EP0196065B1 - Filtre de polarisation pour dispositifs HF - Google Patents

Filtre de polarisation pour dispositifs HF Download PDF

Info

Publication number
EP0196065B1
EP0196065B1 EP86104085A EP86104085A EP0196065B1 EP 0196065 B1 EP0196065 B1 EP 0196065B1 EP 86104085 A EP86104085 A EP 86104085A EP 86104085 A EP86104085 A EP 86104085A EP 0196065 B1 EP0196065 B1 EP 0196065B1
Authority
EP
European Patent Office
Prior art keywords
polarization
waveguide
hybrid
arms
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86104085A
Other languages
German (de)
English (en)
Other versions
EP0196065A1 (fr
Inventor
Eberhard Dr. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86104085T priority Critical patent/ATE58033T1/de
Publication of EP0196065A1 publication Critical patent/EP0196065A1/fr
Application granted granted Critical
Publication of EP0196065B1 publication Critical patent/EP0196065B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a polarization switch according to the preamble of patent claim 1.
  • Microwave antennas with which bandwidths of 2: 1 and more are achieved today, require correspondingly broadband polarization switches for operation with two polarizations.
  • Such a polarization crossover then also enables the combination with two crossovers to form a polarization crossover (also called a system crossover), which allows two directional radio systems of adjacent frequency bands, each with two linear polarizations, to be switched to the same antenna.
  • a polarization crossover also called a system crossover
  • this two-band antenna system has the expanded transmission capacity of two radio relay systems with the same space requirement on each radio tower.
  • the transmission capacity is also to be increased in satellite radio by expanding the frequency ranges, which then go beyond an octave, e.g. B. from 3.7 to 6.425 GHz to 3.4 to 7.125 GHz in the future.
  • an octave e.g. B. from 3.7 to 6.425 GHz to 3.4 to 7.125 GHz in the future.
  • Polarization switches that have usable frequency ranges of more than 2: 1 and avoid expensive ridge waveguides are not known.
  • EP-A2-0 147 693 The polarization switch known from EP-A2-0 147 693 is part of the prior art in the sense of Art 54 (3) EPC.
  • the invention has for its object to remedy the aforementioned difficulties and to provide options for building a polarizing switch, in which no more H-bends are required.
  • the E 11 interference wave is excited with the cut-off wavelength ⁇ kE11 depends on a and b in exactly the same way.
  • the H-bends of the switches above can only be used up to 6.20 GHz without interference waves with the same waveguide cross-section of 3.587 GHz.
  • the known method of symmetrically flattening the outer corner of the E-bend is first used. 2, the size of the corner flattening is determined by the catheter dimension x E.
  • FIG. 2 shows the flattening XEo p t determined for various articulation angles a with optimal broadband adaptation .
  • the reflection of E-buckles - at least in the buckling angle range by 60 ° - can be further reduced in a broadband manner in that x E in the case of a double-compensated E-corner piece is somewhat larger than the values from FIG. 2 (5-10% ) is selected (overcompensation) and a recess is made in the diagonal intersection of the flattening plane, e.g. a screw with a negative immersion depth.
  • the measured reflection factor of this kink is less than 0.7% in the frequency range from 3.7 GHz to 9.9 GHz. It is certain that the upper limit of 9.9 GHz is not caused by the E-kink, but by interference wave types of the measuring arrangement used.
  • E-bends with a reduced waveguide height b are far superior to corresponding K-bends in terms of bandwidth and low reflection. This gives rise to the following new task: How can a polarization switch be constructed using only E-bends with a reduced waveguide height b and homogeneous cables, but without any K-bend.
  • This double branch DV can be thought of as being composed of four waveguide E offsets, which are arranged symmetrically about the round waveguide axis, rotated by 90 ° relative to one another.
  • the four cyclically lying rectangular waveguides created in this way are shifted towards the axis of the round waveguide by means of short ridge waveguide sections and flow into the round waveguide with low reflection.
  • two opposing rectangular waveguide connections 1, 2, 3, 4 of the double branching DV in FIG. 3 on the right and left are to be fed with two partial waves of the same size, the mutually opposite phase with respect to the circular waveguide axis 5 to have.
  • This branching is to be dimensioned with as little reflection as possible, with the consideration that the branching according to FIG.
  • the series branches SV of both waveguide forks are followed by an E-bend in each arm, which has the same bend angle and opposite bend direction as the previous E-bend of the series branch in the cable run.
  • the distance I k of successive E-bends is chosen so that, according to FIG. 3, the partial arms now running parallel to one another have the distance w between their inner broad side walls, which is slightly larger than the wide side a T of the partial arms.
  • the straight fork gG is complete by extending its partial arms according to FIG. 3 on the right by straight rectangular waveguides of length I 9 , which is chosen so that the E-offset fork ⁇ G in FIG. 3 has space on the left between the partial arms of the straight fork without penetration .
  • 3 on the left consists of two mutually identical E-bends, which are connected in the opposite direction to each other by a homogeneous line of such length that a displacement distance v measured in the horizontal direction results which is sufficient for the two meshing forks to penetrate one another without penetration .
  • the connecting flanges of the polarization-selective rectangular waveguides lie in one and the same plane. Therefore, the electrical length of the straight fork gG is initially shorter than that of the e-offset fork. It is possible - at least at an operating frequency - to produce exactly the same electrical length of both passages of the polarization filter by lengthening the straight fork gG and consequently shortening the e-offset fork ⁇ G for topological reasons. It is not to be feared that this phase symmetry has a greater frequency response, because the electrical difference of one polarization crossover compared to the other - this difference consists of the E offsets EV according to FIG. 3 - is considered to be small.
  • the polarization switch concept according to FIG. 3 is the solution to the above problem, because only E-bends and homogeneous lines occur as elements.
  • the usable frequency range of this polarization filter is thus considerably broadened compared to that of known arrangements and is likely to extend beyond an octave. It is crucial and essential that the new polarization switch according to FIG. 3 no longer contains any H-bends, as is still necessary in the arrangement according to DE-PS 28 42 576.
  • the polarization switch in FIG. 3 has the further property that the axes of all occurring waveguide sections lie in only two planes which are perpendicular to one another and have already been selected as the plane of the drawing on the right and left in FIG. 3 for better understanding. Since these planes are also perpendicular to the broad side walls of all the respective waveguides and these broad sidewalls always cut along their center lines, all of the respective waveguides can be divided in these planes without cross current and therefore without loss.
  • the polarization switch can then be composed of only five parts, namely, apart from the double branch DV, each of two mirror-image halves of the straight (gG) and the E-offset fork (äG). Since the waveguide walls of all four fork halves are all cylindrical with respect to the parting planes, all of these parts can be manufactured inexpensively using the NC milling process. This basic requirement for efficient production is not given in the arrangement according to DE-PS-2 842 576.
  • both polarization-selective rectangular waveguide connections of the polarization crossover are each connected to one of two identical crossovers FW 1 and FW 2 , each of which conducts a lower frequency band for access in FIG. 3 at the top and an upper one Frequency band previously deflected to the side.
  • the polarization crossover then has two polarization-selective accesses at the top in FIG. 3, each of which is assigned to one of the two mutually orthogonal linear polarizations of the lower frequency band and two polarization-selective accesses (opening in FIG.
  • the polarization crossover connects these four separate accesses to the common circular waveguide access (Fig. 3, below) to which the two-band antenna is to be connected. These four turnouts are extremely low loss and low reflection, and each pass is highly decoupled from all others.
  • the crossover FW is already explained in detail in DE-OS 32 08 029. According to FIG. 3, it consists in each case of a lateral branch for the upper frequency band and a schematically drawn four-circuit lock pointing upward in FIG. 3, which blocks the upper frequency band and allows the lower to pass without reflection. It is also important that the basic structure of these crossovers is matched with the basic structure of the waveguide legs gG and GG of the polarization crossover explained above. This means that also with the crossovers it applies that the axes of all waveguides lie in one and the same plane, that the broad side walls of all waveguides are perpendicular to this plane, that this plane runs along all waveguide broad sidewalls, their center lines - i.e.
  • crossovers can also be arranged at an angle, preferably over the broad side of the waveguide. All that is required is to refer to the design variants of the crossover described in DE-OS 32 08 020.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Lasers (AREA)
  • Inorganic Insulating Materials (AREA)

Claims (14)

1. Aiguillage de polarisation pour des dispositifs de la technique des fréquences extrêmement élevées, comportant un embranchement double (DV) à ciq branches, en soi symétrique, qui subdivise un guide d'ondes circulaire ou carré, qui s'étend dans la direction de l'axe longitudinal (5), en deux couples de guides d'ondes rectangulaires, disposés respectivement en vis-à-vis les uns des autres pour former deux couples, caractérisé par le fait que le premier couple, constitué par deux branches (2, 4) du guide d'ondes, situées en vis-à-vis l'une de l'autre, de l'embranchement double (DV) est alimenté par une fourche de guides d'ondes (gG), symétrique en soi et constituée uniquement par des coudes en E et des guides d'ondes rectilignes, à partir d'un embranchement série formé de guides d'ondes (SV), possédant une impédance caractéristique correcte, et comportant deux branches partielles rectilignes raccordées à cet embranchement et parallèles entre elles, et que le second couple constitué par les branches de guides d'ondes (1, 3), situées en vis-à-vis l'une de l'autre, de l'embranchement double (DV), est alimenté par une seconde fourche formée d'éléments de décalage en E (äG) en soi symétrique, constituée uniquement par des coudes en E et des guides d'ondes rectilignes, à partir d'un autre embranchement série formé de guides d'ondes (SV), qui possède une impédance caractéristique correcte et comporte deux branches partielles parallèles entre elles et deux éléments de décalage en E raccordés à cet embranchement et possédant des axes longitudinaux parallèles entre eux et constitué pour leur part respectivement par deux coudes en E, qui, dans le cas de directions de coudes opposées l'une à l'autre, sont reliés entre eux par l'intermédiaire d'un guide d'ondes homogène, dont l'axe est oblique par rapport à l'axe longitudinal (5) et qui possède une longueur telle qu'on obtient une distance latérale de décalage (v), mesurée perpendiculairement à l'axe longitudinal (5) de l'embranchement double (DV), et possédant une longueur permettant l'imbrication, sans traversée, des deux fourches formées de guides d'ondes (gG, êG).
2. Aiguillage de polarisation suivant la revendication 1, caractérisé par le fait que les deux fourches (gG, àG) sont constituées par des embranchements série symétriques respectifs (SV).
3. Aiguillage de polarisation suivant la revendication 2, caractérisé par le fait que les embranchements série (SV) sont réalisés avec des impédances caractéristiques correctes, avec des branches partielles de l'embranchement série correspondant approximativement à aT = 4bT, à partir du guide d'ondes respectif à profil normal pour lequel on a approximativement a = 2b (figure 4).
4. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait qu'à chaque embranchement série respectif (SV) sont raccordés respectivement deux coudes en E, qui sont agencés et disposés de telle sorte que les branches partielles des fourches formées de guides d'ondes (gG, äG) sont de ce fait parallèles entre elles et que la distance (w) entre les côtés larges intérieurs des branches partielles de la fourche rectiligne formée de guide d'ondes (gG) est légèrement supérieure (environ 10%) au côté large (aT) des branches partielles.
5. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait que le prolongement des branches partielles de la fourche rectiligne (gG) et les deux éléments de décalage en E de la fourche formée d'éléments de décalage en E sont réalisés approximativement avec le rapport des côtés a = 4b.
6. Aiguillage de polarisation suivant la revendication 5, caractérisé par le fait que les distances réciproques (IE1, IE2) de coudes en E voisins sont suffisamment grandes compte tenu d'un affaiblissement du champ parasite E" (aapE11) devant être exigé, pour la fréquence maximale de fonctionnement, qui est critique à cet égard.
7. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait que les coudes en E comportent un méplat symétrique d'angle et une vis disposée au niveau du point d'intersection des diagonales du plan du méplat, avec une profondeur d'insertion négative ou bien seulement un méplat symétrique d'angle, la valeur du côté de l'angle droit du méplat d'angle respectif étant choisie d'une manière optimale pour l'adaptation de la largeur de bande.
8. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait que chaque fourche formée de guide d'ondes (gG, äG) est séparée mécaniquement, respectivement au moyen d'un plan qui est perpendiculaire aux parois des côtés larges, de tous les guides d'ondes respectifs et coupe ces parois des côtés larges le long de leurs lignes médianes.
9. Aiguillage de polarisation suivant la revendication 3, caractérisé par le fait que l'embranchement série (SV) possède un coin (K), qui s'étend sur tout le côté large (aT) et dont l'angle au sommet (a) est égal à l'angle de coude simple (a) de l'embranchement série et dont la dimension (XEopt) du côté de l'angle droit est choisie de façon optimale, éventuellement conjointement avec une vis ayant une profondeur d'insertion négative ou avec un renfoncement au niveau du point d'intersection diagonal des deux surfaces rectangulaires du coin, pour l'adaptation de la bande large (figure 4).
10. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait que la longueur (19) des branches partielles de la fourche rectiligne (gG) et la distance de décalage (v) de la fourche formée d'éléments de décalage en E (äG) sont choisies de manière que les deux brides de raccordement, sélectives du point de vue de la polarisation, de l'aiguillage de polarisation sont situées dans un même plan.
11. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait que la longueur (lg) des branches partielles de la fourche rectiligne (gG) est prolongée et que la distance de décalage (v) de la fourche formée d'éléments de décalage en E (âG) est réduite de telle sorte qu'on obtient, pour les deux branches de passage de l'aiguillage de polarisation, une longueur électrique exactement identique pour une fréquence pouvant être prédéterminée.
12. Aiguillage de polarisation suivant l'une des revendications précédentes, caractérisé par le fait qu'un filtre d'aiguillage respectif (FW) est raccordé respectivement aux deux accès du guide d'ondes rectangulaires, sélectifs du point de vue de la polarisation.
13. Aiguillage de polarisation suivant la revendication 12, caractérisé par le fait que les plans de séparation, exempts de courant transversal, des filtres d'aiguillage (SW) sont choisis identiques aux plans de séparation, exempts de courant transversal, de la fourche associée du guide d'ondes (gG ou äG).
14. Aiguillage de polarisation suivant la revendication 13, caractérisé par le fait que la distance (IE3) entre la pointe du point de l'embranchement série (SV) du raccord respectif de guide d'ondes rectangulaire de l'aiguillage de polarisation et l'accès du filtre d'aiguillage, qui débouche latéralement, pour la bande supérieure des fréquences, est suffisamment grande, compte tenu d'un affaiblissement de champ parasite En (aapE"), qui doit être exigé, pour la fréquence maximale de service, qui est critique à cet égard.
EP86104085A 1985-03-27 1986-03-25 Filtre de polarisation pour dispositifs HF Expired - Lifetime EP0196065B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86104085T ATE58033T1 (de) 1985-03-27 1986-03-25 Polaristationsweiche fuer einrichtungen der hoechstfreqenztechnik.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3511127 1985-03-27
DE3511127 1985-03-27

Publications (2)

Publication Number Publication Date
EP0196065A1 EP0196065A1 (fr) 1986-10-01
EP0196065B1 true EP0196065B1 (fr) 1990-10-31

Family

ID=6266500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104085A Expired - Lifetime EP0196065B1 (fr) 1985-03-27 1986-03-25 Filtre de polarisation pour dispositifs HF

Country Status (5)

Country Link
US (1) US4700154A (fr)
EP (1) EP0196065B1 (fr)
JP (1) JP2510988B2 (fr)
AT (1) ATE58033T1 (fr)
DE (1) DE3675235D1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598034B1 (fr) * 1986-04-28 1988-08-26 Alcatel Espace Dispositif a joint tournant hyperfrequence
ATE75559T1 (de) * 1987-02-18 1992-05-15 Siemens Ag Mikrowellen-polarisationsweiche.
DE3871586D1 (de) * 1987-03-24 1992-07-09 Siemens Ag Breitbandige polarisationsweiche.
DE3881741D1 (de) * 1987-03-24 1993-07-22 Siemens Ag Breitband-polarisationsweiche.
US4912436A (en) * 1987-06-15 1990-03-27 Gamma-F Corporation Four port dual polarization frequency diplexer
ATE130964T1 (de) * 1989-09-28 1995-12-15 Siemens Ag Mikrowellen-polarisationsweiche.
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
US6839543B1 (en) 1996-09-09 2005-01-04 Victory Industrial Corporation Method and system for detecting and discriminating multipath signals
US6600387B2 (en) * 2001-04-17 2003-07-29 Channel Master Llc Multi-port multi-band transceiver interface assembly
GB2434922A (en) * 2006-02-03 2007-08-08 Ericsson Telefon Ab L M Ortho-mode transducer connecting two rectangular waveguides to a common circular waveguide
DE102010063800A1 (de) * 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Diplexer für homodynes FMCW-Radargerät
US9960468B2 (en) * 2012-09-07 2018-05-01 Remec Broadband Wireless Networks, Llc Metalized molded plastic components for millimeter wave electronics and method for manufacture

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2443166C3 (de) * 1974-09-10 1985-05-30 ANT Nachrichtentechnik GmbH, 7150 Backnang Systemweiche zur Trennung zweier Signale, die aus je zwei doppelt polarisierten Frequenzbändern bestehen
DE2521956C3 (de) * 1975-05-16 1978-07-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Polarisationsweiche
DE2719283C2 (de) * 1977-04-29 1984-02-02 Siemens AG, 1000 Berlin und 8000 München Antennenspeisesystem für Doppelpolarisation
DE2747632C2 (de) * 1977-04-29 1984-03-08 Siemens AG, 1000 Berlin und 8000 München Antennenspeisesystem für Doppelpolarisation
US4162463A (en) * 1977-12-23 1979-07-24 Gte Sylvania Incorporated Diplexer apparatus
DE2842577C2 (de) * 1978-09-29 1984-10-04 Siemens AG, 1000 Berlin und 8000 München !ber die Hohlleiterbreitseite genicktes Rechteckhohlleiter-Winkelstück
DE2842576C2 (de) * 1978-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Polarisationsweiche
US4237000A (en) * 1979-03-05 1980-12-02 F. T. Read & Sons, Inc. Shaker assembly for screening and scalping
DE3010360C2 (de) * 1980-03-18 1985-08-08 Siemens AG, 1000 Berlin und 8000 München Polarisationsweiche
IT1149770B (it) * 1982-02-25 1986-12-10 Italtel Spa Circuito per separare due bande di frequenze per segnali ad altissima frequenza in doppia polarizzazione
DE3208029A1 (de) * 1982-03-05 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Frequenzweiche zur trennung zweier frequenzbaender unterschiedlicher frequenzlage
US4504805A (en) * 1982-06-04 1985-03-12 Andrew Corporation Multi-port combiner for multi-frequency microwave signals
DE3345689A1 (de) * 1983-12-16 1985-07-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Breitband-polarisationsweiche

Also Published As

Publication number Publication date
ATE58033T1 (de) 1990-11-15
EP0196065A1 (fr) 1986-10-01
JP2510988B2 (ja) 1996-06-26
JPS61224701A (ja) 1986-10-06
US4700154A (en) 1987-10-13
DE3675235D1 (de) 1990-12-06

Similar Documents

Publication Publication Date Title
DE2443166C3 (de) Systemweiche zur Trennung zweier Signale, die aus je zwei doppelt polarisierten Frequenzbändern bestehen
EP0196065B1 (fr) Filtre de polarisation pour dispositifs HF
DE69904550T2 (de) Polarisationsweiche mit doppelter Seitenwandkopplung
DE2726799C2 (de) Frequenzweiche
EP0154692B1 (fr) Filtre de polarisation pour deux bandes de fréquences
DE3111106C2 (fr)
DE2521956C3 (de) Polarisationsweiche
DE2842576A1 (de) Polarisationsweiche
EP0284911B1 (fr) Filtre de polarisation à large bande
DE2719283A1 (de) Antennenspeisesystem fuer doppelpolarisation
DE2708271C2 (de) Polarisationsweiche
EP0633621B1 (fr) Filtre-combineur pour antenne
DE2842890C2 (de) Hohlleiter-Koppler
EP0147693B1 (fr) Filtre de polarisation à large bande
EP0285879B1 (fr) Filtre de polarisation à large bande
EP0419892B1 (fr) Filtre de polarisation aux micro-ondes
EP0280151B1 (fr) Filtre de polarisation aux micro-ondes
DE3208029C2 (fr)
DE2747632C2 (de) Antennenspeisesystem für Doppelpolarisation
DE2431278C2 (de) Vierpol-Filter
EP0224917B1 (fr) Dispositif de transmission de signaux de faisceaux hertziens dans deux ou plusieurs bandes de fréquences
DE3010360C2 (de) Polarisationsweiche
DE3622175A1 (de) Anordnung zur auskopplung zweier orthogonal linear polarisierter wellen aus einem hohlleiter
EP0080553B1 (fr) Filtre du type ligne à bande
DE2912650C2 (de) Frequenzweiche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861127

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901031

Ref country code: NL

Effective date: 19901031

Ref country code: GB

Effective date: 19901031

REF Corresponds to:

Ref document number: 58033

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3675235

Country of ref document: DE

Date of ref document: 19901206

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ITTA It: last paid annual fee
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010319

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325