
  • HUD head-up displays
  • a patient 11 stands in front of a detector plate 12 mounted on a support 13.
  • An x-ray source 14 is arranged to irradiate the required parts of the patient 11 in a known manner.
  • a typical chest X-ray dose is 1 rad. giving 20 to 50 millirad. at the plate.
  • the plate 12 is selectively ionised in a pattern corresponding to the selective absorption of the patient's body. Such a pattern remains intact for many days until destroyed or cleared by appropriate heating.
  • the ionisation pattern is not visible without heating of the plate 12.
  • the amount of light given off depends upon the amount of X-ray absorption by the plate and the temperature to which it is heated.
  • Figure 4 shows a graph of light output.
  • the phosphor material is calcium borate doped with 10% by weight Tb. To obtain the curves shown the plate was heated as indicated by the temperature/time graph. Light output was measured by a photomultiplier detector and expressed as counts per secondx 10-3/m.g. of detector material exposed/K.rad of radiation. Light emissions peak at plate temperature of about 27°C, 65°C, and 150°C.
  • Figure 3 shows one way of reading the ionisation pattern in the plate.
  • the plate 12 is retained by in a holder 18 with an electrical resistance heating tape 19 held against the rear surface. Thermal insulation 20 backs the heater.
  • a second method of heating is point by point or line by line heating using heat supplied by
  • a low light television camera 15 images the heated plate and sends an output to a monitor cathode ray tube 17 and recorder 16.
  • a photomultiplier or image intensifier unit may be used, scanned over a heated plate point by point. This scanning may be achieved by movement of the photomultiplier itself or associated fibre optic light pipes attached, or by x, y translation of the plate. For large plates an array of photo multipliers, arranged, e.g. in a line, is traversed over the plate. This reduces the read time.
  • Another method of scanning involves a row of silicon diodes arranged at a pitch of about 100 ⁇ m or more. These detect the light emission through a fibre optic manifold which thermally isolates the plate and diodes. A mask having a 250 pm slit is moved over a heated plate. The diodes are positioned just above the slit, and a read a line of information at a time as the slit moves down the plate.
  • a further method of scanning is line scan, where the image from a single line is viewed by a rotating 45° mirror situated above the plate. This image is then transferred to the photomultiplier mounted in line with the mirror. This has the advantage of requiring only the plate to be moved and in one direction only.
  • a further use of ceramic plates is for scintillator application.
  • the scintillator acts as a detector of X-rays, gamma rays, etc. by luminescing when irradiated. The light given off is proportional to the dose received.
  • scintillators are to reinforce the visible image obtained on X-ray films in a cassette. This is shown in Figure 5.
  • a scintillator plate 25 forms a backing for an X-ray film 26, both supported by a holder 27. Clips 28 hold the film 26 in place.
  • the film 26 is sensitive to both X-rays and blue light.
  • X-rays e.g. as in Figure 2
  • some of the X-rays passing through a patient 11 are absorbed in the film 26; others pass into the scintillator plate 25.
  • This causes blue light emission from the scintillator 25 which is absorbed by the film 26.
  • a suitable scintillator is calcium borate or silicate containing Ce ions.
  • the plate 25 may be used both as a scintillator and a thermoluminescent plate.
  • One suitable material is calcium silicate doped with e.g. 0.5% Yb.
  • An X-ray exposure is taken as above with the plate scintillating and reinforcing the exposure of the X-ray film 26. This film is developed to provide an image quickly.
  • the plate 25 is subsequently heated as described above and the thermoluminescent image obtained by a scanned detector. This detector output is stored for a permanent record of the X-ray exposure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Claims (10)

1. Lumineszierende, selbsttragende, mit Glas gebundene Keramikplatte mit einem feinpulvrigen, lumineszierenden Material, das in einer Wasserglas-Einbettungsmasse zusammengepreßt ist, wobei nicht mehr als etwa 8 ml Wasserglas pro 100 g des lumineszierenden Materials verwendet werden, und wobei das lumineszierende Material ein dotiertes lumineszierendes Material ist, ausgewählt aus der Gruppe:
Calciumborat z.B. CaB204, Ca2B20s, Ca3B20s
Yttriumaluminat (YAG)
Zinkyttriumsilikat (ZYS)
Calciumsilikat CaSi03, Ca2Si04
Calciumgermanat z.B. CaGe205, CaGe409, CaGe03
Magnesiumborat MgB204, Mg2B20s, Mg 3B20s
Bariumborat BaB204, BaB407, BaB8O13
Strontiumborat SrB204, SrB407, Sr2B20s, Sr3B2O6
mit dem Dotierstoff, ausgewählt aus der Gruppe:
Tb, Tm, Ce, Eu, Pr, Yb, Mn, Cu, Nd, Ag, Pb.
2. Keramimplatte nach Anspruch 1, ausgebildet als eine Stirnplatte einer Kathodenstrahlröhre.
3. Keramikplatte nach Anspruch 1, ausgebildet als eine thermolumineszierende Platte.
4. Keramikplatte nach Anspruch 1, ausgebildet als ein Röntgenszintillator.
5. Verfahren zur Herstellung der Platte nach Anspruch 1 mit folgenden Schritten:
(i) Herstellung eines feinen Pulvers von dotiertem lumineszierenden Material;
(ii) Mischung einer Menge des Pulvers mit einer Menge Wasserlgas, um eine gleichmäßige, unter Druck verformbare Masse zu erhalten;
(iii) Pressen der Masse in einer geformten Vertiefung bei einem Druck von mindestens 8 Kg cm-2, um überschüssiges Wasserglas zu entfernen; und
(iv) Brennen der geformten Masse bei einer Temperatur über 950°C und unter dem Schmelzpunkt des
Pulvers, bis eine Keramikplatte geformt ist.
6. Verfahren nach Anspruch 5, wobei in Schritt (ii) ein Überschuß von Wasser benutzt wird und der entstandenen Mischung vor Schritt (iii) in einer Form die Möglichkeit zur teilweisen Trocknung gegeben wird.
7. Verfahren nach Anspruch 5, wobei in Schritt (iii) ein Druck von über 8 kg cm-2 über eine Zeit von 4 bis 24 Stunden benützt wird.
8. Verfahren nach Anspruch 5, wobei in Schritt (iv) eine Temperatur von über 950°C während einer Zeit von über 4 Stunden benutzt wird.
9. Verfahren nach Anspruch 5, wobei vor dem Schritt (i) ein Dotierstoff mit dem Hauptmaterial gemischt, gemahlen, gebrannt und dann wieder gemahlen wird, bis die mittlere Partikelgröße kleiner als 50 pm ist, wobei der Dotierstoff aus der Gruppe Tb, Tm, Ce, Eu, Pr, Yb, Mn, Cu, Nd, Ag, Pb gewählt wird.
10. Verfahren nach Anspruch 5, wobei nach dem Schritt (iv) die Platte zu ihrer endgültigen Form und Oberflächengüte geschliffen wird.
EP86900204A 1984-12-17 1985-12-12 Lumineszente keramikplatten Expired EP0207119B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86900204T ATE53400T1 (de) 1984-12-17 1985-12-12 Lumineszente keramikplatten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB848431838A GB8431838D0 (en) 1984-12-17 1984-12-17 Luminescent ceramic plates
GB8431838 1984-12-17

Publications (2)

Publication Number Publication Date
EP0207119A1 EP0207119A1 (de) 1987-01-07
EP0207119B1 true EP0207119B1 (de) 1990-06-06

Family

ID=10571322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86900204A Expired EP0207119B1 (de) 1984-12-17 1985-12-12 Lumineszente keramikplatten

Country Status (6)

Country Link
US (1) US4849639A (de)
EP (1) EP0207119B1 (de)
JP (1) JPS62501169A (de)
DE (1) DE3578080D1 (de)
GB (1) GB8431838D0 (de)
WO (1) WO1986003768A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879202A (en) 1986-07-11 1989-11-07 Fuji Photo Film Co., Ltd. Radiation image storage panel and process for the preparation of the same
JPS63262600A (ja) * 1987-04-20 1988-10-28 富士写真フイルム株式会社 放射線像変換パネルおよびその製造法
EP0502123A4 (en) * 1989-12-01 1992-11-04 Packard Instrument Company, Inc. Scintillation proximity radioimmunoassay using solid scintillator support body
US5391876A (en) * 1990-06-29 1995-02-21 General Electric Company Hole-trap-compensated scintillator material and computed tomography machine containing the same
CA2042147A1 (en) * 1990-06-29 1991-12-30 Veneta G. Tsoukala Hole-trap-compensated scintillator material
DE4028223A1 (de) * 1990-09-06 1992-03-19 Forschungszentrum Juelich Gmbh Neutronenoptischer detektor
GB9326413D0 (en) * 1993-12-24 1994-02-23 British Nuclear Fuels Plc Materials and devices incorporating phosphors
CA2185429A1 (en) * 1994-03-28 1995-10-05 Inovision Radiation Measurements, Llc Radiation dose mapping systems and methods
EP0721008B1 (de) * 1995-01-03 2000-06-14 General Electric Company Quantum-Teilungs-Oxidphosphoren und Verfahren zur Herstellung desselben
JP2002217459A (ja) * 2001-01-16 2002-08-02 Stanley Electric Co Ltd 発光ダイオード及び該発光ダイオードを光源として用いた液晶表示器のバックライト装置
EP1293805A3 (de) * 2001-09-14 2004-02-04 Riken Neutronenszintillator
DE10209191A1 (de) * 2002-03-04 2003-09-18 Philips Intellectual Property Vorrichtung zur Erzeugung von UV-Strahlung
WO2005114256A1 (ja) * 2004-05-24 2005-12-01 Fukuda X'tal Laboratory 超高速シンチレータとしてのZnO単結晶およびその製造方法
US7282713B2 (en) * 2004-06-10 2007-10-16 General Electric Company Compositions and methods for scintillator arrays
US7524452B2 (en) * 2004-09-30 2009-04-28 Council Of Scientific And Industrial Research Low temperature process for making radiopac materials utilizing industrial/agricultural waste as raw material
US7612342B1 (en) 2005-09-27 2009-11-03 Radiation Monitoring Devices, Inc. Very bright scintillators
JP2008013607A (ja) * 2006-07-03 2008-01-24 Fujifilm Corp Tb含有発光性化合物、これを含む発光性組成物と発光体、発光素子、固体レーザ装置
US8575641B2 (en) 2011-08-11 2013-11-05 Goldeneye, Inc Solid state light sources based on thermally conductive luminescent elements containing interconnects
WO2010064594A1 (ja) * 2008-12-01 2010-06-10 学校法人立教学院 熱蛍光積層体、熱蛍光板状体、熱蛍光積層体の製造方法、熱蛍光板状体の製造方法、及び放射線の3次元線量分布の取得方法
JP5842292B2 (ja) * 2010-09-27 2016-01-13 日本結晶光学株式会社 中性子シンチレータ用酸化物結晶及びこれを用いた中性子シンチレータ
JP5761986B2 (ja) * 2010-12-16 2015-08-12 株式会社トクヤマ 中性子用シンチレーターおよび中性子検出器
US20140021500A1 (en) * 2010-12-20 2014-01-23 Ocean's King Lighting Science & Technology Co., Ltd. Light emitting device and manufacturing method thereof
JP5688765B2 (ja) * 2011-03-28 2015-03-25 国立大学法人広島大学 赤色蛍光体およびその製造方法
TW201525088A (zh) * 2013-12-20 2015-07-01 Sicpa Holding Sa 熱發光複合顆粒及包含其之標記
BR112017027367B1 (pt) * 2015-06-18 2022-08-02 Sicpa Holding Sa Partícula composta, pluralidade de partículas compostas, marcação compreendendo as mesmas e artigo tendo marcação no mesmo
JP2019044177A (ja) * 2017-08-30 2019-03-22 日立金属株式会社 セラミック蛍光材料、セラミックシンチレータおよび放射線検出器、並びにセラミック蛍光材料の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124224A (en) * 1935-02-01 1938-07-19 John C Batchelor Electronic tube
US2125599A (en) * 1935-02-08 1938-08-02 John C Batchelor Fluorescent structure
US2965784A (en) * 1959-01-15 1960-12-20 Du Pont Electroluminescent vitreous enamel and lamp
FR1249334A (fr) * 1959-11-10 1960-12-30 Plaque luminescente inaltérable
FR1254941A (fr) * 1960-01-08 1961-03-03 Cie Generale Electro Ceramique Perfectionnement aux équipements de lignes électriques
DE1852725U (de) * 1961-08-11 1962-05-30 Hunter Douglas Int Quebec Ltd Jalousie.
GB1232577A (de) * 1967-05-03 1971-05-19
GB1340513A (en) * 1970-11-06 1973-12-12 Atomic Energy Authority Uk Radiation dosemeters
US3927328A (en) * 1970-11-18 1975-12-16 Matsushita Electric Ind Co Ltd Dosimetry method
JPS532394A (en) * 1976-06-29 1978-01-11 Nemoto Tokushu Kagaku Kk Thermooluminescent substances
DE2747509A1 (de) * 1977-10-22 1979-04-26 Riedel De Haen Ag Verfahren zum schutz von fluoreszierenden bzw. phosphoreszierenden leuchtpigmenten auf basis von zinksulfiden bzw. zink/cadmiumsulfiden gegen vergrauung
US4340839A (en) * 1978-12-27 1982-07-20 Matsushita Electric Industrial Co., Ltd. Zinc sulfide ceramic material and cathode ray tubes using the same
JPS5940175B2 (ja) * 1979-01-17 1984-09-28 日立化成工業株式会社 シンチレ−タ用結晶
YU41712B (en) * 1980-05-12 1987-12-31 Inst Za Zast Od Zracenja I Zas Method of obtaining sintered thermoluminescent dosimeters based on magnesium borate and calcium sulphate
DE3266742D1 (en) * 1981-03-17 1985-11-14 Secr Defence Brit Cathode ray tube phosphors
US4421671A (en) * 1982-06-18 1983-12-20 General Electric Company Rare-earth-doped yttria-gadolinia ceramic scintillators
GB2136195A (en) * 1983-02-25 1984-09-12 Secr Defence Cathode Ray Tube
US4678761A (en) * 1984-10-29 1987-07-07 The Dow Chemical Company Sinterable and strengthened magnesium oxide ceramic materials

Also Published As

Publication number Publication date
DE3578080D1 (de) 1990-07-12
EP0207119A1 (de) 1987-01-07
JPS62501169A (ja) 1987-05-07
US4849639A (en) 1989-07-18
WO1986003768A1 (en) 1986-07-03
GB8431838D0 (en) 1985-01-30

Similar Documents

Publication Publication Date Title
EP0207119B1 (de) Lumineszente keramikplatten
US5418377A (en) Pixelized phosphor
US5302423A (en) Method for fabricating pixelized phosphors
EP0097300B1 (de) Keramische Szintillatoren aus seltenen Erden
US6870167B2 (en) Preparation of radiation image storage panel
US5055681A (en) Radiographic image storage panel and process for reading out a radiographic image
US7655157B2 (en) Doped cadmium tungstate scintillator with improved radiation hardness
EP0779254B1 (de) Bildaufnahmevorrichtung mit einem Glas mit photostimulierbarer Lumineszenz
US4287230A (en) Process for producing a scintillator screen
CA2134313A1 (en) Radiation detector
EP0175578A2 (de) Radiographische Bildspeicherung und Verfahren zur Durchführung derselben
US4585944A (en) Radiation image storage panel
JPH0159567B2 (de)
EP0102238B1 (de) Umwandlungsverfahren für Röntgenbilder
US4733088A (en) Radiation detector
De Leeuw et al. Kinetics of photostimulated luminescence in BaFBr: Eu
US5639399A (en) Stimulable Phosphor
Moharil A review of X-ray imaging phosphors
WO2005028590A1 (ja) ガラスシンチレータ
JPS63165842A (ja) 放射線像変換方法およびそれに用いられる放射線像変換体
US20060289814A1 (en) Method for erasing radiation energy remaining in radiation image storage panel
DE4025980C1 (de)
US7183560B2 (en) Storage phosphor screens having homogeneously incorporated dopant
JPH0827397B2 (ja) 放射線画像変換パネル
JP2003279697A (ja) 放射線像変換パネル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19880927

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 53400

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3578080

Country of ref document: DE

Date of ref document: 19900712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931116

Year of fee payment: 9

Ref country code: GB

Payment date: 19931116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941212

Ref country code: GB

Effective date: 19941212

Ref country code: AT

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941231

Ref country code: CH

Effective date: 19941231

Ref country code: BE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 86900204.8

BERE Be: lapsed

Owner name: THE SECRETARY OF STATE FOR DEFENCE IN HER BRITANN

Effective date: 19941231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

EUG Se: european patent has lapsed

Ref document number: 86900204.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST