EP0197315B1 - Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern - Google Patents

Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern Download PDF

Info

Publication number
EP0197315B1
EP0197315B1 EP86103080A EP86103080A EP0197315B1 EP 0197315 B1 EP0197315 B1 EP 0197315B1 EP 86103080 A EP86103080 A EP 86103080A EP 86103080 A EP86103080 A EP 86103080A EP 0197315 B1 EP0197315 B1 EP 0197315B1
Authority
EP
European Patent Office
Prior art keywords
load
combustion engine
internal combustion
sensor
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86103080A
Other languages
English (en)
French (fr)
Other versions
EP0197315A3 (en
EP0197315A2 (de
Inventor
Hans-Ernst Dipl.-Ing. Beyer
Jörg Dipl.-Ing. Bonitz
Robert Dipl.-Ing. Entenmann
Siegmar Dip.-Ing. Förster
Rochus Knab
Walter Dr. Dipl.-Phys. Künzel
Wolfgang Kugler
Alfred Dr. Mahlberg
Bernhard Miller
Matthias Dipl.-Ing. Philipp
Siegfried Dr. Rohde
Stefan Dipl.-Ing. Unland
Walter Dipl.-Ing. Viess
Herbert Dipl.-Ing. Winter
Jürgen Dr. Dipl.-Phys. Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0197315A2 publication Critical patent/EP0197315A2/de
Publication of EP0197315A3 publication Critical patent/EP0197315A3/de
Application granted granted Critical
Publication of EP0197315B1 publication Critical patent/EP0197315B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/008Reserve ignition systems; Redundancy of some ignition devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the invention relates to a device for a spark ignition internal combustion engine according to the preamble of the main claim.
  • Devices of this type are already being used in series by various motor vehicle manufacturers to influence the operating parameters of different types of internal combustion engines. These vehicles include the Volvo B200E (Europe), the Audi 200 Turbo and the VW Rabbit GTI, both of which are exported to the USA.
  • Volvo B200E European
  • Audi 200 Turbo the Audi 200 Turbo
  • VW Rabbit GTI both of which are exported to the USA.
  • the two control units work largely independently of one another, so to speak, they can also be used individually as independent components, so when the two control units are used together, the fact exists that two different sensors are used for one and the same control unit input information.
  • the control unit since it is essentially responsible for the ignition, to use a pressure sensor mounted in the intake pipe of the internal combustion engine as the load signal sensor.
  • a pressure sensor can of course also be used as the load sensor for the second control device which essentially influences the fuel-air mixture supplied to the internal combustion engine, but it has proven to be advantageous to record the amount of air sucked in by the internal combustion engine as load information.
  • a known air volume meter which is designed as a flap in the intake manifold of the internal combustion engine, or a hot wire air mass meter is used.
  • load detection for example detection of the throttle valve position or the like, are also conceivable.
  • a control unit with two microprocessors is already known from SAE paper 83 0422, EFI for the 80's ⁇ A Base Model Fuel Control System, one microprocessor calculating injection pulses, while the other microprocessor performs other functions, for example operating the gasoline pump.
  • these microprocessors are connected to one another via a data line, and operating parameters can also be exchanged via this data line.
  • the device according to the invention with the characterizing features of the main claim allows a considerably cheaper manufacture of control units.
  • the measure according to the invention makes it possible to produce and operate two independent control devices and still reduce the number of sensors. This reduces sources of error due to sensor failures.
  • the load information is processed by the second control device as a relative value. This largely mitigates the spread of specimens of the load sensor.
  • the output signals of the load sensor are subjected to a corrective influence which is based on a comparison of the setpoint and actual value load characteristics of the load sensor. This ensures excellent stability of the sensor system in relation to time.
  • an internal combustion engine shown symbolically is identified by reference number 10.
  • the air necessary for the combustion of the fuel enters the internal combustion engine 10 through an intake pipe 11.
  • a sensor 12 for detecting the amount of air sucked in by the internal combustion engine is installed in the intake pipe 11, a throttle valve 13 with a throttle valve switch 14 downstream of the sensor 12 and a sensor 15 for detecting the pressure present in the intake pipe 11 downstream of the throttle valve 13.
  • An exhaust gas duct 16 is provided on the output side of the internal combustion engine 10 for the outlet of the exhaust gases of the internal combustion engine 10.
  • a first control unit 17 is used to influence the fuel-air mixture and, in the present exemplary embodiment, supplies signals for actuating injection valves 18a and thereby influences the amount of fuel injected into the working cylinders of the internal combustion engine.
  • the invention is not limited to a single-cylinder injection system, as shown in the exemplary embodiment in FIG. 1. Based on the present disclosure of the inventive concept, it can equally well be transferred to systems with intake manifold injection or with continuous single-cylinder injection (in contrast to intermittent single-cylinder injection) without inventive step.
  • the first control device 17 receives various input information, namely information 19 regarding the battery voltage, information 20 regarding the speed, information 21 regarding the load, which in the present exemplary embodiment is derived from the sensor 12, information 22 regarding the intake air temperature, information 23 regarding the throttle valve position of the throttle valve 13, which are derived from the throttle valve position sensor 14, are supplied with information 24 relating to the engine temperature and further unspecified information 26.
  • information 19 regarding the battery voltage information 20 regarding the speed
  • information 21 regarding the load which in the present exemplary embodiment is derived from the sensor 12
  • information 22 regarding the intake air temperature information 22 regarding the intake air temperature
  • information 23 regarding the throttle valve position of the throttle valve 13 which are derived from the throttle valve position sensor 14
  • further output variables 27 are provided with which the fuel-air ratio is to be influenced.
  • these output variables can be used to control the speed via a controllable air bypass (not shown in the drawing) or to control an exhaust gas recirculation system.
  • a controllable air bypass not shown in the drawing
  • the second control unit 18 essentially provides output signals for actuating the ignition units 29 of the internal combustion engine as a function of the input information speed or degrees crankshaft angle 20, the battery voltage 19 and other input variables 30 not specified in more detail, the information about the fuel metering or about the boost pressure of an in include the charger, not shown, or about the tendency of the internal combustion engine to knock. Other output variables can be used to regulate the boost pressure or other operating parameters of the internal combustion engine or for knock control.
  • FIG. 1 a shows the state of the art from which sensors the two control units obtain their load information. While the first control device 17 obtains its load information from the sensor 12 for the intake air quantity, the load information for the second control device 18 is derived from the pressure sensor 15 for measuring the intake pressure in the intake pipe 11 of the internal combustion engine 10.
  • FIG. 1b shows part of the improvement of the present invention over the prior art, namely since the load information for the second control device 18 is also derived from the sensor 12 for measuring the amount of air drawn in by the internal combustion engine 10.
  • the pressure sensor 15 is saved and thus a more economical production and greater interference immunity of the combination of the two control devices is ensured.
  • the invention does not consist exclusively in replacing the load sensor for the second control unit 18, but also in achieving an adaptation, in particular in terms of hardware, of this second control unit 18 to the changed characteristics of the load input information of the sensor 12.
  • the following criteria are in the foreground for an adaptation: Due to the changed load input information, no far-reaching changes in the hardware structure of the second control device 18 should be carried out. Rather, the adaptation should essentially be implemented through software changes.
  • the accuracy of response of the second control unit 18 to the new load information should at least not deteriorate compared to the version according to the prior art and it should be largely independent of production variations of the sensor 12.
  • the block circuit structure of the two control devices 17, 18 is shown schematically. Since the interior of the first control device 17 is of no interest in the determination of the fuel-air mixture in the present case, it is represented by a block 40 (black box). The input information already mentioned, in particular information 19 relating to the battery voltage and information 21 relating to the load, are fed to this block 40. All other input information should be disregarded for the following consideration.
  • the block 40 controls output stages 41, which in turn are connected to the injection valves 18a. Further output stages 42 for actuating further actuators 43 are provided.
  • a load signal is taken from the sensor 12 for detecting the amount of air sucked in; which is available at the center tap of a potentiometer coupled to the moving part of the air flow meter.
  • This potentiometer of the sensor 12 is in series with a protective resistor R1, which in turn is connected to a reference voltage source U1, which is fed by the battery voltage UB.
  • the voltage applied to the center tap of the potentiometer of the sensor 12 is thus a measure of the deflection of the movable part of the air flow meter and thus contains information about the load. If sensors are used to detect the intake air quantity of the internal combustion engine, which are based on another measuring principle, for example on the hot wire principle or the vortex principle, then these are processed further as equivalent load information.
  • the structure of the second control device 18 is shown in somewhat more detail in FIG.
  • the input variables 19, 21 and further input variables 30, for example for knock control, are converted into digital variables in an analog-digital converter 45.
  • the information 20 about the speed and the crankshaft angle degrees, which is already largely digital due to the sensor characteristic, is fed to a pulse shaper 46, which essentially normalizes the pulse shape of the input pulses. All signals in digital form are fed to an input unit 47, which is connected to an output unit 49 via an input / output unit 48.
  • These units 47, 48, 49 form the periphery of a digital signal processing unit, which is constructed from the central unit 50, read-only memories 51, operating data memories 52, a bus 53, all of which are connected to one another in terms of data.
  • the read-only memory 51 In the read-only memory 51, all programs and all characteristic data, characteristic curve setpoints, etc. are stored in a captive manner, while the data supplied by the sensors are stored in the read / write memory 52 until they are called up by the microprocessor or replaced by more current data. In the central processing unit 50, the arithmetic and logical operations are carried out with the data fed in.
  • the output unit 49 In turn controls various output stages 54, 55, which are used for ignition 56 or to control other actuators 57, for example to control the boost pressure.
  • the output signal of the sensor 12 for detecting the amount of intake air is also supplied to the second control unit as load information 21. Since the second control device 18 has a reference voltage source U2 that is independent of the reference voltage source U1 of the first control device 17, care must be taken because of the tolerance in the output voltage of these reference voltage sources that the input signal for the second control device 18 in no case assumes values that exceed the current value of the reference voltage source U2. For this reason, a voltage divider circuit consisting of resistors R2 and R3 is provided, which divides the output voltage of the load sensor down by a certain proportion.
  • a second signal path 58 is provided, which supplies the voltage applied to the total resistance of the potentiometer of the sensor 12 to the second control device 18.
  • a further voltage divider circuit consisting of the resistors R2 ', R3' is provided.
  • these two pieces of information 21, 58 are essentially divided by one another, so that a measurement variable which is independent of the absolute value of the total resistance of the potentiometer of the sensor 12 is available as load information.
  • both control units now calculate output variables for controlling the actuators.
  • characteristic maps are provided in particular for the second control device 18 of interest, in which, for example, the ignition timing is stored in degrees crankshaft angle as a function of the load and speed in the read-only memory means 51, 52.
  • FIG. 3a An example of such a map is shown in FIG. 3a, in which the map values are stored as a function of the speed and the output signals of a pressure sensor as a load sensor.
  • the map values are stored as a function of the speed and the output signals of a pressure sensor as a load sensor.
  • eight load ranges L1 to L8 and eight speed ranges can be distinguished in the present case, so that a total of 64 map values are stored.
  • the load signals for map control are now derived from an air quantity sensor, in particular an air flap sensor, instead of a pressure sensor, the map takes on the form shown in FIG. 3b due to the completely different output signal characteristics of the air volume sensor.
  • this figure clarifies that a load range, for example load range L1, can no longer be described by a fixed output voltage value over the entire speed range, but that the voltage values per load range assume a wide, speed-dependent bandwidth.
  • the output signal characteristic of the air flow sensor is designed in such a way that the output values of the air flow sensor in the various speed ranges do not even cover the full maximum possible range of the possible output values accept. It follows from this that in order to achieve the same resolution as is possible with a pressure sensor as a load sensor, a much larger memory is required for storing the map values.
  • the output signals of the sensor 12 in the second control unit are influenced by computing functions according to the invention, so that the output characteristic of the sensor 12 can be changed .
  • the method for changing the output signal characteristic of the air quantity sensor is explained in more detail below with reference to FIG. 3b.
  • the possible range of values for the output values of the air flow sensor in the individual speed ranges is applied with individual, in particular speed-dependent, additive variables C1 (n1), ..., C1 (n8), ... such that, for example, the lowest values of all value ranges have a common, identical value accept.
  • This can be, for example, the zero line in the coordinate system shown, or it can also be another basic variable that appears to be advantageous.
  • the individual possible values of each speed-dependent value range are acted upon by a speed-dependent multiplicative variable C2 (n1), ..., C2 (n8), ... in order to adapt the speed-dependent value ranges to one another.
  • the multiplicative constant C2 can also assume a value that is constant for all speed ranges, in particular if the variation of the individual speed-dependent value ranges of the output signals of the air quantity sensor is essentially the same or has negligible differences from one another. This additive and / or multiplicative change in the output signals of the air flow sensor ensures that the value set in the individual speed ranges becomes essentially identical.
  • a match between setpoint and actual value can be achieved by adding a correction element AC1 to the quantities for additive influencing C1 (n).
  • the full-load characteristic curve can in particular be stored as the setpoint characteristic curve, the position of the throttle valve 13 being monitored by the throttle valve position sensor 14 in order to detect the full-load case. If the throttle valve is fully open, there is a full load and the described target / actual value comparison can be carried out. In a first approximation, this correction can be valid for the entire speed range, i.e. that all additive C1 (n) are modified with one and the same correction value AC1.
  • the correction value ⁇ C1 / 2 (n) is determined in such a way that the difference between the setpoint and actual value of the load characteristic is eliminated.
  • the invention allows an air quantity sensor to be used instead of an additional pressure sensor for load detection without having to sacrifice accuracy and long-term stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Vorrichtung für eine fremdgezündete Brennkraftmaschine nach der Gattung des Hauptanspruchs. Derartige Vorrichtungen werden bereits von verschiedenen Kraftfahrzeugherstellern zur Beeinflussung von Betriebsparametern verschiedener Brennkraftmaschinentypen in Serie eingesetzt. Zu diesen Kraftfahrzeugen gehören unter anderem der Volvo B200E (Europa) sowie der Audi 200 Turbo und der VW Rabbit GTI, die beide nach USA exportiert werden. Durch die Verwendung von zwei Steuergeräten, von denen das eine wenigstens für die Beeinflussung des der Brennkraftmaschine zugeführten Kraftstoff-Luft-Gemisches und das andere für die Beeinflussung der Zündung der Brennkraftmaschine verantwortlich ist, wird eine hohe Flexibilität dadurch erreicht, daß jedes der beiden Steuergeräte individuell an verschiedene Anforderungen der Kraftfahrzeughersteller angepaßte werden kann. Da die beiden Steuergeräte weitgehend unabhängig voneinander arbeiten, sozusagen als eigenständige Komponenten auch einzeln eingesetzt werden können, liegt beim gemeinsamen Einsatz der beiden Steuergeräte der Sachverhalt vor, daß für ein und dieselbe Steuergeräteeingangsinformation zwei verschiedene Sensoren eingesetzt werden. So ist es beispielsweise üblich, für das Steuergerät, da im wesentlichen für die Zündung zuständig ist, als Lastsignalsensor einen im Ansaugrohr der Brennkraftmaschine angebrachten Drucksensor zu verwenden. Für das, im wesentlichen das der Brennkraftmaschine zugeführte Kraftstoff-Luft-Gemisch beeinflussende zweite Steurgerät kann als Lastsensor natürlich auch ein Drucksensor eingesetzt werden, es hat sich jedoch als vorteilhaft erwiesen, als Lastinformation die von der Brennkraftmaschine angesaugte Luftmenge zu erfassen. Hierzu wird beispielsweise ein an sich bekannter Luftmengenmesser, der als Klappe im Saugrohr der Brennkraftmaschine ausgebildet ist oder ein Hitzdraht-Luftmassenmesser verwendet. Natürlich sind auch andere Arten der Lasterfassung, beispielsweise eine Erfassung der Drosselklappenstellung oder ähnliches denkbar.
  • Es besteht nun das Bestreben, anstelle von zwei verschiedenen Lastsensoren nur einen einzigen Lastsensor für beide Steuergeräte einzusetzen, um eine noch wirtschaftlichere Fertigung dieser Systeme zu gewährleisten. Allerdings sollen dadurch keine oder nur minimale, insbesondere hardwaremäßige Änderungen im Aufbau der Steuergeräte durchgeführt werden, da beide Steuergeräte an sich eigenständige Komponenten bleiben und zur wirtschaftlichen Fertigung auch weitgehend gleiche Bauteile unabhängig vom speziellen Einsatz aufweisen sollen.
  • Aus dem SAE-Paper 83 0422, EFI for the 80's―A Base Model Fuel Control System ist bereits ein Steuergerät mit zwei Mikroprozessoren bekannt, wobei der eine Mikroprozessor Einspritzimpulse berechnet, während der andere Mikroprozessor weitere Funktionen wahrnimmt, beispielsweise die Benzinpumpe betreibt. Um beide Mikroprozessoren betreiben zu können, stehen diese Mikroprozessoren über eine Datenleitung miteinander in Verbindung, wobei über diese Datenleitung, auch Betriebsparameter ausgetauscht werden können.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Vorrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs läßt eine erheblich preisgünstigere Fertigung von Steuergeräten erreichen. Durch die erfindungsgemäße Maßnahme ist es nämlich möglich, zwei unabhängige Steuergeräte herzustellen und zu betreiben und trotzdem die Zahl der Sensoren zu reduzieren. Dadurch werden Fehlerquellen aufgrund von Ausfällen von Sensoren reduziert. Eine wesentlichen Ausgestaltung der Erfindung ist auch, daß die Lastinformation vom zweiten Steuergerät als Reiativwert verarbeitet wird. Hierdurch werden Exemplarstreuungen des Lastsensors weitgehend entschärft.
  • Als sehr vorteilhaft ist weiterhin anzusehen, daß die Ausgangssignale des Lastsensors mit additiven bzw. multiplikativen Größen beaufschlagt sind, die darüber hinaus noch eine Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweisen können. Durch geeignete Festlegung dieser Größen, die in vorteilhafter Weise in Speichermitteln des Steuergerätes abgelegt sind, kann eine Anpassung des Wertevorrats der Ausgangssignale des Lastsensors an die Gegebenheiten der Steuergeräte erzielt werden unter Gewährleistung einer sehr hohen Verarbeitungsgenauigkeit bei einem minimalen schaltungstechnischen Aufwand.
  • Weiterhin ist sehr vorteilhaft, daß die Ausgangssignale des Lastsensors einer korrigierenden Beeinflussung unterworfen sind, die auf einem Vergleich der Soll- und Istwertlastkennlinien des Lastsensors beruht. Hierdurch wird eine hervorragende Stabilität des Sensorsystems bezogen auf die Zeit gewährleistet.
  • Weitere Vorteile der Erfindung und zweckmäßige Ausgestaltungen ergeben sich in Verbindung mit den Unteransprüchen aus der nachfolgenden Beschreibung der Ausführungsbeispiele.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
    • Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit zwei Steuergeräten und verschiedenen Signalgebern,
    • Figur 1a den bekannten Stand der Technik bezüglich der Lastsignalgewinnung für die beiden Steuergeräte,
    • Figur 1 b die erfindungsgemäße Vorrichtung zur Gewinnung der Lastinformation für die beiden Steuergeräte,
    • Figur 2 ein grobes Blockschaltbild der beiden Steuergeräten mit einer Signalanpassung für die Ausgangssignale des Lastsensors,
    • Figur 3a ein Drehzahllastkennfeld für beispielsweise den Zündzeitpunkt, wobei das Lastsignal entsprechend dem bekannten Stand der Technik von einem Drucksensor abgeleitet wird,
    • Figur 3b ein zu Figur 3a äquivalentes Kennfeld, wobei in diesem Fall die Lastinformation von einem Luftmengenmesser abgeleitet wird,
    • Figur 4 einen Ausschnitt der Figur 3b zur Erläuterung zur korrigierenden Beeinflussung der Ausgangssignale des Lastsensors.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 isteine symbolisch dargestellte Brennkraftmaschine mit der Bezugsziffer 10 gekennzeichnet. Eingangsseitig tritt durch ein Ansaugrohr 11 die zur Verbrennung des Kraftstoffs notwendige Luft in die Brennkraftmaschine 10 ein. Im Ansaugrohr 11 ist ein Sensor 12 zur Erfassung der von der Brennkraftmaschine angesaugten Luftmenge, stromab vom Sensor 12 eine Drosselklappe 13 mit einem Drosselklappenschalter 14 sowie stromab von der Drosselklappe 13 ein Sensor 15 zur Erfassung des im Ansaugrohr 11 vorhandenen Drucks angebracht. Ausgangsseitig der Brennkraftmaschine 10 ist ein Abgaskanal 16 für den Auslaß der Abgase der Brennkraftmaschine 10 vorgesehen.
  • Ein erstes Steuergerät 17 dient zur Beeinflussung des Kraftstoff-Luft-Gemisches und liefert im vorliegenden Ausführungsbeispiel Signale zur Ansteuerung von Einspritzventilen 18a und beeinflußt dadurch die in die Arbeitszylinder der Brennkraftmaschine eingespritzte Kraftstoffmenge. Natürlich ist die Erfindung nicht auf eine Einzelzylindereinspritzanlage, wie sie im Ausführungsbeispiel der Figur 1 dargestellt ist, beschränkt. Sie läßt sich aufgrund der vorliegenden Offenbarung des Erfindungsgedankens ohne erfinderisches Zutun ebensogut auf Anlagen mit Saugrohreinspritzung oder mit kontinuierlicher Einzelzylindereinspritzung (im Gegensatz zur intermittierender Einzelzylindereinspritzung) übertragen.
  • Dem ersten Steuergerät 17 werden verschiedene Eingangsinformationen, nämlich Informationen 19 bezüglich der Batteriespannung, Informationen 20 bezüglich der Drehzahl, Informationen 21 bezüglich der Last, die im vorliegenden Ausführungsbeispiel vom Sensor 12 abgeleitet werden, Informationen 22 bezüglich der Ansauglufttemperatur, Informationen 23 bezüglich der Drosselklappenstellung der Drosselklappe 13, die vom Drosselklappenstellungssensor 14 abgeleitet werden, Informationen 24 bezüglich der Motortemperatur und weitere nicht näher spezifizierte Informationen 26 zugeführt. Neben der Ausgabe der Einspritzzeiten für die Einspritzventile 18a sind weitere Ausgabegrößen 27 vorgesehen, mit denen das Kraftstoff-Luft-Verhältnis zu beeinflussen ist. Beispielsweise kann mittels dieser Ausgabegrößen eine Drehzahlregelung über einen in der Zeichnung nicht dargestellten steuerbaren Luftbypaß oder eine Steuerung einer Abgasrückführung durchgeführt werden. Der Einfachheit halber soll im weiteren jedoch nur auf die Steuerung der Kraftstoffzumessung eingegangen werden.
  • Das zweite Steuergerät 18 liefert im wesentlichen Ausgangssignale zur Ansteuerung der Zündungseinheiten 29 der Brennkraftmaschine in Abhängigkeit von der Eingangsinformation Drehzahl bzw. Grad Kurbelwellenwinkel 20, der Batteriespannung 19 und von anderen nicht näher spezifizierten Eingangsgrößen 30, die Informationen über die Kraftstoffzumessung oder über den Ladedruck eines in der Zeichnung nicht dargestellten Laders oder über die Klopfneigung der Brennkraftmaschine beinhalten. Weitere Ausgabegrößen können zur Regelung des Ladedrucks oder anderer Betriebsparameter der Brennkraftmaschine oder für eine Klopfregelung dienen.
  • In Figur 1 a ist als Stand der Technik dargestellt, von welchen Sensoren die beiden Steuergeräte ihre Lastinformation beziehen. Während das erste Steuergerät 17 seine Lastinformation vom Sensor 12 für die angesaugte Luftmenge bezieht, wird die Lastinformation für das zweite Steuergerät 18 vom Drucksensor 15 zur Messung des Ansaugdrucks im Ansaugrohr 11 der Brennkraftmaschine 10 abgeleitet.
  • In Figur 1b ist ein Teil der Verbesserung der vorliegenden Erfindung gegenüber dem Stand der Technik dargestellt, nämlich da die Lastinformation für das zweite Steuergerät 18 ebenfalls vom Sensor 12 zur Messung der von der Brennkraftmaschine 10 angesaugten Luftmenge abgeleitetwird. Hierdurch wird, wie symbolisch in der Figur 1 b dargestellt ist, der Drucksensor 15 eingespart und damit eine wirtschaftlichere Fertigung und größere Störsicherheit der Kombination der beiden Steuergeräte gewährleistet. Allerdings besteht die Erfindung nicht ausschließlich in einem Austausch des Lastsensors für das zweite Steuergerät 18, sondern auch darin, eine insbesondere hardwaremäßig unaufwendige Anpassung dieses zweiten Steuergerätes 18 an die geänderte Charakteristik der Lasteingangsinformation des Sensors 12 zu erzielen. Für eine Anpassung stehen folgende Kriterien im Vordergrund: Aufgrund der geänderten Lasteingangsinformation sollen keine weitgreifenden Änderungen im hardwaremäßigem Aufbau des zweiten Steuergerätes 18 durchgeführt werden. Die Anpassung soll vielmehr im wesentlichen durch softwaremäßige Änderungen realisiert werden. Die Ansprechgenauigkeit des zweiten Steuergerätes 18 auf die neue Lastinformation soll sich gegenüber der Version gemäß dem Stand der Technik wenigstens nicht verschlechtern und es soll eine weitgehende Unabhängigkeitvon Fertigungsstreuungen des Sensors 12 gewährleistet sein.
  • In Figur 2 ist der blockschaltmäßige Aufbau der beiden Steuergeräte 17, 18 schematisch dargestellt. Da das Innenleben des ersten Steuergerätes 17 für die Bestimmung des Kraftstoff-Luft-Gemisches im vorliegenden Fall nicht näher interessiert, ist es durch einen Block 40 (black box) dargestellt. Diesem Block 40 werden die schon erwähnten Eingangsinformationen, insbesondere Informationen 19 bezüglich der Batteriespannung und Informationen 21 bezüglich der Last zugeführt. Alle weiteren Eingangsinformationen sollen für die folgende Betrachtung außer Acht bleiben. Ausgangsseitig steuert der Block 40 Endstufen 41 an, die ihrerseits an die Einspritzventile 18a angeschlossen sind. Weitere Endstufen 42 zur Betätigung weiterer Stellglieder 43 sind vorgesehen.
  • Vom Sensor 12 zur Erfassung der angesaugten Luftmenge wird ein Lastsignal abgenommen; das am Mittelabgriff eines mit dem beweglichen Teil des Luftmengenmessers gekoppelten Potentiometers zur Verfügung steht. Dieses Potentiometer des Sensors 12 liegt in Serie mit einem Schutzweiderstand R1, der seinerseits an eine Referenzspannungsquelle U1, die von der Batteriespannung UB gespeist wird, angeschlossen ist. Die am Mittelabgriff des Potentiometers des Sensors 12 anliegende Spannung ist somit ein Maß für die Auslenkung des beweglichen Teils des Luftmengenmessers und beinhaltet somit eine Information über die Last. Sollten Sensoren zur Erfassung der angesaugten Luftmenge der Brennkraftmaschine eingesetzt werden, die auf einem anderen Meßprinzip beispielsweise auf dem Hitzdrahtprinzip oder dem Vortexprinzip basieren, so werden diese als äquivalente Lastinformationen weiterverarbeitet.
  • Der Aufbau des zweiten Steuergerätes 18 ist in Figur 2 etwas detaillierter dargestellt. Die Eingangsgrößen 19, 21 und weitere Eingangsgrößen 30 beispielsweise für eine Klopfregelung werden in einem Analog-Digital-Wandler 45 in digitale Größen umgesetzt. Die aufgrund der Gebercharakteristik schon weitgehend digital vorliegende Informationen 20 über die Drehzahl und die Kurbelwellenwinkelgrade werden einem Impulsformer 46 zugeführt, der die Pulsform der Eingangspulse im wesentlichen normiert. Alle in digitaler Form vorliegenden Signale werden einer Eingabeeinheit 47 zugeführt, die über eine Ein/Ausgabe-Einheit 48 mit einer Ausgabeeinheit 49 in Verbindung steht. Diese Einheiten 47, 48, 49 bilden die Peripherie einer digitalen Signalverarbeitungseinheit, die aus der Zentraleinheit 50, Festwertspeichern 51, Betriebsdatenspeichern 52, einem Bus 53, die alle datenmäßig miteinander in Verbindung stehen, aufgebaut ist. Im Festwertspeicher 51 sind alle Programme und alle Kenndaten, Kennliniensollwerte usw. unverlierbar gespeichert, während im Schreib/Lese-Speicher 52 die von den Sensoren gelieferten Daten gespeichert werden, bis sie vom Mikroprozessor abgerufen oder durch aktuellere Daten ersetzt werden. In der Zentraleinheit 50 werden die arithmetischen und logischen Operationen mit den eingespeisten Daten durchgeführt. Die Ausgabeeinheit 49 steuert ihrerseits wiederum verschiedene Endstufen 54, 55 an, die zur Zündung 56 oder zur Ansteuerung anderer Stellglieder 57, beispielsweise zur Steuerung des Ladedrucks dienen.
  • Dem zweiten Steuergerät wird ebenfalls als Lastinformation 21 das Ausgangssignal des Sensors 12 zur Erfassung der Ansaugluftmenge zugeführt. Da das zweite Steuergerät 18 eine von der Referenzspannungsquelle U1 des ersten Steuergerätes 17 unabhängige Referenzspannungsquelle U2 aufweist, muß wegen der Toleranz in der Ausgangsspannung dieser Referenzspannungsquellen dafür Sorge getragen werden, daß das Eingangssignal für das zweite Steuergerät 18 in keinem Fall Werte annimmt, die oberhalb dem aktuellen Wert der Referenzspannungsquelle U2 liegen. Aus diesem Grunde ist eine Spannungsteilerschaltung bestehend aus den Widerständen R2 und R3 vorgesehen, die die Ausgangsspannung des Lastsensors um einen gewissen Anteil herunterteilt. Damit darüber hinaus eine Unabhängigkeit des Lastsignals vom Absolutwert des im Sensor 12 angeordneten Potentiometers gegeben ist, ist ein zweiter Signalpfad 58 vorgesehen, der die am Gesamtwiderstand des Potentiometers des Sensors 12 anliegende Spannung dem zweiten Steuergerät 18 zuführt. Damit auch dieser Spannungswert den Referenzspannungswert U2 nicht überschreiten kann, ist eine weitere Spannungsteilerschaltung bestehend aus den Widerständen R2', R3'vorgesehen. Im Steuergerät 18 werden diese beiden Informationen 21, 58 im wesentlichen durcheinander dividiert, so daß eine vom Absolutwert des Gesamtwiderstandes des Potentiometers des Sensor 12 unabhängige Meßgröße als Lastinformation zur Verfügung steht. In Abhängigkeit von den verschiedenen Eingangsinformationen berechnen nun beide Steuergeräte Ausgabegrößen zur Ansteuerung der Stellglieder. Hierfür sind insbesondere beim hier interessierenden zweiten Steuergerät 18 Kennfelder vorgesehen, in denen beispielsweise der Zündzeitpunkt in Grad Kurbelwellenwinkel als Funktion der Last und Drehzahl in den Festwertspeichermitteln 51, 52 abgelegt sind.
  • Ein Beispiel für ein derartiges Kennfeld ist in Figur 3a dargestellt, in dem die Kennfeldwerte als Funktion der Drehzahl und der Ausgangssignale eines Drucksensors als Lastsensor abgelegt sind. In Abhängigkeit vom Ausgangssignal des Drucksensors können im vorliegenden Fall acht Lastbereiche L1 bis L8 und acht Drehzahlbereiche unterschieden werden, so daß insgesamt 64 Kennfeldwerte Abgespeichert sind. Natürlich ist es möglich, zur feineren Abstufung zwischen den einzelnen Kennfeldwerten zu interpolieren. Werden nun die Lastsignale zur Kennfeldansteuerung anstelle von einem Drucksensor von einem Luftmengensensor, insbesondere von einem Luftklappensensor abgeleitet, so nimmt das Kennfeld aufgrund der völlig anderen Ausgangssignalcharakteristik des Luftmengensensors die in Figur 3b dargestellte Form an. Insbesondere verdeutlicht diese Figur, daß ein Lastbereich, beispielsweise der Lastbereich L1 nicht mehr durch einen festen Ausgangsspannungswert über den ganzen Drehzahlbereich beschreibbar ist, sondern daß die Spannungswerte pro Lastbereich eine weite, drehzahlabhängige Bandbreite annehmen. Darüber hinaus wird verdeutlicht, daß die Ausgangssignalcharacteristik des Luftmengensensors derart gestaltet ist, daß die Ausgangswerte des Luftmengensensors in den verschiedenen Drehzahlbereichen gar nicht die volle maximale mögliche Bandbreite der möglichen Ausgangswerte annehmen. Hieraus folgt, daß zur Erzielung der gleichen Auflösung, wie sie mit einem Drucksensor als Lastsensor möglich ist, ein wesentlich größerer Speicher zur Abspeicherung der Kennfeldwerte erforderlich ist. Da der Speicherplatz der heutigen Systeme noch rar ist, und auch hardwaremäßigen Änderungen, beispielsweise durch Einbau weiterer Speicherbausteine im Steuergerät, vermieden werden sollen, werden erfindungsgemäß die Ausgangssignale des Sensors 12 im zweiten Steuergerät durch Rechenfunktionen beeinflußt, so daß die Ausgangscharakteristik des Sensors 12 änderbar ist. Dadurch wird letztendlich erreicht, daß der Wertevorrat der Ausgangssignale des Luftmengensensors in der Weise drehzahlabhängig komprimiert und verschoben wird, daß eine optimale Nutzung des vorhandenen Speicherplatzes bei gleichbleibender Auflösung gegenüber einer Drucksensor-Version zur Lasterfassung gewährleistet ist. Das Verfahren zur Änderung der Ausgangssignalcharakteristik des Luftmengensensors wird im folgenden anhand der Figur 3b näher erläutert.
  • Der in den einzelnen Drehzahlbereichen mögliche Wertevorrat der Ausgangswerte des Luftmengensensors wird mit einzelnen, insbesondere drehzahlabhängigen additiven Größen C1 (n1),..., C1 (n8),... derart beaufschlagt, daß beispielsweise die niedrigsten Werte aller Wertebereiche einen gemeinsamen gleichen Wert annehmen. Dies kann beispielsweise die Nullinie im abgebildeten Koordinatensystem oder aber auch eine andere, vorteilhaft erscheinende Basisgröße sein. In einem zweiten Schritt werden die einzelnen möglichen Werte eines jeden drehzahlabhängigen Wertebereiches durch die Beaufschlagung mit einer insbesondere drehzahlabhängigen multiplikativen Größe C2 (n1), ..., C2 (n8), ... beaufschlagt, um die drehzahlabhängigen Wertebereiche aneinander anzupassen. In einer einfachen Version kann die multiplikative Konstante C2 auch einen für alle Drehzahlbereiche konstanten Wert annehmen, insbesondere dann, wenn die Variation der einzelnen drehzahlabhängigen Wertbereiche der Ausgangssignale des Luftmengensensors im wesentlichen gleich ist oder vernachlässigbare Unterschiede voneinander aufweist. Durch diese additive und/oder multiplikative Änderung der Ausgangssignale des Luftmengensensors wird erreicht, daß der Wertevorrat in den einzelnen Drehzahlbereichen im wesentlichen identisch wird.
  • Nach einer experimentiellen Bestimmung der Größen C1 (n) und C2 (n) und Abspeicherung dieser Größen in den Festwertspeichermitteln 51 bzw. 52 ist dann eine Anordnung der Kennfeldwerte möglich, wie sie in Figur 3a in bezug auf die Druckgeberversion dargestellt ist. Auch die Genauigkeit, d.h. die Quantisierung bleibt erhalten, so daß mittels dieser softwaremäßigen Transformation der Ausgangssignale des Luftmengensensors eine zur Druckgeber-Version identischer Kennfeldanordnung möglich ist. Darüber hinaus ist es möglich, diese Größen C1 (n), C2 (n) mittels adaptiver Regelstrategien an zeitliche Veränderung anzupassen. Derartige adaptive Regelstrategien sind beispielsweise in der Patentanmeldung P 34 08 215.8 dargestellt, die als Referenz vom Fachmann herangezogen werden kann und deren Offenbarungsgehalt damit Bestandteil dieser Anmeldung ist.
  • Eine weitere vorteilhafte Ausgestaltung der Erfindung wird anhand der Figur 4 im folgenden näher erläutert. Mögliche Fehlerquellen in den Ausgangswerten des Luftmengensensors sind beispielsweise darin begründet, daß sich die Stellung des Potentiometers in bezug auf die Stellung der Klappe des Luftmengenmessers im Ansaugkanal verändern kann. Eine hieraus resultierende Dejustage würde zu einer falschen Zuordnung von Kennfeldwerten und Last führen. Auch andere Langzeiteinflüsse können eine Verfälschung des Ausgangssignals des Sensors herbeiführen. Um diese Effekte zu eliminieren, wird erfindungsgemäß eine Plausibilitätsprüfung des Luftmengensensorsignals durchgeführt, indem die Werte einer in den Festwertspeichermitteln 51, 52 abgespeicherten Lastkennlinie mit den Istwerten des Luftmengensensors insbesondere drehzahlabhängig vergleichen werden. Wird dabei eine nach der Plausibilitätsprüfung noch zulässig Abweichung gegenüber einem der Sollwerte festgestellt, so läßt sich durch Addition eines Korrekturgliedes AC1 zu den Größen zur additiven Beeinflussung C1 (n) eine Übereinstimmung zwischen Soll- und Istwert erreichen. Als Sollwertkennlinie kann insbesondere die Vollastkennlinie abgespeicher werden, wobei zur Detektion des Vollastfalles die Stellung der Drosselklappe 13 mittels des Drosselklappenstellungssensors 14 überwacht wird. Ist die Drosselklappe voll geöffnet, so liegt der Vollastfall vor und der beschriebene Soll-Istwertvergleich kann durchgeführt werden. Diese Korrektur kann in erster Näherung für den gesamten Drehzahlbereich gültig sein, d.h. daß alle additiven C1 (n) mit ein und demselben Korrekturwert AC1 modifiziert werden. In einer höheren Näherung ist es darüber hinaus möglich und sehr vorteilhaft, auch den Korrekturwert AC1 drehzahlabhängig zu bestimmen, so daß für jeden Drehzahlbereich ein Korrekturwert AC1 (n) gültig ist. Darüberhinaus hat es sich in verschiedenen Anwendungsfällen als vorteilhaft erwiesen, eine multiplikative Korrekturgröße ΔC2 einzuführen, die in analoger Weise C2 (n) drehzahlabhängig bzw. -unabhängig beeinflußt. Mittels dieser adaptiven Korrekturen der Istwert-Vollastlinie des Luftmengensensors mit einer im Speicher abgelegten Sollwert-Vollastkennlinie ist es möglich, trotz Toleranzen im Meßsystem des Luftmengensensors die korrekten Vollast bzw. oberen Teillastwerte eines Kennfeldes auszugeben. Die Bestimmung des Korrekturwertes ΔC1/2 (n) erfolgt in der Weise, daß die Differenz zwischen dem Soll- und Istwert der Lastkennlinie eliminiert wird. Insgesamt gesehen läßt sich durch die Erfindung ein Luftmengensensor anstelle eines zusätzlichen Drucksensors zur Lasterfassung einsetzen ohne Einbußen in der Genauigkeit und Langzeitstabilität aufzuweisen.

Claims (13)

1. Vorrichtung für eine fremdgezündete Brennkraftmaschine mit einem ersten Steuergerät zur Beeinflussung wenigstens des der Brennkraftmaschine zugeführten Kraftstoff-Luftgemisches, wenigstens in Abhängigkeit von einer, die Last der Brennkraftmaschine charakterisierenden Größe, bei der dem ersten Steuergerät die Lastinformationen als Ausgangsgröße eines Luftmengensensors für die von der Brennkraftmaschine angesaugte Luftmenge zugeführt wird und mit einem im Funktionsablauf vom ersten Steuergerät im wesentlichen unabhängigen zweiten Steuergerät zur Beeinflussung wenigstens des Zündzeitpunkts der Brennkraftmaschine, wobei das zweite Steuergerät wenigstens einen Mikrocomputer und Speichermittel aufweist und in den Speichermitteln wenigstens Daten für den Zündzeitpunkt der Brennkraftmaschine als Funktion von wenigstens Last- und Drehzahlinformationen abgelegt sind, dadurch gekennzeichnet, daß die Lastinformationen für das zweite Steuergerät vom Luftmengensensor (12), der die Lastinformation für das erste Steuergerät (17) liefert, bezogen werden und daß im zweiten Steuergerät (18) die Werte der Ausgangssignale des Luftmengensensors (12) mit einer additiven Größe (C1) oder multiplikativen Größe (C2) beaufschlagt werden und daß die Größen (C1, C2) eine funktionelle Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweisen, wobei die derart beaufschlagten Ausgangssignale beim Zugriff die Daten für den Zündzeitpunkt benutzt werden.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Größen (C1, C2) über adaptive Regelstrategien bestimmt werden.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Größen in Speichermitteln abgelegt sind.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die additive (C1) bzw. multiplikative Größe (C2) zur Beeinflussung der Übertragungscharakteristik des Lastsensors (12) derart festgelegt sind, daß der Wertevorrat der Ausgangssignale des Lastsensors (12) im wesentlichen keine Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lastsensor (2) ein Potentiometer aufweist, an dem die Lastinformation abgreifbar ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die am Mittelabgriff des Potentiometers auftretende Spannung und die über den gesamten Potentiometerwiderstand abfallende Spannung dem zweiten Steuergerät (18) zur Verarbeitung zugeführt sind.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die beiden dem Steuergerät (18) zugeführten Spannungen durcheinander dividiert werden.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für einen bestimmten Lastbetrieb der Brennkraftmaschine die Ist-Werte des Lastsensors (12) mit einer abgespeicherten Sollwert-Lastkennlinie verglichen werden und in Abhängigkeit vom Ergebnis dieses Vergleiches eine korrigierende Beeinflussung (AC) der Übertragungscharakteristik des Lastsensors (12) möglich ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß zur korrigierenden Beeinflussung additive Korrekturwerte (AC1) am Ausgangssignal des Lastsensors (12) angebracht sind.
10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß zur korrigierenden Beeinflussung multiplikative Korrekturwerte (AC2) am Ausgangssignal des Lastsensors (12) angebracht sind.
11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß die Korrekturwerte (AC1, AC2) eine funktionelle Abhängigkeit von der Drehzahl der Brennkraftmaschine aufweisen.
12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß die korrigierende Beeinflussung im Vollast- oder oberem Teillastbetrieb der Brennkraftmaschine durchgeführt ist.
13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß die korrigierende Beeinflussung derart durchgeführt ist, daß die Differenz zwischen den Soll- und Istwerten der Lastkennlinie minimiert wird.
EP86103080A 1985-04-12 1986-03-07 Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern Expired - Lifetime EP0197315B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3513086 1985-04-12
DE19853513086 DE3513086A1 (de) 1985-04-12 1985-04-12 Vorrichtung fuer eine brennkraftmaschine zur beeinflussung von betriebsparametern

Publications (3)

Publication Number Publication Date
EP0197315A2 EP0197315A2 (de) 1986-10-15
EP0197315A3 EP0197315A3 (en) 1988-03-02
EP0197315B1 true EP0197315B1 (de) 1990-08-08

Family

ID=6267787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86103080A Expired - Lifetime EP0197315B1 (de) 1985-04-12 1986-03-07 Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern

Country Status (3)

Country Link
US (1) US4762105A (de)
EP (1) EP0197315B1 (de)
DE (2) DE3513086A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791569A (en) * 1985-03-18 1988-12-13 Honda Giken Kogyo Kabushiki Kaisha Electronic control system for internal combustion engines
JP2585312B2 (ja) * 1987-11-09 1997-02-26 日産自動車株式会社 内燃機関の点火時期制御装置
JPH01262348A (ja) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp 内燃機関の制御装置
US4922874A (en) * 1989-06-30 1990-05-08 Ford Motor Company Automobile electronic control modules communicating by pulse width modulated signals
GB2251499A (en) * 1991-01-05 1992-07-08 Delco Electronics Corp Electronic control module.
DE4133268A1 (de) * 1991-10-08 1993-04-15 Bosch Gmbh Robert Vorrichtung zur steuerung der antriebsleistung eines fahrzeuges
JPH05340295A (ja) * 1992-06-09 1993-12-21 Toyota Motor Corp 多気筒内燃機関の制御装置
JPH0953499A (ja) * 1995-08-10 1997-02-25 Mitsubishi Electric Corp 4サイクル内燃機関用制御装置
JPH0960540A (ja) * 1995-08-25 1997-03-04 Yamaha Motor Co Ltd 内燃機関の制御ユニット
DE19650828B4 (de) * 1996-12-07 2005-09-29 Robert Bosch Gmbh Prüfgerät zur Überprüfung eines Steuergeräts
US6546789B1 (en) 1997-06-30 2003-04-15 Robert Bosch Gmbh Method and arrangement for monitoring the operation of an intake-manifold flap for switching over the intake manifold of an internal combustion engine
DE19729212C2 (de) * 1997-07-09 2002-01-24 Forsch Transferzentrum Ev An D Verfahren zur optimierten Steuerung von Verbrennungsmotoren
JPH11132096A (ja) * 1997-10-27 1999-05-18 Keihin Corp エンジン制御装置
JP4742433B2 (ja) * 2000-09-29 2011-08-10 マツダ株式会社 エンジンの制御装置
BRPI0310060B8 (pt) * 2002-05-17 2021-07-27 Becton Dickinson Co sistema automatizado para isolar, amplificar e detectar uma seqüência de ácido nucléico alvo ou uma proteína
DE102006061438A1 (de) * 2006-12-23 2008-06-26 Dr.Ing.H.C. F. Porsche Ag Verfahren und Steuergerät zur Überprüfung einer Saugrohrlängenverstellung bei einem Verbrennungsmotor
CN101798966B (zh) * 2010-01-15 2012-11-21 河南柴油机重工有限责任公司 气体机智能集中监控系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007984B1 (de) * 1978-08-09 1981-11-11 Robert Bosch Gmbh Einrichtung zum Steuern der Zünd- und/oder Kraftstoffeinspritzvorgänge bei Brennkraftmaschinen
DE3006633A1 (de) * 1980-02-22 1981-08-27 Robert Bosch Gmbh, 7000 Stuttgart Zuendanlage fuer brennkraftmaschinen
JPS5749041A (en) * 1980-09-05 1982-03-20 Nippon Denso Co Ltd Optimum control to internal-combustion engine
DE3036107C3 (de) * 1980-09-25 1996-08-14 Bosch Gmbh Robert Regeleinrichtung für ein Kraftstoffzumeßsystem
US4556943A (en) * 1983-05-27 1985-12-03 Allied Corporation Multiprocessing microprocessor based engine control system for an internal combustion engine
US4556942A (en) * 1983-05-27 1985-12-03 Allied Corporation Microprocessor based engine control system for controlling heavy engine loads
DE3408215A1 (de) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart Steuer- und regelverfahren fuer die betriebskenngroessen einer brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE Technical Paper Series, Warrendale, Pa, USA, 22.04.1983, Russo et al:"EFI for the 80´s....", S.11-17. *

Also Published As

Publication number Publication date
EP0197315A3 (en) 1988-03-02
DE3673206D1 (de) 1990-09-13
EP0197315A2 (de) 1986-10-15
US4762105A (en) 1988-08-09
DE3513086C2 (de) 1988-06-01
DE3513086A1 (de) 1986-10-16

Similar Documents

Publication Publication Date Title
EP0197315B1 (de) Vorrichtung für eine Brennkraftmaschine zur Beeinflussung von Betriebsparametern
DE4443517B4 (de) Einrichtung zur Lasterfassung bei einer Brennkraftmaschine
DE102005042794B4 (de) Automatisches Kalibrierverfahren für ein Zündaussetzererfassungssystem eines Motors
EP0210177B1 (de) Vorrichtung und verfahren zur beeinflussung von betriebskenngrössen von brennkraftmaschinen
DE3918772C2 (de)
DE10318588B4 (de) Klopfsteuervorrichtung für eine Brennkraftmaschine
EP1272858B1 (de) Verfahren zur kompensation der drehunförmigkeit bei der drehzahlerfassung
DE19945618A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE3504039A1 (de) Verfahren und vorrichtung zum beeinflussen des klopfpegels einer brennkraftmaschine
EP0650033A1 (de) Verfahren und Vorrichtung zur Funktionsüberwachung eines Sensors
DE3823277A1 (de) Motorsteuersystem
EP1215388B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19733958A1 (de) Verfahren und Vorrichtung zur Korrektur von Toleranzen eines Geberrades
DE4238807A1 (en) IC engine exhaust gas catalyser monitoring system - uses cross-correlation function for signals from oxygen@ sensors inserted in exhaust line before and after catalyser
DE102008054215A1 (de) Verfahren zur Vertrimmungsbestimmung einer Brennkraftmaschine mit zumindest zwei Brennkammern
DE4134522A1 (de) Einrichtung und verfahren zur elektronischen kraftstoffeinspritzsteuerung fuer verbrennungsmotor
DE102016006327A1 (de) Verfahren und Vorrichtung zum Adaptieren eines Abgasrückführventils
DE3212669C2 (de)
EP0868660B1 (de) Verfahren zur erkennung zyklischer verbrennungsschwankungen bei einer brennkraftmaschine
DE19627540B4 (de) Verbrennungsaussetzererkennungsverfahren
DE4434884C2 (de) Verfahren zur Bestimmung der Dichte der in einen Automobilmotor eingelassenen Ansaugluft
EP1045235A2 (de) Verfahren zur Drehmomentüberwachung bei Otto-Motoren in Kraftfahrzeugen
DE19653521B4 (de) Elektronische Steuerung einer mehrzylindrigen insbesondere fremdgezündeten Brennkraftmaschine
DE4009922C2 (de) Verfahren und Anordnung zur Ermittlung der tatsächlichen Luftdichte des Ansaug-Luftmassenstroms einer Brennkraftmaschine
DE19961292C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19880804

17Q First examination report despatched

Effective date: 19890118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3673206

Country of ref document: DE

Date of ref document: 19900913

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940329

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940330

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940520

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86103080.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951201

EUG Se: european patent has lapsed

Ref document number: 86103080.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050307