EP0196065B1 - Polarization filter for hf devices - Google Patents

Polarization filter for hf devices Download PDF

Info

Publication number
EP0196065B1
EP0196065B1 EP86104085A EP86104085A EP0196065B1 EP 0196065 B1 EP0196065 B1 EP 0196065B1 EP 86104085 A EP86104085 A EP 86104085A EP 86104085 A EP86104085 A EP 86104085A EP 0196065 B1 EP0196065 B1 EP 0196065B1
Authority
EP
European Patent Office
Prior art keywords
polarization
waveguide
hybrid
arms
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86104085A
Other languages
German (de)
French (fr)
Other versions
EP0196065A1 (en
Inventor
Eberhard Dr. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86104085T priority Critical patent/ATE58033T1/en
Publication of EP0196065A1 publication Critical patent/EP0196065A1/en
Application granted granted Critical
Publication of EP0196065B1 publication Critical patent/EP0196065B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a polarization switch according to the preamble of patent claim 1.
  • Microwave antennas with which bandwidths of 2: 1 and more are achieved today, require correspondingly broadband polarization switches for operation with two polarizations.
  • Such a polarization crossover then also enables the combination with two crossovers to form a polarization crossover (also called a system crossover), which allows two directional radio systems of adjacent frequency bands, each with two linear polarizations, to be switched to the same antenna.
  • a polarization crossover also called a system crossover
  • this two-band antenna system has the expanded transmission capacity of two radio relay systems with the same space requirement on each radio tower.
  • the transmission capacity is also to be increased in satellite radio by expanding the frequency ranges, which then go beyond an octave, e.g. B. from 3.7 to 6.425 GHz to 3.4 to 7.125 GHz in the future.
  • an octave e.g. B. from 3.7 to 6.425 GHz to 3.4 to 7.125 GHz in the future.
  • Polarization switches that have usable frequency ranges of more than 2: 1 and avoid expensive ridge waveguides are not known.
  • EP-A2-0 147 693 The polarization switch known from EP-A2-0 147 693 is part of the prior art in the sense of Art 54 (3) EPC.
  • the invention has for its object to remedy the aforementioned difficulties and to provide options for building a polarizing switch, in which no more H-bends are required.
  • the E 11 interference wave is excited with the cut-off wavelength ⁇ kE11 depends on a and b in exactly the same way.
  • the H-bends of the switches above can only be used up to 6.20 GHz without interference waves with the same waveguide cross-section of 3.587 GHz.
  • the known method of symmetrically flattening the outer corner of the E-bend is first used. 2, the size of the corner flattening is determined by the catheter dimension x E.
  • FIG. 2 shows the flattening XEo p t determined for various articulation angles a with optimal broadband adaptation .
  • the reflection of E-buckles - at least in the buckling angle range by 60 ° - can be further reduced in a broadband manner in that x E in the case of a double-compensated E-corner piece is somewhat larger than the values from FIG. 2 (5-10% ) is selected (overcompensation) and a recess is made in the diagonal intersection of the flattening plane, e.g. a screw with a negative immersion depth.
  • the measured reflection factor of this kink is less than 0.7% in the frequency range from 3.7 GHz to 9.9 GHz. It is certain that the upper limit of 9.9 GHz is not caused by the E-kink, but by interference wave types of the measuring arrangement used.
  • E-bends with a reduced waveguide height b are far superior to corresponding K-bends in terms of bandwidth and low reflection. This gives rise to the following new task: How can a polarization switch be constructed using only E-bends with a reduced waveguide height b and homogeneous cables, but without any K-bend.
  • This double branch DV can be thought of as being composed of four waveguide E offsets, which are arranged symmetrically about the round waveguide axis, rotated by 90 ° relative to one another.
  • the four cyclically lying rectangular waveguides created in this way are shifted towards the axis of the round waveguide by means of short ridge waveguide sections and flow into the round waveguide with low reflection.
  • two opposing rectangular waveguide connections 1, 2, 3, 4 of the double branching DV in FIG. 3 on the right and left are to be fed with two partial waves of the same size, the mutually opposite phase with respect to the circular waveguide axis 5 to have.
  • This branching is to be dimensioned with as little reflection as possible, with the consideration that the branching according to FIG.
  • the series branches SV of both waveguide forks are followed by an E-bend in each arm, which has the same bend angle and opposite bend direction as the previous E-bend of the series branch in the cable run.
  • the distance I k of successive E-bends is chosen so that, according to FIG. 3, the partial arms now running parallel to one another have the distance w between their inner broad side walls, which is slightly larger than the wide side a T of the partial arms.
  • the straight fork gG is complete by extending its partial arms according to FIG. 3 on the right by straight rectangular waveguides of length I 9 , which is chosen so that the E-offset fork ⁇ G in FIG. 3 has space on the left between the partial arms of the straight fork without penetration .
  • 3 on the left consists of two mutually identical E-bends, which are connected in the opposite direction to each other by a homogeneous line of such length that a displacement distance v measured in the horizontal direction results which is sufficient for the two meshing forks to penetrate one another without penetration .
  • the connecting flanges of the polarization-selective rectangular waveguides lie in one and the same plane. Therefore, the electrical length of the straight fork gG is initially shorter than that of the e-offset fork. It is possible - at least at an operating frequency - to produce exactly the same electrical length of both passages of the polarization filter by lengthening the straight fork gG and consequently shortening the e-offset fork ⁇ G for topological reasons. It is not to be feared that this phase symmetry has a greater frequency response, because the electrical difference of one polarization crossover compared to the other - this difference consists of the E offsets EV according to FIG. 3 - is considered to be small.
  • the polarization switch concept according to FIG. 3 is the solution to the above problem, because only E-bends and homogeneous lines occur as elements.
  • the usable frequency range of this polarization filter is thus considerably broadened compared to that of known arrangements and is likely to extend beyond an octave. It is crucial and essential that the new polarization switch according to FIG. 3 no longer contains any H-bends, as is still necessary in the arrangement according to DE-PS 28 42 576.
  • the polarization switch in FIG. 3 has the further property that the axes of all occurring waveguide sections lie in only two planes which are perpendicular to one another and have already been selected as the plane of the drawing on the right and left in FIG. 3 for better understanding. Since these planes are also perpendicular to the broad side walls of all the respective waveguides and these broad sidewalls always cut along their center lines, all of the respective waveguides can be divided in these planes without cross current and therefore without loss.
  • the polarization switch can then be composed of only five parts, namely, apart from the double branch DV, each of two mirror-image halves of the straight (gG) and the E-offset fork (äG). Since the waveguide walls of all four fork halves are all cylindrical with respect to the parting planes, all of these parts can be manufactured inexpensively using the NC milling process. This basic requirement for efficient production is not given in the arrangement according to DE-PS-2 842 576.
  • both polarization-selective rectangular waveguide connections of the polarization crossover are each connected to one of two identical crossovers FW 1 and FW 2 , each of which conducts a lower frequency band for access in FIG. 3 at the top and an upper one Frequency band previously deflected to the side.
  • the polarization crossover then has two polarization-selective accesses at the top in FIG. 3, each of which is assigned to one of the two mutually orthogonal linear polarizations of the lower frequency band and two polarization-selective accesses (opening in FIG.
  • the polarization crossover connects these four separate accesses to the common circular waveguide access (Fig. 3, below) to which the two-band antenna is to be connected. These four turnouts are extremely low loss and low reflection, and each pass is highly decoupled from all others.
  • the crossover FW is already explained in detail in DE-OS 32 08 029. According to FIG. 3, it consists in each case of a lateral branch for the upper frequency band and a schematically drawn four-circuit lock pointing upward in FIG. 3, which blocks the upper frequency band and allows the lower to pass without reflection. It is also important that the basic structure of these crossovers is matched with the basic structure of the waveguide legs gG and GG of the polarization crossover explained above. This means that also with the crossovers it applies that the axes of all waveguides lie in one and the same plane, that the broad side walls of all waveguides are perpendicular to this plane, that this plane runs along all waveguide broad sidewalls, their center lines - i.e.
  • crossovers can also be arranged at an angle, preferably over the broad side of the waveguide. All that is required is to refer to the design variants of the crossover described in DE-OS 32 08 020.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inorganic Insulating Materials (AREA)
  • Lasers (AREA)

Abstract

A polarization diplexer which branches from a circular or quadratic waveguide in the axial direction into pairs of rectangular waveguides respectively lying opposite each other with the first pair of two rectangular waveguides lying opposite one another and fed by a symmetrical hybrid junction comprising straight subarms and wherein the first pair are symmetrical. The second pair of rectangular waveguides comprises two rectangular waveguides lying opposite each other which is fed by a second electrically symmetrical hybrid junction having subarms straddled over their broad dimension. The invention can also be utilized as a polarization frequency diplexer.

Description

Die Erfindung betrifft eine Polarisationsweiche gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a polarization switch according to the preamble of patent claim 1.

Mikrowellenantennen, mit denen heute Bandbreiten von 2:1 und mehr erreicht werden, erfordern für den Betrieb mit zwei Polarisationen entsprechend breitbandige Polarisationsweichen. Eine solche Polarisationsweiche ermöglicht dann außerdem die Kombination mit zwei Frequenzweichen zu einer Polarisationsfrequenzweiche (acuh Systemweiche genannt), die zwei Richtfunksysteme benachbarter Frequenzbänder mit je zwei Linearpolarisationen auf ein und dieselbe Antenne zu schalten gestattet. Diese Zweibandantennenanlage hat gegenüber bisherigen Einbandantennen bei unverändertem Platzbedarf auf jedem Funkturm die erweiterte Übertragungskapazität zweier Richtfunksysteme.Microwave antennas, with which bandwidths of 2: 1 and more are achieved today, require correspondingly broadband polarization switches for operation with two polarizations. Such a polarization crossover then also enables the combination with two crossovers to form a polarization crossover (also called a system crossover), which allows two directional radio systems of adjacent frequency bands, each with two linear polarizations, to be switched to the same antenna. Compared to previous single-band antennas, this two-band antenna system has the expanded transmission capacity of two radio relay systems with the same space requirement on each radio tower.

Auch im Satellitenfunk soll die Übertragungskapazität gesteigert werden durch Erweitung der Frequenzbereiche, die dann über eine Oktave hinausgehen z. B. von bisher 3.7 bis 6,425 GHz auf zukünftig 3,4 bis 7,125 GHz.The transmission capacity is also to be increased in satellite radio by expanding the frequency ranges, which then go beyond an octave, e.g. B. from 3.7 to 6.425 GHz to 3.4 to 7.125 GHz in the future.

Polarisationsweichen, die nutzbare Frequenzbereiche von mehr als 2:1 aufweisen und teuere Steghohlleiter vermeiden, sind nicht bekannt. Auch die Polarisationsweiche nach der DE-OS 28 42 576 mit zwei E- und zwei H-Hohlleiterversätzen letztere enthalten je zwei, mit untereinander entgegengesetzter knickrichtung angeordnete H-Knicke, auf deren Nachteile im folgenden näher eingegangen wird, sowie die Polarisationsweiche nach der DE-OS 30 10 360 mit vier E-H-Hohlleiterversätzen haben einen theoretischen Eindeutigkeitsfrequenzbereich von nur 2:1; dies entspricht einem maximal nutzbaren Frequenzbereich von 1,73:1.Polarization switches that have usable frequency ranges of more than 2: 1 and avoid expensive ridge waveguides are not known. The polarization switch according to DE-OS 28 42 576 with two E and two H waveguide offsets, the latter each contain two H bends arranged with mutually opposite bending directions, the disadvantages of which are discussed in more detail below, and the polarization switch according to DE OS 30 10 360 with four EH waveguide offsets have a theoretical uniqueness frequency range of only 2: 1; this corresponds to a maximum usable frequency range of 1.73: 1.

Die physikalische Ursache dafür, daß der eindeutige Frequenzbereich obiger Polarisationsweichen zu höheren Frequenzen hin eingeschränkt ist, liegt in den H-Krümmern. Sie regen die H20-Störwelle ab der Betriebsfrequenz an, bei der im Rechteckhohlleiter des H-Krümmers die Hzo-Grenzfrequenz erreicht wird. Wegen ÄkH20 = a hängt die Hzo-Grenzfrequenz eines H-Krümmers nur von seiner Hohlleiterbreitseite a ab; fkH20 und auch der Eindeutigkeitsfrequenzbereich fkH20/fkH10 bleiben unverändert, wenn gegenüber dem Normalprofilhohlleiter mit a = 2b die Höhe b reduziert und a beibehalten wird. Dieses Verhalten zeigen sowohl H-Bögen wie H-Knicke.The physical cause for the fact that the clear frequency range of the above polarization switches is restricted to higher frequencies lies in the H-bends. They excite the H 20 interference wave from the operating frequency at which the H zo cut-off frequency is reached in the rectangular waveguide of the H-bend. Because of Ä kH20 = a, the H zo cut-off frequency of an H-bend depends only on its broad waveguide a; fk H20 and also the uniqueness frequency range f kH20 / f kH10 remain unchanged if the height b is reduced and a is maintained compared to the normal profile waveguide with a = 2b. Both H-bends and H-bends show this behavior.

Die aus der Druckschrift EP-A2-0 147 693 bekannte Polarisationsweiche gehört zum Stand der Technik im Sinne von Art 54(3) EPÜ.The polarization switch known from EP-A2-0 147 693 is part of the prior art in the sense of Art 54 (3) EPC.

Der Erfindung liegt die Aufgabe zugrunde, den vorerwähnten Schwierigkeiten abzuhelfen und Möglichkeiten zum Aufbau einer Polarisationsweiche anzugeben, bei der keinerlei H-Krümmer mehr benötigt werden.The invention has for its object to remedy the aforementioned difficulties and to provide options for building a polarizing switch, in which no more H-bends are required.

Ausgehend von einer Polarisationsweiche nach dem Oberbegriff des Patentanspruches 1, wird diese Aufgabe erfindungsgemäß nach den kennzeichnenden Merkmalen des Patentanspruches 1 gelöst.Starting from a polarizing filter according to the preamble of claim 1, this object is achieved according to the characterizing features of claim 1.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.Advantageous refinements are specified in the subclaims.

Anhand von Ausführungsbeispielen wird nachstehend die Erfindung noch näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Es zeigen in der Zeichnung

  • Fig. 1 den theoretischen Eindeutigkeitsfrequenzbereich fkE11/fkH10 und den praktisch nutzbaren Frequenzbereich fob/fu von E-Krümmern abhängig von Seitenverhältnis a/b ihrer Rechteckhohlleiter,
  • Fig. 2 die optimale Eckenabflachung für E-Knicke im Rechteckhohlleiter mit a = 4b abhängig von Knickwinkel a,
  • Fig. 3 zwei aufeinander senkrechte Querschnitte durch die Polarisationsfrequenzweiche, rechts durch die gerade Hohlleitergabel, links durch die gegrätschte Hohlleitergabel,
  • Fig. 4 die Dimensionierung der breitbandig angepaßten Serienverzweigung SV.
It show in the drawing
  • 1 shows the theoretical uniqueness frequency range f kE11 / f kH10 and the practically usable frequency range fob / fu of e-manifolds depending on the aspect ratio a / b of their rectangular waveguide,
  • 2 the optimal corner flattening for E-bends in the rectangular waveguide with a = 4b depending on the bend angle a,
  • 3 two mutually perpendicular cross sections through the polarization crossover, right through the straight waveguide fork, left through the grooved waveguide fork,
  • Fig. 4, the dimensioning of the broadband adapted series branch SV.

Wesentlich günstiger als der oben betrachtete H-Knick verhält sich im Hinblick auf Breitbandigkeit der E-Krümmer, der keine H20-Störwelle anregt. Im Rechteckhohlleiter des E-Krümmers wird die E11-Störwelle angeregt mit der Grenzwellenlänge

Figure imgb0001
λkE11 hängt von a und b in genau gleicher Weise ab. Die obere Grenze des Eindeutigkeitsfrequenzbereiches ist fkE11 und die untere Grenze fkH10 = 2a. Abhängig vom Seitenverhältnis a/b des rechteckigen E-Krümmerhohlleiters ergibt sich
Figure imgb0002
Considering the broadband nature of the E-manifold, which does not excite an H 20 interference wave, behaves much more favorably than the H-bend considered above. In the rectangular waveguide of the E-bend, the E 11 interference wave is excited with the cut-off wavelength
Figure imgb0001
λ kE11 depends on a and b in exactly the same way. The upper limit of the uniqueness frequency range is f kE11 and the lower limit f kH10 = 2a. Depending on the aspect ratio a / b of the rectangular E-manifold waveguide
Figure imgb0002

Danach und nach Fig. 1 wird fkE11/fkH10 des E-Krümmers umso größer, je größer a/b ist, d.h. je niedriger der Hohlleiter des E-Krümmers ist. Aus dem theoretischen Eindeutigkeitsfrequenzbereich fkE11/fkH10 ergibt sich nach Fig. 1 der praktisch maximal nutzbare Frequenzbereich eines E-Krümmers abhängig von a/b seines Rechteckhohlleiters unter der realistischen Annahme, daß die tiefste Betriebsfrequenz fu 10% über fkH10 gewählt wird und die höchste Betriebsfrequenz fb 5% unter fkE11·Thereafter and according to FIG. 1, f kE11 / f kH10 of the E-bend becomes larger the larger a / b, ie the lower the waveguide of the E-bend. From the theoretical uniqueness frequency range f kE11 / f kH10 results 1 shows the practically maximum usable frequency range of an e-bend depending on a / b of its rectangular waveguide under the realistic assumption that the lowest operating frequency f u 10% over f kH10 and the highest operating frequency fb 5% under f kE11

Als Beispiel dient der bei den oben erwähnten Polarisationsweichen nach der DE-OS 28 42 576 oft verwendete E-Krümmer im Rechteckhohlleiter mit a = 4b, der z.B. bei a = 46 mm im Frequenzbereich von 3,587 GHz bis 12,773 GHz störwellenfrei nutzbar ist. Dagegen sind die H-Krümmer obiger Weichen beim selben Hohlleiterquerschnitt von 3,587 GHz nur bis 6,20 GHz störwellenfrei nutzbar.An example is the E-elbow in the rectangular waveguide with a = 4b, which is often used in the above-mentioned polarization switches according to DE-OS 28 42 576, which e.g. at a = 46 mm in the frequency range from 3.587 GHz to 12.773 GHz can be used without interference waves. In contrast, the H-bends of the switches above can only be used up to 6.20 GHz without interference waves with the same waveguide cross-section of 3.587 GHz.

Wie unten gezeigt wird, eignet sich der E-Knick mit a = 4b bestens als Hauptkomponente neuer breitbandiger Polarisationsweichen. Daher ist eine weitere wichtige Aufgabe die breitbandige Anpassung solcher E-Knicke. Hierzu wird zuerst die an sich bekannte Methode der symmetrischen Abflachung der Außenecke des E-Knickes angewandt. Nach Fig. 2 ist die Größe der Eckenabflachung durch das Kathetenmaß xE bestimmt. Fig. 2 zeigt die für verschiedene Knickwinkel a auf meßtechnischem Wege ermittelte Abflachung XEopt bei optimaler Breitbandanpassung.As shown below, the E-Knick with a = 4b is ideally suited as the main component of new broadband polarization switches. Another important task is therefore the broadband adaptation of such E-bends. For this purpose, the known method of symmetrically flattening the outer corner of the E-bend is first used. 2, the size of the corner flattening is determined by the catheter dimension x E. FIG. 2 shows the flattening XEo p t determined for various articulation angles a with optimal broadband adaptation .

Nach einer weiteren Untersuchung ist die Reflexion von E-Knicken-zumindest im Knickwinkelbereich um 60° - dadurch breitbandig weiter zu verkleinern, daß xE im Falle eines zweifach kompensierten E-Winkelstückes gegenüber den Werten aus Fig. 2 etwas größer (5-10%) gewählt wird (Überkompensation) und im Diagonalenschnittpunkt der Abflachungsebene eine Vertiefung angebracht wird, z.B. eine Schraube mit negativer Eintauchtiefe.According to a further investigation, the reflection of E-buckles - at least in the buckling angle range by 60 ° - can be further reduced in a broadband manner in that x E in the case of a double-compensated E-corner piece is somewhat larger than the values from FIG. 2 (5-10% ) is selected (overcompensation) and a recess is made in the diagonal intersection of the flattening plane, e.g. a screw with a negative immersion depth.

Als praktisches Beispiel ist ein 60°-E-Knick ausgeführt mit a = 45,4 mm, b = 11,35 mm und einer im Diagonalenschnittpunkt der Abflachungsebene angebrachten, gegenüber dieser Ebene um 0,3 mm herausgedrehten Schraumbe M10. Der gemessene Reflexionsfaktor dieses Knickes ist im Frequenzbereich von 3,7 GHz bis 9,9 GHz kleiner als 0,7%. Es ist sicher, daß die Obergrenze von 9,9 GHz nicht vom E-Knick verursacht ist, sondern von Störwellentypen der benützten Meßanordnung. Die Frequenzobergrenze des E-Knickes liegt über 9,9 KHz, nämlich nach Gleichung (1) bei fkE11 = 13,62 GHz.As a practical example, a 60 ° E bend is designed with a = 45.4 mm, b = 11.35 mm and a M10 Schraumbe screwed out at the diagonal intersection of the flattening plane and 0.3 mm out of this plane. The measured reflection factor of this kink is less than 0.7% in the frequency range from 3.7 GHz to 9.9 GHz. It is certain that the upper limit of 9.9 GHz is not caused by the E-kink, but by interference wave types of the measuring arrangement used. The upper frequency limit of the E-bend is over 9.9 KHz, namely according to equation (1) at f kE11 = 13.62 GHz.

Wie oben aufgezeigt, sind E-Knicke mit reduzierter Hohlleiterhöhe b hinsichtlich Bandbreite und Reflexionsarmut entsprechenden K-Knicken weit überlegen. Daraus erwächst folgende neue Aufgabe: Wie kann eine Polarisationsweiche möglichst nur mit E-Knicken reduzierter Hohlleiterhöhe b und homogenen Leitungen aber ohne jeden K-Krümmer aufgebaut werden.As shown above, E-bends with a reduced waveguide height b are far superior to corresponding K-bends in terms of bandwidth and low reflection. This gives rise to the following new task: How can a polarization switch be constructed using only E-bends with a reduced waveguide height b and homogeneous cables, but without any K-bend.

Die Lösung geht aus von der bewährten Doppelverzweigung DV, wie sie in Fig. 3 unten rechts und links skizziert ist und in der DE-PS 28 42 576 bereits erläutert ist. Diese Doppelverzweigung DV kann zusammengesetzt gedacht werden aus vier Hohlleiter-E-Versätzen, die um je 90° gegeneinander gedreht symmetrisch um die Rundhohlleiterachse herum angeordnet sind. Die so entstandenen vier zyklisch liegenden Rechteckhohlleiter werden mittels kurer Steghohlleiterabschnitte zur Achse des Rundhohlleiters hin versetzt und münden breitbandig reflexionsarm in den Rundhohlleiter.The solution is based on the tried-and-tested double branch DV, as outlined in the bottom right and left in FIG. 3 and has already been explained in DE-PS 28 42 576. This double branch DV can be thought of as being composed of four waveguide E offsets, which are arranged symmetrically about the round waveguide axis, rotated by 90 ° relative to one another. The four cyclically lying rectangular waveguides created in this way are shifted towards the axis of the round waveguide by means of short ridge waveguide sections and flow into the round waveguide with low reflection.

Zur Anregung der aufeinander senkrechten linearen H11-Polarisationen im Rundhohlleiter sind in Fig. 3 rechts bzw. links je zwei einander gegenüberliegende Rechteckhohlleiteranschlüsse 1, 2, 3, 4 der Doppelverzweigung DV mit zwei gleichgrößen Teilwellen zu speisen, die untereinander entgegengesetzte Phase bezüglich der Rundhohlleiterachse 5 haben. Dazu dient nach Fig. 3 rechts eine erste, gestrichelt umrahmte in sich symmetrische Rechteckhohlleitergabel gG mit geraden Teilarmen und eine zweite, elektrisch symmetrische Rechteckhohlleitergabel äG mit zwei in Fig. 3 links ebenfalls gestrichelte umrahmte nach rechts hinüberversetzten Teilarmen, wobei der linke dieser Teilarme durchdringungsfrei zwischen den geraden Armen der ersten Gabel gG Platz findet.To excite the mutually perpendicular linear H11 polarizations in the circular waveguide, two opposing rectangular waveguide connections 1, 2, 3, 4 of the double branching DV in FIG. 3 on the right and left are to be fed with two partial waves of the same size, the mutually opposite phase with respect to the circular waveguide axis 5 to have. For this purpose, according to FIG. 3 on the right, a first, dashed-framed, rectangular symmetrical waveguide fork gG with straight partial arms and a second, electrically symmetrical rectangular waveguide fork ÄG with two dashed, also broken lines in FIG place the straight arms of the first fork GG.

Beide Gabeln gG und äG bestehen im Beispiel von Fig. 3 aus je einer symmetrischen Rechteckhohlleiterserienverzweigung SV; sie teilt den zu verzweigenden Rechteckhohlleiter mit beispielsweise a = 2b wellenwiderstandsrichtig und bei konstanten Breitseiten a = aT in zwei Teilarme mit dann aT = 4bT und knickt sie nach Fig. 4 um den Winkel von je a nach rechts bzw. links symmetrisch auseinander. Diese Verzweigung ist möglichst reflexionsarm zu dimensionieren mit der Überlegung, daß die Verzweigung nach Fig. 4 zusammengesetzt werden kann aus zwei E-Knicken des Rechteckhohlleiters mit aT = 4bT, die bei untereinander entgegengesetzter Knickrichtung mit sehr dünner rechter und linker Breitseitenwand a, und a, aneinanderliegen. Wird die dünne leitende Wand weggelassen, so werden die Felder dadurch nicht verändert, und es bleibt nach Fig. 4 der über die ganze Breitseite verlaufende Keil K mit dem Spitzwinkel a (gleich dem Knickwinkel a) und dem aus Fig. 2 entnehmbaren Kathetenmaß XEopt, das - oben zunächst nur für den E-Knick alleine ermittelt - nunmehr auch für die optimale Breitbandanpassung der Serienverzweigung gilt. Die Form der Serienverzweigung nach Fig. 4 ist besonders geeignet zur Herstellung mit dem bekannten NC-Fräsverfahren (numerical controlled-Fräsverfahren).In the example of FIG. 3, both forks gG and aG consist of a symmetrical rectangular waveguide series branch SV; it divides the rectangular waveguide to be branched with, for example, a = 2b with correct wave resistance and with constant broad sides a = a T into two partial arms with then a T = 4b T and, according to FIG. 4, kinks them symmetrically apart by the angle of a to the right or left . This branching is to be dimensioned with as little reflection as possible, with the consideration that the branching according to FIG. 4 can be composed of two E-bends of the rectangular waveguide with a T = 4b T , which, in the opposite bending direction with a very thin right and left broad side wall a, and a, lie together. If the thin conductive wall is omitted, the fields are not changed, and according to FIG. 4 the wedge K extending over the entire broad side remains with the acute angle a (equal to the kink angle a) and the catheter dimension X Eopt which can be seen in FIG. 2 , which - initially only determined for the E-Knick alone - now also applies to the optimal broadband adaptation of the series branch. 4 is particularly suitable for production using the known NC milling method (numerical controlled milling method).

An die Serienverzweigungen SV beider Hohlleitergabeln schließt sich nach Fig. 3 in jedem Teilarm ein E-Knick an, der den gleichen Knickwinkel und entgegengesetzte Knickrichtung hat wie der im Leitungszug jeweils vorhergehende E-Knick der Serienverzweigung. Der Abstand Ik aufeinanderfolgender E-Knicke ist so gewählt, daß nach Fig. 3 die nunmehr parallel zueinander verlaufenden Teilarme zwischen ihren innenliegenden Breitseitenwänden den Abstand w haben, der etwas größer ist als die Breitseite aT der Teilarme.According to FIG. 3, the series branches SV of both waveguide forks are followed by an E-bend in each arm, which has the same bend angle and opposite bend direction as the previous E-bend of the series branch in the cable run. The distance I k of successive E-bends is chosen so that, according to FIG. 3, the partial arms now running parallel to one another have the distance w between their inner broad side walls, which is slightly larger than the wide side a T of the partial arms.

Die gerade Gable gG wird vollständig, indem ihre Teilarme nach Fig. 3 rechts durch gerade Rechteckhohlleiter der Länge I9 verlängert werden, die so gewählt ist, daß die E-Versatzgabel äG in Fig. 3 links zwischen den Teilarmen der geraden Gabel durchdringungsfrei Platz hat.The straight fork gG is complete by extending its partial arms according to FIG. 3 on the right by straight rectangular waveguides of length I 9 , which is chosen so that the E-offset fork ÄG in FIG. 3 has space on the left between the partial arms of the straight fork without penetration .

Die E-Versatzgabel äG in Fig. 3 links wird dadurch vollständig, daß an die parallel zueinander verlaufenden Teilarme ihrer Serienverzweigung zwei untereinander gleiche E-Versatze EV mit dem Rechteckhohlleiterquerschnitt aT = 4 bT angeschlossen werden. Der E-Versatz besteht nach Fig. 3 links aus zwei untereinander gleichen E-Knicken, die bei untereinander entgegengesetzter Knickrichtung durch eine homogene Leitung solcher Länge verbunden sind, daß sich eine in horizontaler Richtung gemessene Versatzstrecke v ergibt, die zum durchdringungsfreien Ineinandergreifen beider Hohlleitergabeln ausreicht.3 to the left is complete in that two mutually identical E-offsets EV with the rectangular hollow are located on the partial arms of their series branching which run parallel to one another wire cross section a T = 4 b T can be connected. 3 on the left consists of two mutually identical E-bends, which are connected in the opposite direction to each other by a homogeneous line of such length that a displacement distance v measured in the horizontal direction results which is sufficient for the two meshing forks to penetrate one another without penetration .

Wichtig ist, daß die Doppelverzweigung von der E-Versatzgabel äG nur dann elektrisch symmetrisch (d.h. ohne Verursachung von Störwellen) angeregt wird, wenn nach Fig. 3 links die Abstände IE1 und lE2 zwischen benacharten E-Knicken genügend groß sind. Kriterium dafür ist, die bekannte aperiodische Dämpfung aapE11 der Leitungsabschnitte mit der Länge IE1 bzw. lE2 für das vom E-Knick angeregte En-Störfeld bei der kritischen höchsten Betriebsfrequenz mit der Freiraumwellenlänge Ao. Es ist

Figure imgb0003
mit λkE11 aus Gleichung (1). Für praktisch relevante Knickwinkel von 50° bis 60° und aT = 4 bT reicht erfahrungsgemäß bei der höchsten Betriebsfrequenz aapE11 = 20 dB aus; dies wird schon bei kleinen Längen IE = bT erreicht.It is important that the double branching is only excited electrically symmetrically (ie without causing interference waves) by the E offset fork if, according to FIG. 3, the distances I E1 and I E2 between adjacent E bends are sufficiently large on the left. The criterion for this is the known aperiodic attenuation a apE11 of the line sections with the length I E1 or I E2 for the E n interference field excited by the E-kink at the critical highest operating frequency with the free space wavelength A o . It is
Figure imgb0003
with λ kE11 from equation (1). Experience has shown that a apE11 = 20 dB is sufficient for practically relevant articulation angles from 50 ° to 60 ° and a T = 4 b T at the highest operating frequency ; this is achieved even with small lengths I E = b T.

Bei der Polarisationsweiche in Fig. 3 liegen die Anschlußflansche der polarisationsselektiven Rechteckhohlleiter in ein und derselben Ebene. Daher ist die elektrische Länge der geraden Gabel gG zunächst kleiner als die der E-Versatzgabel. Es ist - zumindest bei einer Betriebsfrequenz - möglich, exakt gleiche elektrische Länge beider Durchgänge der Polarisationsweiche dadurch herzustellen, daß die gerade Gabel gG verlängert wird, und folglich die E-Versatzgabel äG aus topologischen Gründen gekürzt werden kann. Es ist nicht zur befürchten, daß diese Phasensymmetrie einen größeren Frequenzgang hat, weil der elektrische Unterschied des einen gegenüber dem anderen Polarisationsweichendurchgang - dieser Unterschied besteht nach Fig. 3 aus den E-Versätzen EV - als gering erachtet wird.3, the connecting flanges of the polarization-selective rectangular waveguides lie in one and the same plane. Therefore, the electrical length of the straight fork gG is initially shorter than that of the e-offset fork. It is possible - at least at an operating frequency - to produce exactly the same electrical length of both passages of the polarization filter by lengthening the straight fork gG and consequently shortening the e-offset fork ÄG for topological reasons. It is not to be feared that this phase symmetry has a greater frequency response, because the electrical difference of one polarization crossover compared to the other - this difference consists of the E offsets EV according to FIG. 3 - is considered to be small.

Das Polarisationsweichenkonzept nach Fig. 3 ist die Lösung der oben gestellten Aufgabe, weil als Elemente nur noch E-Knicke und homogene Leitungen vorkommen. Damit ist der nutzbare Frequenzbereich dieser Polarisationsweiche gegenüber demjenigen bekannter Anordnungen wesentlich verbreitert und reicht voraussichtlich über eine Oktave hinaus. Entscheidend und wesentlich ist, daß die neue Polarisationsweiche nach Fig. 3 keinerlei H-Krümmer mehr enthält, wie dies bei der Anordnung nach der DE-PS 28 42 576 noch erforderlich ist.The polarization switch concept according to FIG. 3 is the solution to the above problem, because only E-bends and homogeneous lines occur as elements. The usable frequency range of this polarization filter is thus considerably broadened compared to that of known arrangements and is likely to extend beyond an octave. It is crucial and essential that the new polarization switch according to FIG. 3 no longer contains any H-bends, as is still necessary in the arrangement according to DE-PS 28 42 576.

Die Polarisationsweiche in Fig. 3 hat die weitere Eigenschaft, daß die Achsen aller vorkommenden Hohlleiterabschnitte in nur zwei Ebenen liegen, die aufeinander senkrecht stehen und in Fig. 3 rechts und links zum besseren Verständnis bereits als Zeichenebene gewählt sind. Da diese Ebenen ferner auf den Breitseitenwänden aller jeweiligen Hohlleiter senkrecht stehen und diese Breitseitenwände stets ihren Mittellinien entlang schneiden, können alle jeweiligen Hohlleiter in diesen Ebenen querstromfrei und daher verlustfrei geteilt werden. Die Polarisationsweiche kann dann aus nur fünf Teilen zusammengesetzt werden, nämlich außer der Doppelverzweigung DV aus je zwei spiegelbildlich gleichen Hälften der geraden (gG) und der E-Versatzgabel (äG). Da die Hohlleiterwände aller vier Gabelhälften im Bezug auf die Trennebenen ausnahmslos zylindrisch sind, können alle diese Teile im NC-Fräsverfahren kostengünstig hergestellt werden. Diese Grundvoraussetzung für rationelle Herstellung ist bei der Anordnung nach DE-PS-2 842 576 nicht gegeben.The polarization switch in FIG. 3 has the further property that the axes of all occurring waveguide sections lie in only two planes which are perpendicular to one another and have already been selected as the plane of the drawing on the right and left in FIG. 3 for better understanding. Since these planes are also perpendicular to the broad side walls of all the respective waveguides and these broad sidewalls always cut along their center lines, all of the respective waveguides can be divided in these planes without cross current and therefore without loss. The polarization switch can then be composed of only five parts, namely, apart from the double branch DV, each of two mirror-image halves of the straight (gG) and the E-offset fork (äG). Since the waveguide walls of all four fork halves are all cylindrical with respect to the parting planes, all of these parts can be manufactured inexpensively using the NC milling process. This basic requirement for efficient production is not given in the arrangement according to DE-PS-2 842 576.

Die Polarisationsweiche von Fig. 3 läßt sich zur Polarisationsfrequenzweiche erweitern. Dazu werden beide polarisationsselektiven Rechteckhohlleiteranschlüsse der Polarisationsweiche wie dies ebenfalls in Fig. 3 oben dargestellt ist, mit je einer von zwei gleichen Frequenzweichen FW1 bzw. FW2 verbunden, die jeweils ein unteres Frequenzband zum Zugang in Fig. 3 ganz oben leitet und ein oberes Frequenzband vorher zur Seite umlenkt. Die Polarisationsfrequenzweiche hat dann in Fig. 3 ganz oben zwei polarisationsselektive Zugänge, die je einer der beiden zueinander orthogonalen Linearpolarisationen des unteren Frequenzbandes zugeordnet sind und zwei polarisationsselektive Zugänge (in Fig. 3 links von vorne bzw. von rechts einmündend) für beide Polarisationen des oberen Frequenzbandes. Die Polarisationsfrequenzweiche verbindet diese vier Separatzugänge mit dem gemeinsamen Rundhohlleiterzugang (Fig. 3, unten), an den die Zweibandantenne anzuschließen ist. Diese vier Weichendurchgänge sind extrem verlust- und reflexionsarm, und jeder Durchgang ist von allen anderen hoch entkoppelt.3 can be expanded to the polarization crossover. For this purpose, both polarization-selective rectangular waveguide connections of the polarization crossover, as also shown in FIG. 3 above, are each connected to one of two identical crossovers FW 1 and FW 2 , each of which conducts a lower frequency band for access in FIG. 3 at the top and an upper one Frequency band previously deflected to the side. The polarization crossover then has two polarization-selective accesses at the top in FIG. 3, each of which is assigned to one of the two mutually orthogonal linear polarizations of the lower frequency band and two polarization-selective accesses (opening in FIG. 3 to the left or from the right) for both polarizations of the upper one Frequency band. The polarization crossover connects these four separate accesses to the common circular waveguide access (Fig. 3, below) to which the two-band antenna is to be connected. These four turnouts are extremely low loss and low reflection, and each pass is highly decoupled from all others.

Die Frequenzweiche FW ist in der DE-OS 32 08 029 bereits detailliert erläutert. Sie besteht nach Fig. 3 aus je einer seitlichen Abzweigung für das obere Frequenzband und einer in Fig. 3 nach oben weisenden schematisch gezeichneten Vierkreissperre, die das obere Frequenzband sperrt und das untere reflexionsfrei durchläßt. Wichtig ist ferner, daß der prinzipielle Aufbau dieser Frequenzweichen mit dem oben erläuterten Prinzipaufbau der Hohlleitergebein gG und äG der Polarisationsweiche in Übereinstimmung gebracht ist. D.h., auch bei den Frequenzweichen gilt, daß die Achsen aller Hohlleiter in ein und derselben Ebene liegen, daß die Breitseitenwände aller Hohlleiter auf dieser Ebene senkrecht stehen, daß diese Ebene alle Hohlleiterbreitseitenwände entlang, ihren Mittellinien - also querstrom - und daher verlustfrei - trennen und daß alle Hohlleiterwände bezüglich dieser Ebene zylindrisch sind. Diese Trennebene wird mit der oben gewählten Trennebene der zugehörigen Hohlleitergabel zusammengelegt. Daraus folgt, daß der Komplex "Frequenzweiche + Hohlleitergabel" in einem Zug und ohne Naht im NC-Fräsverfahren kostengünstig und hochpräzis herstellbar ist. Auch die komplette Polarisationsfrequenzweiche besteht aus nur fünf Einzelteilen.The crossover FW is already explained in detail in DE-OS 32 08 029. According to FIG. 3, it consists in each case of a lateral branch for the upper frequency band and a schematically drawn four-circuit lock pointing upward in FIG. 3, which blocks the upper frequency band and allows the lower to pass without reflection. It is also important that the basic structure of these crossovers is matched with the basic structure of the waveguide legs gG and GG of the polarization crossover explained above. This means that also with the crossovers it applies that the axes of all waveguides lie in one and the same plane, that the broad side walls of all waveguides are perpendicular to this plane, that this plane runs along all waveguide broad sidewalls, their center lines - i.e. cross-flow - and therefore lossless - separate and that all waveguide walls are cylindrical with respect to this plane. This parting plane is merged with the parting plane of the associated waveguide fork selected above. It follows that the complex "crossover + waveguide fork" can be produced inexpensively and with high precision in one go and without seam using the NC milling process. The complete polarization crossover also consists of only five individual parts.

Zu beachten ist lediglich noch, daß bei der Zusammenschaltung zwischen Polarisationsweiche und Frequenzweiche in Fig. 3 ein Mindestabstand lE3 zwischen der Spitze der Serienverzweigungen und den im Beispiel von Fig. 3 seitlich einmündenden Frequenzweichenzugang des oberen Frequenzbandes notwendig ist. Diese Leitungslänge muß nach Gleichung (3) eine genügend hohe aperiodische Dämpfung des E11-Störfeldes gewährleisten, das vom seitlich einmündenden Frequenzweichenzugang für das obere Frequenzband angeregt wird.It should only be noted that when interconnecting the polarization crossover and the crossover in FIG. 3, a minimum distance l E3 between the top of the series branches and the crossover access of the upper frequency band opening laterally in the example of FIG. 3 is necessary. According to equation (3), this line length must ensure a sufficiently high aperiodic damping of the E 11 interference field, which is excited for the upper frequency band by the crossover point access opening at the side.

Zu der in Fig. 3 gewählten, sog. gestreckten Anordnung der Frequenzweichen zur Polarisationsweiche ist zu vermerken, daß die Frequenzweichen auch abgewinkelt vorzugsweise über die Hohlleiterbreitseite, angeordnet werden können. Hierzu braucht lediglich auf die in DE-OS 32 08 020 erläuterten Aufbauvarianten der Frequenzweiche hingewiesen werden.Regarding the so-called stretched arrangement of the crossovers to the polarization crossover selected in FIG. 3, it should be noted that the crossovers can also be arranged at an angle, preferably over the broad side of the waveguide. All that is required is to refer to the design variants of the crossover described in DE-OS 32 08 020.

Claims (14)

1. Polarization diplexer for microwave devices comprising a five-armed boule branch (DV) which is symmetrical in itself, which branches a circular or square waveguide, which extends in the direction of the longitudinal axis (5), into two pairs of rectangular waveguides which are opposite to one another in each case, characterized in that the first pair, consisting of two mutually opposite waveguide arms (2, 4) of the double branch (DV), is fed by a hybrid junction (gG), which is symmetrical in itself and which is constructed only by means of E-planed bends and straight waveguides, formed of a series waveguide branch (SV) with the correct characteristic impedance with two straight part-arms carried in parallel to one another and connected thereto, and the second pair, consisting of the two mutually opposite waveguide arms (1, 3) of the double branch (DV), is fed by a second E-plane offset hybrid (äG), which is symmetrical in itself and is constructed only with E-plane bends and straight waveguides, from a further series waveguide branch (SV) with the correct characteristic impedance and having two part-arms extending in parallel with one another and two E-plane offset sections (EV) which are connected thereto and are arranged with longitudinal axes extending in parallel to one another and which, in turn, consist of two E-type bends each which, with mutually opposite directions of bends, are connected to one another via a homogeneous waveguide, the axis of which extends obliquely to the longitudinal axis (5), of such a length that a lateral offset path (v), measured perpendicularly to the longitudinal axis (5) of the double branch (DV), of such a length is obtained that a penetration-free intermeshing of both hybrid junctions (gG, äG) is rendered possible.
2. Polarization diplexer according to Claim 1, characterized in that the two hybrid junctions (gG, äG) are constructed with one symmetrical series branch (SV) each.
3. Polarization diplexer according to Claim 2, characterized in that the series branches (SV) are constructed with the correct characteristic impedance with part-arms having a series ratio of about aT = 4bT, starting with the respective normal-section waveguide having about a = 2b (Fig. 4).
4. Polarization diplexer according to one of the preceding claims, characterized in that to the respective series branch (SV) two E-plane bends each are connected which are constructed and arranged in such a manner that, as a result, the part-arms of the hybrid junctions (gG, äG) extend in parallel with one another and in this arrangement the distance (w) between the inside wide sides of the part-arms of the straight hybrid junction (gG) is slightly greater (approximately 10%) than the wide side (aT) of the part-arms.
5. Polarization diplexer according to one of the preceding claims, characterized in that the extension of the part-arms of the straight hybrid (gG) and the two E-plane offset sections of the E-plane offset hybrid are constructed approximately with the side wall ratio of a = 4b.
6. Polarization diplexer according to Claim 5, characterized in that the mutual distances (IE1, IE2) of adjacent E-plane bends are sufficiently large having regard to an E" spurious field attenuation (aapE11) to be demanded at the highest operating frequency which is critical in this respect.
7. Polarization diplexer according to one of the preceding claims, characterized in that the E-plane bends are provided with a symmetrical flattening of the corners and a screw with a negative insertion depth mounted at the diagonal point of intersection of the flattening plane or only with a symmetrical flattening of the corners, the dimension of the small side of the respective corner flattening being selected for optimum wide-band matching.
8. Polarization diplexer according to one of the preceding claims, characterized in that each hybrid junction (gG, äG) is mechanically separated by in each case one plane which is perpendicular to the wide side walls of all respective waveguides and intersects these wide side walls along their centre lines.
9. Polarization diplexer according to Claim 3, characterized in that the series branch (SV) has a wedge (K) which extends over the entire wide side (aT) and the acute angle (a) is equal to the simple bend angle (a) of the series branch and the dimension of the small side (XEopt), if necessary together with one screw each with negative insertion depth or one recess in the diagonal point of intersection of both rectangular wedge surfaces, is selected for optimum wideband matching (Fig. 4).
10. Polarization diplexer according to one of the preceding claims, characterized in that the length (19) of the part-arms of the straight hybrid (gG) and the offset path (v) of the E-plane offset hybrid (äG) are selected in such a manner that the two polarization-selective connecting flanges of the polarization diplexer are located in one and the same plane.
11. Polarization diplexer according to one of the preceding claims, characterized in that the length (lg) of the part-arms of the straight hybrid (gG) is extended in such a manner and the offset path (v) of the E-plane offset hybrid (äG) is reduced in such a manner that exactly the same electrical length is obtained for both transit branches of the polarization diplexer at a predeterminable frequency.
12. Polarization diplexer according to one of the preceding claims, characterized in that one frequency diplexer (FW) each is connected to both polarization selective rectangular waveguide entrances.
13. Polarization diplexer according to Claim 12, characterized in that the transverse-current-free separation planes of the frequency diplexers (FW) are made to coincide with the transverse-current-free separation planes of the respective associated hybrid junction (gG or äG, respectively).
14. Polarization diplexer according to Claim 13, characterized in that the distance (lE3) between the wedge tip of the series branch (SV) of the respective rectangular waveguide connection of the polarization diplexer and the laterally entering frequency diplexer entrance for the upper frequency band is sufficiently large having regard to an E11 spurious field attenuation (aapE11) to be demanded at the highest operating frequency which is critical in this respect.
EP86104085A 1985-03-27 1986-03-25 Polarization filter for hf devices Expired - Lifetime EP0196065B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86104085T ATE58033T1 (en) 1985-03-27 1986-03-25 POLARIZATION INTERFACE FOR HIGH FREQUENCY TECHNOLOGY EQUIPMENT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3511127 1985-03-27
DE3511127 1985-03-27

Publications (2)

Publication Number Publication Date
EP0196065A1 EP0196065A1 (en) 1986-10-01
EP0196065B1 true EP0196065B1 (en) 1990-10-31

Family

ID=6266500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104085A Expired - Lifetime EP0196065B1 (en) 1985-03-27 1986-03-25 Polarization filter for hf devices

Country Status (5)

Country Link
US (1) US4700154A (en)
EP (1) EP0196065B1 (en)
JP (1) JP2510988B2 (en)
AT (1) ATE58033T1 (en)
DE (1) DE3675235D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598034B1 (en) * 1986-04-28 1988-08-26 Alcatel Espace MICROWAVE ROTATING JOINT DEVICE
ATE75559T1 (en) * 1987-02-18 1992-05-15 Siemens Ag MICROWAVE POLARIZATION.
EP0284911B1 (en) * 1987-03-24 1992-06-03 Siemens Aktiengesellschaft Broad-band polarizing junction
ATE90813T1 (en) * 1987-03-24 1993-07-15 Siemens Ag BROADBAND POLARIZATION.
US4912436A (en) * 1987-06-15 1990-03-27 Gamma-F Corporation Four port dual polarization frequency diplexer
DE59009918D1 (en) * 1989-09-28 1996-01-11 Siemens Ag Microwave polarizing switch.
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
US6839543B1 (en) 1996-09-09 2005-01-04 Victory Industrial Corporation Method and system for detecting and discriminating multipath signals
US6600387B2 (en) * 2001-04-17 2003-07-29 Channel Master Llc Multi-port multi-band transceiver interface assembly
GB2434922A (en) * 2006-02-03 2007-08-08 Ericsson Telefon Ab L M Ortho-mode transducer connecting two rectangular waveguides to a common circular waveguide
DE102010063800A1 (en) * 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Diplexer for homodyne FMCW radar
US9960468B2 (en) * 2012-09-07 2018-05-01 Remec Broadband Wireless Networks, Llc Metalized molded plastic components for millimeter wave electronics and method for manufacture

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2443166C3 (en) * 1974-09-10 1985-05-30 ANT Nachrichtentechnik GmbH, 7150 Backnang System switch for separating two signals, each consisting of two double polarized frequency bands
DE2521956C3 (en) * 1975-05-16 1978-07-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Polarization switch
DE2747632C2 (en) * 1977-04-29 1984-03-08 Siemens AG, 1000 Berlin und 8000 München Antenna feed system for double polarization
DE2719283C2 (en) * 1977-04-29 1984-02-02 Siemens AG, 1000 Berlin und 8000 München Antenna feed system for double polarization
US4162463A (en) * 1977-12-23 1979-07-24 Gte Sylvania Incorporated Diplexer apparatus
DE2842576C2 (en) * 1978-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Polarization switch
DE2842577C2 (en) * 1978-09-29 1984-10-04 Siemens AG, 1000 Berlin und 8000 München Rectangular waveguide angle piece nodulated over the broad side of the waveguide
US4237000A (en) * 1979-03-05 1980-12-02 F. T. Read & Sons, Inc. Shaker assembly for screening and scalping
DE3010360C2 (en) * 1980-03-18 1985-08-08 Siemens AG, 1000 Berlin und 8000 München Polarization switch
IT1149770B (en) * 1982-02-25 1986-12-10 Italtel Spa CIRCUIT TO SEPARATE TWO BANDS OF FREQUENCIES FOR HIGH-FREQUENCY DOUBLE POLARIZATION SIGNALS
DE3208029A1 (en) * 1982-03-05 1983-09-15 Siemens AG, 1000 Berlin und 8000 München Frequency separating filter for separating two frequency bands with a different frequency position
US4504805A (en) * 1982-06-04 1985-03-12 Andrew Corporation Multi-port combiner for multi-frequency microwave signals
DE3345689A1 (en) * 1983-12-16 1985-07-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn BROADBAND POLARIZING SOFT

Also Published As

Publication number Publication date
EP0196065A1 (en) 1986-10-01
DE3675235D1 (en) 1990-12-06
US4700154A (en) 1987-10-13
JPS61224701A (en) 1986-10-06
ATE58033T1 (en) 1990-11-15
JP2510988B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
DE2443166C3 (en) System switch for separating two signals, each consisting of two double polarized frequency bands
DE3781398T2 (en) TWO-MODE SEMICONDUCTOR FILTER WITH A COUPLING ELEMENT TO REACH AN ASYMMETRIC FILTER CURVE.
EP0196065B1 (en) Polarization filter for hf devices
DE69904550T2 (en) Polarizer with double sidewall coupling
EP0154692B1 (en) Polarisation-selective circuit for two frequency bands
DE3111106C2 (en)
DE2521956C3 (en) Polarization switch
DE2842576A1 (en) POLARIZATION SOFT
EP0284911B1 (en) Broad-band polarizing junction
DE2719283A1 (en) ANTENNA FEEDING SYSTEM FOR DOUBLE POLARIZATION
DE2708271C2 (en) Polarization switch
EP0633621B1 (en) Antenna-filter-combiner
DE3853333T2 (en) Hybrid coupler and crossover with coaxial cables.
DE2842890C2 (en) Waveguide coupler
EP0147693B1 (en) Broadband polarisation filter
EP0285879B1 (en) Broad-band polarizing junction
EP0419892B1 (en) Microwave polarisation filter
EP0280151B1 (en) Microwave polarisation filter
DE3208029C2 (en)
DE2747632C2 (en) Antenna feed system for double polarization
DE2431278C2 (en) Quadrupole filter
EP0224917B1 (en) Arrangement for the transmission of directional radio-signals in two or more frequency bands
DE3010360C2 (en) Polarization switch
DE3622175A1 (en) ARRANGEMENT FOR UNCOUPLING TWO ORTHOGONAL LINEAR POLARIZED WAVES FROM A SEMICONDUCTOR
EP0080553B1 (en) Stripline filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861127

17Q First examination report despatched

Effective date: 19890126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901031

Ref country code: NL

Effective date: 19901031

Ref country code: GB

Effective date: 19901031

REF Corresponds to:

Ref document number: 58033

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3675235

Country of ref document: DE

Date of ref document: 19901206

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ITTA It: last paid annual fee
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010319

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325