EP0280151B1 - Microwave polarisation filter - Google Patents

Microwave polarisation filter Download PDF

Info

Publication number
EP0280151B1
EP0280151B1 EP88102209A EP88102209A EP0280151B1 EP 0280151 B1 EP0280151 B1 EP 0280151B1 EP 88102209 A EP88102209 A EP 88102209A EP 88102209 A EP88102209 A EP 88102209A EP 0280151 B1 EP0280151 B1 EP 0280151B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
fork
rectangular
bends
rectangular waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88102209A
Other languages
German (de)
French (fr)
Other versions
EP0280151A1 (en
Inventor
Eberhard Dr.-Ing. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88102209T priority Critical patent/ATE75559T1/en
Publication of EP0280151A1 publication Critical patent/EP0280151A1/en
Application granted granted Critical
Publication of EP0280151B1 publication Critical patent/EP0280151B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a microwave polarization switch with a symmetrically constructed, five-armed double branch, which branches a waveguide lying round or square in the longitudinal axis direction into two pairs of diametrically opposed rectangular waveguides, the two pairs each being fed by a symmetrical waveguide fork , of which the first consists of a symmetrical rectangular series waveguide branch consisting of two e-bends facing outwards (rectangular waveguide contra-angle bent over the broadside of the waveguide) and two straight, parallel, mutually connected and at the other end connected to it via an e-bend the two opposite rectangular waveguides of the one pair of rectangular waveguide arms are formed, and of which the second also a symmetrical rectangular waveguide consisting of two outward-directed E-bends Series branching and two each connected via an E-bend to it, at the other end in the two opposite rectangular waveguide of the other pair, parallel to each other extending rectangular waveguide arms.
  • Broadband microwave antennas require broadband polarization switches for operation with two polarizations. Large bandwidths can only be achieved with polarization switches in which both polarizations are excited spatially symmetrically in the round or square waveguide.
  • Known broadband polarization switches of this type are known from DE-PS 26 51 935 and from DE-GM 69 24 060. They contain an external waveguide network that extends very far in the transverse direction and therefore strongly shadows in the radiation field of an antenna.
  • the second pair of this switch is fed by a waveguide fork, which is formed by a second rectangular waveguide series branch and two rectangular waveguide arms connected to it, which are straddled over their broad sides.
  • a waveguide fork which is formed by a second rectangular waveguide series branch and two rectangular waveguide arms connected to it, which are straddled over their broad sides.
  • two opposing partial arms, starting from the double branch are connected to the partial arms via one mutually identical switch arm sections, each of one of two identical series branches.
  • Two switch arm sections lying between the opposing partial arms of the double branch and the partial arms of the series branches are designed on the one hand as E-set pieces and on the other hand as H-set pieces, the E-set pieces each being designed as rectangular waveguide pieces provided on both sides with a waveguide elbow and on both sides through the waveguide elbow opposite directions are each bent over the waveguide broadside.
  • both E-set pieces are aligned obliquely to the longitudinal axis of the arrangement and run parallel to one another.
  • the H-offset pieces are designed as rectangular waveguide pieces provided on both sides with a waveguide elbow and through the waveguide elbows on both sides in opposite directions over the narrow waveguide side kinked.
  • One of the E-set pieces is accommodated between the H-set pieces, such that the series branches connected to the E-set pieces and the H-set pieces run without penetration with regard to their partial arms.
  • the object of the invention is to design a polarization switch which is to be arranged in the radiation field of a microwave antenna so that it offers the smallest possible shading area in the radiation field, i.e. the dimensions of the polarization switch transverse to its longitudinal axis should be as small as possible.
  • the polarizing switch according to the invention is required to have a large bandwidth and a short overall length and, owing to its favorable construction, can be efficiently produced in series production.
  • this object is achieved in that the series branching of the second waveguide fork is arranged outside the first waveguide fork next to the outer broad side wall of one rectangular waveguide arm of the first waveguide fork, that the two rectangular waveguide arms of the second Each waveguide fork has an H-bend (rectangular waveguide angle piece bent over the narrow waveguide side), runs parallel with respect to the waveguide fork plane of symmetry and merges directly into the two opposite rectangular waveguides of the assigned pair in the double branch, and that the clear width between the inner broad side walls of the two opposite rectangular waveguide arms the second waveguide fork is dimensioned at least somewhat larger than the broad side dimension of the two rectangular waveguide arms of the first waveguide fork, so that the rectangular waveguide arms guided in each case via the H and E bend for series branching of the second waveguide fork comprise the one rectangular waveguide arm and a partial arm of the first waveguide fork leading to this from the series branch.
  • H-bend rectangular waveguide angle piece bent over the narrow waveguide side
  • the two figures show a symmetrical, five-armed double branch 1, which in FIG. 1 has a round waveguide 2 running in the axial direction, which in principle can also have a square cross section, in two pairs of rectangular waveguides 3 and 4 and 5, respectively, lying opposite one another and 6 branches.
  • the first pair 3, 4 is fed by a first, in itself symmetrical waveguide fork 7 (dashed lines with shorter lines), which is formed from a first rectangular waveguide series branch 8 and two straight rectangular waveguide arms 9 and 10 connected to it.
  • the second pair 5,6 of these rectangular waveguides is fed by a second, in itself symmetrical waveguide fork 11 (framed with dashed lines with longer lines), which consists of a second rectangular waveguide series branch 12 and two connected to it via an E-bend 23,23 ⁇ , via its narrow side with an H-bend 13, 13 ⁇ angled rectangular waveguide arms 14 and 15.
  • a second, in itself symmetrical waveguide fork 11 (framed with dashed lines with longer lines), which consists of a second rectangular waveguide series branch 12 and two connected to it via an E-bend 23,23 ⁇ , via its narrow side with an H-bend 13, 13 ⁇ angled rectangular waveguide arms 14 and 15.
  • both forks 7 and 11 each contain a symmetrical rectangular waveguide series branch 8 or 12, which can be identical in construction.
  • a and a T are the width dimensions of the broad side walls and b and b T the width dimensions of the narrow side walls of the waveguide in question.
  • the one for broadband adaptation the series branches 8 and 12 optimal bevel height y E opt can be found in the European patent application EP-A1-019 6065.
  • the bevel plane is perpendicular to the bisector Wh E of each E-bend 22.
  • the series branches 8 and 12 are followed by an E-bend 23, 23 ⁇ in each arm 18, 19 and 20, 21, which has the same bend angle ⁇ in the opposite bend direction and the same bevel height y E opt as that each previous E-bend 22 of the series branches 8 and 12.
  • the distance l K of these successive E-bends 22 and 23 is selected so that the parallel rectangular waveguide arms 9, 10 and 14, 15 between their inside broad side walls the clear Have width W that is at least somewhat larger than the broad side a T of the rectangular waveguide arms 9, 10 or 14, 15. Therefore, the two waveguide forks 7 and 11 fit into each other without penetration.
  • the two H-bends 13 and (hidden) 13 ⁇ of the angled waveguide fork 11 have a bend angle of 90 ° in the figures as an example and are dimensioned for optimal broadband adaptation, as is known from DE-PS 28 56 733.
  • These H-bends 13, 13 ⁇ are thus with a reinforced bevel 24 on their outer corner and, as a counter-compensation to this, with a capacitance on the bisector Wh H that they are substantially less reflective than conventional H-bends.
  • This capacity is formed by a metal cylinder 25 with its axis perpendicular to the bisecting angle Wh H.
  • This E-kink 26 is a component of the double branch 1, which is present in the same way in all four arms of the double branch 1.
  • the length l E11 of the rectangular waveguide arms 9 and 10 of the straight waveguide fork 7 can be selected such that the two passageways of the polarization switch are of equal electrical length at a predetermined frequency are.
  • a division plane T-T ⁇ is the cross-flow-free central plane of the first waveguide fork 7.
  • the polarization crossover shown in the figures is particularly suitable for connecting a crossover network directly to its polarization-selective accesses to the rectangular waveguides 16 and 17.
  • the connection between the two accesses to the rectangular waveguides 16 and 17 of the polarization crossover and the two crossovers according to the invention can also be established by two long lines, e.g. are designed as overmoded rectangular waveguides with corresponding transitions and are suitable by all conceivable measures to expand their transmission frequency range, each more than one microwave radio frequency range of the same polarization from the location of the crossovers, e.g. at the foot of an antenna tower, with low attenuation, reflection and delay distortion to the polarization switch located directly on the antenna on the tower and back.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

The invention relates to a broadband, compact polarisation filter with a symmetrical five-arm double branch (1) for a round or square waveguide (2) to branch into two pairs of in each case mutually opposite rectangular waveguides (3, 4, 5, 6). The first pair (3, 4) is supplied from an inherently symmetrical waveguide fork (7) which is formed by a first rectangular waveguide series branch (8) and two straight rectangular waveguide arms (9, 10), connected thereto via E-bends (22, 23). The second pair is likewise supplied from an inherently symmetrical waveguide fork (11) which is constructed from a second rectangular waveguide series branch (12) and two rectangular waveguide arms (14, 15) which are connected thereto via E-bends (22, 23) and are each angled over their narrow side with an H-bend (13). The polarisation filter according to the invention can be used, in particular, for supplying parabolic and shell-type antennas. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Mikrowellen-Polarisationsweiche mit einer symmetrisch aufgebauten, fünfarmigen Doppelverzweigung, die einen in Längsachsrichtung liegenden Hohlleiter runden oder quadratischen Querschnitts in zwei Paare von jeweils einander diametral gegenüberliegenden Rechteckhohlleitern aufzweigt, wobei die beiden Paare jeweils von einer in sich symmetrischen Hohlleitergabel gespeist werden, von denen die erste aus einer symmetrischen, aus zwei nach außen gerichteten E-Knicken (über die Hohlleiterbreitseite geknicktes Rechteckhohlleiter-Winkelstück) bestehenden Rechteckhohlleiterserienverzweigung und zwei daran jeweils über einen E-Knick angeschlossenen, geraden, parallel zueinander verlaufenden und am anderen Ende in die beiden gegenüberliegenden Rechteckhohlleiter des einen Paares übergehenden Rechteckhohlleiterarmen gebildet wird, und von denen die zweite ebenfalls eine symmetrische, aus zwei nach außen gerichteten E-Knicken bestehende Rechteckhohlleiterserienverzweigung und zwei jeweils über einen E-Knick daran angeschlossene, am anderen Ende in die beiden gegenüberliegenden Rechteckhohlleiter des anderen Paares übergehende, parallel zueinander verlaufende Rechteckhohlleiterarme aufweist.The invention relates to a microwave polarization switch with a symmetrically constructed, five-armed double branch, which branches a waveguide lying round or square in the longitudinal axis direction into two pairs of diametrically opposed rectangular waveguides, the two pairs each being fed by a symmetrical waveguide fork , of which the first consists of a symmetrical rectangular series waveguide branch consisting of two e-bends facing outwards (rectangular waveguide contra-angle bent over the broadside of the waveguide) and two straight, parallel, mutually connected and at the other end connected to it via an e-bend the two opposite rectangular waveguides of the one pair of rectangular waveguide arms are formed, and of which the second also a symmetrical rectangular waveguide consisting of two outward-directed E-bends Series branching and two each connected via an E-bend to it, at the other end in the two opposite rectangular waveguide of the other pair, parallel to each other extending rectangular waveguide arms.

Breitbandige Mikrowellenantennen erfordern für den Betrieb mit zwei Polarisationen entsprechend breitbandige Polarisationsweichen. Große Bandbreiten werden nur mit Polarisationsweichen erreicht, bei denen beide Polarisationen im Rund- oder Quadrathohlleiter räumlich symmetrisch angeregt werden. Bekannte breitbandige Polarisationsweichen dieser Art sind aus der DE-PS 26 51 935 und aus dem DE-GM 69 24 060 bekannt. Sie enthalten ein äußeres Hohlleiternetzwerk, das in Querrichtung sehr weit auslädt und daher im Strahlungsfeld einer Antenne stark abschattet.Broadband microwave antennas require broadband polarization switches for operation with two polarizations. Large bandwidths can only be achieved with polarization switches in which both polarizations are excited spatially symmetrically in the round or square waveguide. Known broadband polarization switches of this type are known from DE-PS 26 51 935 and from DE-GM 69 24 060. They contain an external waveguide network that extends very far in the transverse direction and therefore strongly shadows in the radiation field of an antenna.

Andere breitbandige Polarisationsweichen sind aus der DE-PS 28 42 576 und der europäischen Patentanmeldung EP-A1-019 6065 bekannt, bei denen jedoch hinsichtlich der Kleinheit der Abschattungsflächen, der Kürze der Baulänge und der Möglichkeit einer rationellen Serienfertigung noch keine optimale Lösung gegeben ist. Diese beiden bekannten Polarisationsweichen enthalten jeweils eine in sich symmetrische fünfarmige Doppelverzweigung, welche einen in Achsrichtung verlaufenden, runden oder quadratischen Hohlleiter in zwei Paare von einander jeweils gegenüberliegenden Rechteckhohlleitern verzweigt. Bei der Polarisationsweiche nach der europäischen Patentanmeldung EP-A1-019 6065 wird dabei das erste Paar von einer in sich symmetrischen Hohlleitergabel gespeist, die von einer ersten Rechteckhohlleiterserienverzweigung und zwei daran angeschlossenen, geraden Rechteckhohlleiterarmen gebildet wird. Das zweite Paar wird bei dieser Weiche von einer Hohlleitergabel gespeist, die von einer zweiten Rechteckhohlleiterserienverzweigung und zwei daran angeschlossenen Rechteckhohlleiterarmen gebildet wird, die über ihre Breitseiten gegrätscht sind. Bei der Polarisationsweiche nach der DE-PS 28 42 576 sind jeweils zwei gegenüberliegende, von der Doppelverzweigung ausgehende Teilarme über untereinander gleiche Weichenarmabschnitte mit den Teilarmen jeweils einer von zwei gleichartig ausgebildeten Serienverzweigungen verbunden. Dabei sind jeweils zwei zwischen den gegenüberliegenden Teilarmen der Doppelverzweigung und den Teilarmen der Serienverzweigungen liegende Weichenarmabschnitte einerseits als E-Versatzstücke und andererseits als H-Versatzstücke ausgeführt, wobei die E-Versatzstücke jeweils als beidseitig mit einem Hohlleiterkrümmer versehene Rechteckhohlleiterstücke ausgebildet und durch die Hohlleiterkrümmer beidseitig in entgegengesetzten Richtungen jeweils über die Hohlleiterbreitseite geknickt sind. Beide E-Versatzstücke sind hinsichtlich ihrer schmalen Seiten schräg zur Längsachse der Anordnung ausgerichtet und verlaufen dabei parallel zueinander. Die H-Versatzstücke sind als beidseitig mit einem Hohlleiterkrümmer versehene Rechteckhohlleiterstücke ausgebildet und durch die Hohlleiterkrümmer beidseitig in entgegengesetzten Richtungen jeweils über die Hohlleiterschmalseite geknickt. Dabei ist eines der E-Versatzstücke zwischen den H-Versatzstücken aufgenommen, derart, daß die mit den E-Versatzstücken und den H-Versatzstücken verbundenen Serienverzweigungen hinsichtlich ihrer Teilarme durchdringungsfrei verlaufen.Other broadband polarization switches are known from DE-PS 28 42 576 and the European patent application EP-A1-019 6065, in which, however, there is still no optimal solution given the small size of the shading areas, the shortness of the overall length and the possibility of efficient series production. These two known polarization switches each contain a symmetrical five-armed double branch, which branches a round or square waveguide running in the axial direction into two pairs of rectangular waveguides opposite each other. In the case of the polarization switch according to European patent application EP-A1-019 6065, the first pair is fed by a symmetrically hollow waveguide fork, which is formed by a first rectangular waveguide series branch and two straight rectangular waveguide arms connected to it. The second pair of this switch is fed by a waveguide fork, which is formed by a second rectangular waveguide series branch and two rectangular waveguide arms connected to it, which are straddled over their broad sides. In the polarizing switch according to DE-PS 28 42 576, two opposing partial arms, starting from the double branch, are connected to the partial arms via one mutually identical switch arm sections, each of one of two identical series branches. Two switch arm sections lying between the opposing partial arms of the double branch and the partial arms of the series branches are designed on the one hand as E-set pieces and on the other hand as H-set pieces, the E-set pieces each being designed as rectangular waveguide pieces provided on both sides with a waveguide elbow and on both sides through the waveguide elbow opposite directions are each bent over the waveguide broadside. The narrow sides of both E-set pieces are aligned obliquely to the longitudinal axis of the arrangement and run parallel to one another. The H-offset pieces are designed as rectangular waveguide pieces provided on both sides with a waveguide elbow and through the waveguide elbows on both sides in opposite directions over the narrow waveguide side kinked. One of the E-set pieces is accommodated between the H-set pieces, such that the series branches connected to the E-set pieces and the H-set pieces run without penetration with regard to their partial arms.

Aufgabe der Erfindung ist es, eine Polarisationsweiche, die im Strahlungsfeld einer Mikrowellenantenne angeordnet werden soll, so auszubilden, daß sie im Strahlungsfeld eine möglichst kleine Abschattungsfläche bietet, d.h. die Abmessungen der Polarisationsweiche quer zu ihrer Längsachse sollen möglichst klein sein. Darüber hinaus wird von der Polarisationsweiche nach der Erfindung verlangt, daß sie eine große Bandbreite sowie eine kurze Baulänge aufweist und sich aufgrund ihres günstigen Aufbaus rationell in einer Serienfertigung herstellen läßt.The object of the invention is to design a polarization switch which is to be arranged in the radiation field of a microwave antenna so that it offers the smallest possible shading area in the radiation field, i.e. the dimensions of the polarization switch transverse to its longitudinal axis should be as small as possible. In addition, the polarizing switch according to the invention is required to have a large bandwidth and a short overall length and, owing to its favorable construction, can be efficiently produced in series production.

Gemäß der Erfindung, die sich auf eine Polarisationsweiche der eingangs genannten Art bezieht, wird diese Aufgabe dadurch gelöst, daß die Serienverzweigung der zweiten Hohlleitergabel außerhalb der ersten Hohlleitergabel neben der äußeren Breitseitenwand des einen Rechteckhohlleiterarms der ersten Hohlleitergabel angeordnet ist, daß die beiden Rechteckhohlleiterarme der zweiten Hohlleitergabel jeweils einen H-Knick (über die Hohlleiterschmalseite geknicktes Rechteckhohlleiter-Winkelstück) aufweisen, bezüglich der Hohlleitergabelsymmetrieebene parallel verlaufen und unmittelbar in die beiden gegenüberliegenden Rechteckhohlleiter des zugeordneten Paares in der Doppelverzweigung übergehen, und daß die lichte Weite zwischen den innenliegenden Breitseitenwänden der beiden gegenüberliegenden Rechteckhohlleiterarme der zweiten Hohlleitergabel zumindest etwas größer bemessen ist als die Breitseitenabmessung der beiden Rechteckhohlleiterarme der ersten Hohlleitergabel, so daß die jeweils über den H- und E-Knick zur Serienverzweigung der zweiten Hohlleitergabel geführten Rechteckhohlleiterarme den einen Rechteckhohlleiterarm und einen zu diesem von der Serienverzweigung führenden Teilarm der ersten Hohlleitergabel umfassen.According to the invention, which relates to a polarizing switch of the type mentioned, this object is achieved in that the series branching of the second waveguide fork is arranged outside the first waveguide fork next to the outer broad side wall of one rectangular waveguide arm of the first waveguide fork, that the two rectangular waveguide arms of the second Each waveguide fork has an H-bend (rectangular waveguide angle piece bent over the narrow waveguide side), runs parallel with respect to the waveguide fork plane of symmetry and merges directly into the two opposite rectangular waveguides of the assigned pair in the double branch, and that the clear width between the inner broad side walls of the two opposite rectangular waveguide arms the second waveguide fork is dimensioned at least somewhat larger than the broad side dimension of the two rectangular waveguide arms of the first waveguide fork, so that the rectangular waveguide arms guided in each case via the H and E bend for series branching of the second waveguide fork comprise the one rectangular waveguide arm and a partial arm of the first waveguide fork leading to this from the series branch.

Vorteilhafte und zweckmäßige Ausgestaltungen sowie Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous and expedient refinements and developments are specified in the subclaims.

Anhand eines in einer Zeichnung dargestellten Ausführungsbeispiels wird im folgenden die Erfindung näher erläutert.
Es zeigen in der Zeichnung

  • Fig. 1 eine Polarisationsweiche gemäß der Erfindung in Seitenansicht, und
  • Fig. 2 diese Polarisationsweiche in Draufsicht.
The invention is explained in more detail below on the basis of an exemplary embodiment shown in a drawing.
It show in the drawing
  • Fig. 1 shows a polarization switch according to the invention in side view, and
  • Fig. 2 this polarization switch in plan view.

Die beiden Figuren zeigen eine in sich symmetrische, fünfarmige Doppelverzweigung 1, die in Fig.1 einen in Achsrichtung verlaufenden, runden Hohlleiter 2, der prinzipiell auch einen quadratischen Querschnitt aufweisen kann, in zwei Paare von jeweils einander gegenüberliegenden Rechteckhohlleitern 3 und 4 bzw. 5 und 6 verzweigt. Das erste Paar 3,4 wird von einer ersten, in sich symmetrischen Hohlleitergabel 7 (gestrichelt umrahmt mit kürzeren Strichen) gespeist, die aus einer ersten Rechteckhohlleiterserienverzweigung 8 und zwei daran angeschlossenen geraden Rechteckhohlleiterarmen 9 und 10 gebildet wird. Das zweite Paar 5,6 dieser Rechteckhohlleiter wird von einer zweiten, in sich symmetrischen Hohlleitergabel 11 (gestrichelt umrahmt mit längeren Strichen) gespeist, die aus einer zweiten Rechteckhohlleiterserienverzweigung 12 und zwei daran über je einen E-Knick 23,23ʹ angeschlossenen, über ihre Schmalseite mit je einem H-Knick 13, 13ʹ abgewinkelten Rechteckhohlleiterarmen 14 und 15 besteht. Beide Gabeln 7 und 11 enthalten nach den Figuren 1 und 2 je eine symmetrische Rechteckhohlleiterserienverzweigung 8 bzw. 12, die baugleich sein können. Die beiden Serienverzweigungen 8 und 12 teilen jeweils einen zu verzweigenden Rechteckhohlleiter 16 bzw. 17 mit den Abmessungen von beispielsweise a = 2b wellenwiderstandsrichtig in zwei Teilarme 18,19 bzw. 20,21 mit der Dimensionierung aT = 4bT und knicken sie mit einem E-Knick jeweils um einen Winkel von α nach rechts und links symmetrisch auseinander. a bzw. aT sind dabei die Breitenabmessungen der Breitseitenwände und b bzw. bT die Breitenabmessungen der Schmalseitenwände der betreffenden Hohlleiter. Die für Breitbandanpassung der Serienverzweigungen 8 und 12 optimale Abschrägungshöhe yE opt ist aus der europäischen Patentanmeldung EP-A1-019 6065 entnehmbar. Die Abschrägungsebene steht auf der Winkelhalbierenden WhE jedes E-Knicks 22 senkrecht.The two figures show a symmetrical, five-armed double branch 1, which in FIG. 1 has a round waveguide 2 running in the axial direction, which in principle can also have a square cross section, in two pairs of rectangular waveguides 3 and 4 and 5, respectively, lying opposite one another and 6 branches. The first pair 3, 4 is fed by a first, in itself symmetrical waveguide fork 7 (dashed lines with shorter lines), which is formed from a first rectangular waveguide series branch 8 and two straight rectangular waveguide arms 9 and 10 connected to it. The second pair 5,6 of these rectangular waveguides is fed by a second, in itself symmetrical waveguide fork 11 (framed with dashed lines with longer lines), which consists of a second rectangular waveguide series branch 12 and two connected to it via an E-bend 23,23ʹ, via its narrow side with an H-bend 13, 13ʹ angled rectangular waveguide arms 14 and 15. According to FIGS. 1 and 2, both forks 7 and 11 each contain a symmetrical rectangular waveguide series branch 8 or 12, which can be identical in construction. The two series branches 8 and 12 each divide a rectangular waveguide 16 or 17 to be branched, with the dimensions of, for example, a = 2b with the correct wave resistance in two partial arms 18, 19 and 20, 21 with the dimensions a T = 4b T and bend them with an E. -Kink apart symmetrically by an angle of α to the right and left. a and a T are the width dimensions of the broad side walls and b and b T the width dimensions of the narrow side walls of the waveguide in question. The one for broadband adaptation the series branches 8 and 12 optimal bevel height y E opt can be found in the European patent application EP-A1-019 6065. The bevel plane is perpendicular to the bisector Wh E of each E-bend 22.

An die Serienverzweigungen 8 und 12 schließt sich nach den Figuren in jedem Teilarm 18,19 bzw. 20,21 ein E-Knick 23, 23ʹ an, der den gleichen Knickwinkel α in entgegengesetzter Knickrichtung und die gleiche Abschrägungshöhe yE opt hat, wie der jeweils vorhergehende E-Knick 22 der Serienverzweigungen 8 bzw. 12. Der Abstand lK dieser aufeinanderfolgenden E-Knicke 22 und 23 ist so gewählt, daß die parallel zueinander verlaufenden Rechteckhohlleiterarme 9,10 bzw. 14,15 zwischen ihren innen liegenden Breitseitenwänden die lichte Weite W haben, die zumindest etwas größer ist als die Breitseite aT der Rechteckhohlleiterarme 9,10 bzw. 14,15. Daher passen die beiden Hohlleitergabeln 7 und 11 durchdringungsfrei ineinander.According to the figures, the series branches 8 and 12 are followed by an E-bend 23, 23ʹ in each arm 18, 19 and 20, 21, which has the same bend angle α in the opposite bend direction and the same bevel height y E opt as that each previous E-bend 22 of the series branches 8 and 12. The distance l K of these successive E-bends 22 and 23 is selected so that the parallel rectangular waveguide arms 9, 10 and 14, 15 between their inside broad side walls the clear Have width W that is at least somewhat larger than the broad side a T of the rectangular waveguide arms 9, 10 or 14, 15. Therefore, the two waveguide forks 7 and 11 fit into each other without penetration.

Die beiden H-Knicke 13 und (verdeckt) 13ʹ der abgewinkelten Hohlleitergabel 11 haben in den Figuren als Beispiel einen Knickwinkel von 90° und sind für eine optimale Breitbandanpassung, wie sie aus der DE-PS 28 56 733 bekannt ist, dimensioniert. Diese H-Knicke 13, 13ʹ sind somit mit einer verstärkten Abschrägung 24 ihrer Außenecke und als Gegenkompensation dazu mit einer Kapazität auf der Winkelhalbierenden WhH wesentlich breitbandiger reflexionsarm als übliche H-Knicke. Diese Kapazität wird durch einen, mit seiner Achse senkrecht zur Winkelhalbierenden WhH verlaufenden Metallzylinder 25 gebildet.The two H-bends 13 and (hidden) 13ʹ of the angled waveguide fork 11 have a bend angle of 90 ° in the figures as an example and are dimensioned for optimal broadband adaptation, as is known from DE-PS 28 56 733. These H-bends 13, 13ʹ are thus with a reinforced bevel 24 on their outer corner and, as a counter-compensation to this, with a capacitance on the bisector Wh H that they are substantially less reflective than conventional H-bends. This capacity is formed by a metal cylinder 25 with its axis perpendicular to the bisecting angle Wh H.

Von Bedeutung ist, daß aufeinanderfolgende Hohlleiterknicke in jeder der beiden Hohlleitergabeln 7 und 11 einen im Hinblick auf die gestellten Anforderungen ausreichenden Abstand voneinander haben müssen. Kriterium dafür ist die aperiodische Dämpfung der Leitungsabschnitte mit den Längen lE11 und lH20 in Figur 1 für den jeweils maßgebenden Störwellentyp (das ist beim E-Knick die E₁₁-Welle, beim H-Knick die H₂₀-Welle) und bei der in dieser Hinsicht kritischen höchsten Betriebsfrequenz. Durch die aperiodische E₁₁-Dämpfung wird bei der geraden Hohlleitergabel 7 auch die kleinstmögliche Länge lE11 min der beiden Rechteckhohlleiterarme 9 und 10 bestimmt. Mit dieser Länge lE11 min ist die Interaktion zwischen dem E-Knick 23 der Gabel 7 und dem E-Knick 26 am Eingang der Doppelverzweigung 1 genügend geschwächt. Dieser E-Knick 26 ist ein Bestandteil der Doppelverzweigung 1, der in allen vier Armen der Doppelverzweigung 1 gleichartig vorhanden ist.It is important that successive waveguide kinks in each of the two waveguide forks 7 and 11 must have a sufficient distance from one another in view of the requirements. Criterion for this is the aperiodic attenuation of the line sections with lengths l E11 and l H20 in Figure 1 for the relevant interference wave type (this is the E₁₁ wave at the E-Knick, the H₂₀ wave at the H-Knick) and in this Critical critical operating frequency. Due to the aperiodic E₁₁ damping is in the straight waveguide fork 7 also determines the smallest possible length l E11 min of the two rectangular waveguide arms 9 and 10. With this length l E11 min , the interaction between the E-bend 23 of the fork 7 and the E-bend 26 at the entrance of the double branch 1 is sufficiently weakened. This E-kink 26 is a component of the double branch 1, which is present in the same way in all four arms of the double branch 1.

Ist die elektrische Weglänge der abgewinkelten Gabel 11 unter anderem durch lH20 und lK festgelegt, dann kann die Länge lE11 der Rechteckhohlleiterarme 9 und 10 der geraden Hohlleitergabel 7 so gewählt werden, daß die beiden Durchgangswege der Polarisationsweiche bei einer vorgegebenen Frequenz elektrisch gleich lang sind. Für eine rationelle Serienfertigung ist es günstig, das Gabelpaar gemäß Fig.2 durch eine Teilungsebene T-Tʹ in zwei spiegelbildlich gleiche Teile zu teilen. Die Ebene T-Tʹ ist die querstromfreie Mittelebene der ersten Hohlleitergabel 7.If the electrical path length of the angled fork 11 is determined, inter alia, by l H20 and l K , then the length l E11 of the rectangular waveguide arms 9 and 10 of the straight waveguide fork 7 can be selected such that the two passageways of the polarization switch are of equal electrical length at a predetermined frequency are. For a rational series production, it is favorable to divide the pair of forks according to FIG. 2 by a division plane T-Tʹ into two mirror-image identical parts. The plane T-Tʹ is the cross-flow-free central plane of the first waveguide fork 7.

Wegen ihrer großen Bandbreite (z.B. f max/ f min = 1,7) ist die in den Figuren dargestellte Polarisationsweiche besonders dazu geeignet, daß an ihre polarisationsselektiven Zugänge an den Rechteckhohlleitern 16 und 17 je eine Frequenzweiche direkt angeschlossen wird. Außerdem kann die Verbindung zwischen den beiden Zugängen an den Rechteckhohlleitern 16 und 17 der Polarisationsweiche und den beiden Frequenzweichen nach der Erfindung auch durch zwei lange Leitungen hergestellt werden, die z.B. als mit entsprechenden Übergängen versehene, übermodierte Rechteckhohlleiter ausgebildet sind und die durch alle erdenkbaren Maßnahmen zur Erweiterung ihres Übertragungsfrequenzbereiches dazu geeignet sind, jeweils mehr als einen Richtfunkfrequenzbereich gleicher Polarisation vom Ort der Frequenzweichen, z.B. am Fuße eines Antennenturms, dämpfungs-, reflexions- und laufzeitverzerrungsarm zur unmittelbar an der auf dem Turm befindlichen Antenne angeordneten Polarisationsweiche und zurück zu übertragen.Because of its large bandwidth (e.g. f max / f min = 1.7), the polarization crossover shown in the figures is particularly suitable for connecting a crossover network directly to its polarization-selective accesses to the rectangular waveguides 16 and 17. In addition, the connection between the two accesses to the rectangular waveguides 16 and 17 of the polarization crossover and the two crossovers according to the invention can also be established by two long lines, e.g. are designed as overmoded rectangular waveguides with corresponding transitions and are suitable by all conceivable measures to expand their transmission frequency range, each more than one microwave radio frequency range of the same polarization from the location of the crossovers, e.g. at the foot of an antenna tower, with low attenuation, reflection and delay distortion to the polarization switch located directly on the antenna on the tower and back.

Claims (14)

  1. Microwave polarisation filter having a symmetrically designed five-arm double junction (1) which branches a waveguide (2) of round or square cross-section lying in the direction of the longitudinal axis into two pairs of mutually diametrically opposite rectangular waveguides (3, 4; 5, 6) in each case, the two pairs being fed in each case by an inherently symmetrical waveguide fork (7, 11), the first waveguide fork (7) of which is formed from a symmetrical rectangular waveguide series junction (8) composed of two outwardly directed E-bends (via the waveguide broad side bent rectangular waveguide angled component) and two straight rectangular waveguide arms (9, 10) connected thereto via an E-bend (22, 23) in each case and extending parallel to one another and continuing at the other end into the two opposite rectangular waveguides (3, 4) of the one pair, and the second waveguide fork (11) of which likewise has a symmetrical rectangular waveguide series junction (12) composed of two outwardly directed E-bends and two rectangular waveguide arms (14, 15) connected thereto via an E-bend (22, 23) in each case and extending parallel to one another and continuing at the other end into the two opposite rectangular waveguides (5, 6) of the other pair, characterised in that the series junction (12) of the second waveguide fork (11) is arranged outside the first waveguide fork (7) next to the external broad-side wall of the one rectangular waveguide arm (10) of the first waveguide fork, in that the two rectangular waveguide arms (14, 15) of the second waveguide fork (11) have in each case an H-bend (13, 13') (via the waveguide narrow side bent rectangular waveguide angled component), extend parallel with respect to the plane of symmetry of the waveguide fork and continue directly into the two opposite rectangular waveguides (5, 6) of the associated pair in the double junction (1), and in that the internal width (W) between the inner broad-side walls of the two opposite rectangular waveguide arms (14, 15) of the second waveguide fork (11) is dimensioned to be at least somewhat larger than the broad-side dimension of the two rectangular waveguide arms (9, 10) of the first waveguide fork (7) so that the rectangular waveguide arms (14, 15) conducted to the series junction (12) of the second waveguide fork (11) via the H-bend and E-bend (13, 23, 23') in each case comprise the one rectangular waveguide arm (10) and a partial arm (19), conducted thereto from the series junction (8), of the first waveguide fork (7).
  2. Polarization filter according to Claim 1, characterised in that the two series junctions (8, 12) are designed to have the correct characteristic impedance, to be precise in each case with a normal rectangular waveguide profile of a ≈ 2b at the external polarisation filter terminal and with a profile of in each case aT ≈ 4bT on the side of the two rectangular waveguide arms (9, 10 and 14, 15), a and aT being the width of the broad-side walls and b and bT being the width of the narrow-side walls.
  3. Polarisation filter according to Claim 1 or 2, characterised in that the E-bends (22, 23) are symmetrically bevelled at the outer corner.
  4. Polarisation filter according to one of the preceding claims, characterised in that the angle (α) of the E-bends (22) in the series junctions (8, 12) corresponds to the angle of the E-bends (23, 23') in the transition to the parallel rectangular waveguide arms (9, 10 and 14, 15 respectively) connected thereto, but in the opposite bending direction.
  5. Polarisation filter according to Claims 3 and 4, characterised in that the E-bends (22) in the series junctions (8, 12) and the E-bends (23, 23') in the transition to the rectangular waveguide arms (9, 10 and 14, 15 respectively) connected thereto have the same bevelling levels (yE opt) in each case.
  6. Polarisation filter according to one of the preceding claims, characterised in that, in the second waveguide fork (11), the distance (1K) between an E-bend (22) in the series junction (12) and the following E-bend (23, 23') in each case in the transition to the rectangular waveguide arm (14, 15) connected thereto is selected so that the parallel extending rectangular waveguide arms (14, 15) have the required internal width (W).
  7. Polarisation filter according to one of the preceding claims, characterised in that the two H-bends (13) of the second waveguide fork (11) have a bending angle of 90°.
  8. Polarisation filter according to one of the preceding claims, characterised in that in each case the outer corners of the two H-bends (13, 13') of the second waveguide fork (11) have an increased bevel and, as a capacitively acting counter-compensation means for this bevel (24), a metal cylinder (25) extending on the angle bisector (WhH) is provided between the plane of the bevel and the internal bending edge.
  9. Polarisation filter according to one of the preceding claims, characterised in that the mutual distances of successive waveguide bends in each waveguide fork (7, 11) are sufficiently large with respect to an aperiodic E₁₁ interference field attenuation to be required in the E-bends (22, 23, 23') and to an aperiodic H₂₀ interference field attenuation to be required in the H-bends (13, 13') in the case of the highest critical operating frequency in this respect.
  10. Polarisation filter according to Claim 9, characterised in that, as a result of the required aperiodic E₁₁ interference field attenuation, the smallest possible length (1E11) of the two straight rectangular waveguide arms (8, 9) of the first waveguide fork (7) is determined.
  11. Polarisation filter according to Claims 9 and 10, characterised in that, after definition of both the path length (1H20) between the double junction (1) and the H-bends (13, 13') in the second waveguide fork (11), and also of the path length (1K) between the E-bends (22) of the series junction (12) and the E-bends (23, 23') in the transitions to the parallel extending rectangular waveguide arms (14, 15) of the same waveguide fork (11), the length of the two straight waveguide arms (8, 9) in the first waveguide fork (7) is selected so that the two through paths of the polarisation filter are equal given a predetermined operating frequency.
  12. Polarisation filter according to one of the preceding claims, characterised by a design in two mirror-symmetrical identical parts, the mirror plane being formed by the cross-current free central plane (T-T') of the first waveguide fork (11).
  13. Polarisation filter according to one of the preceding claims, characterised in that a frequency separating filter is connected directly in each case to both polarisation-selective rectangular waveguide supply entrances (16, 17).
  14. Polarisation filter according to one of Claims 1 to 12, characterised in that there is connected to the two polarisation-selective rectangular waveguide supply entrances (16, 17) in each case one frequency separating filter via a long line in each case, which is designed as an overmodulated rectangular waveguide provided with appropriate transitions.
EP88102209A 1987-02-18 1988-02-15 Microwave polarisation filter Expired - Lifetime EP0280151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102209T ATE75559T1 (en) 1987-02-18 1988-02-15 MICROWAVE POLARIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3705179 1987-02-18
DE3705179 1987-02-18

Publications (2)

Publication Number Publication Date
EP0280151A1 EP0280151A1 (en) 1988-08-31
EP0280151B1 true EP0280151B1 (en) 1992-04-29

Family

ID=6321266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88102209A Expired - Lifetime EP0280151B1 (en) 1987-02-18 1988-02-15 Microwave polarisation filter

Country Status (4)

Country Link
EP (1) EP0280151B1 (en)
AT (1) ATE75559T1 (en)
AU (1) AU600796B2 (en)
DE (1) DE3870477D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59009918D1 (en) * 1989-09-28 1996-01-11 Siemens Ag Microwave polarizing switch.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2521956C3 (en) * 1975-05-16 1978-07-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Polarization switch
DE2842576C2 (en) * 1978-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Polarization switch
DE2856733C2 (en) * 1978-12-29 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Rectangular waveguide angle piece bent over the narrow side of the waveguide
ATE58033T1 (en) * 1985-03-27 1990-11-15 Siemens Ag POLARIZATION INTERFACE FOR HIGH FREQUENCY TECHNOLOGY EQUIPMENT.

Also Published As

Publication number Publication date
ATE75559T1 (en) 1992-05-15
EP0280151A1 (en) 1988-08-31
DE3870477D1 (en) 1992-06-04
AU600796B2 (en) 1990-08-23
AU1179488A (en) 1988-08-25

Similar Documents

Publication Publication Date Title
DE2443166C3 (en) System switch for separating two signals, each consisting of two double polarized frequency bands
EP0154692B1 (en) Polarisation-selective circuit for two frequency bands
EP0196065B1 (en) Polarization filter for hf devices
DE2842576A1 (en) POLARIZATION SOFT
EP0280151B1 (en) Microwave polarisation filter
DE19715726C2 (en) Antenna device for mobile radio devices
DE2719283A1 (en) ANTENNA FEEDING SYSTEM FOR DOUBLE POLARIZATION
DE2708271C2 (en) Polarization switch
DE2842890C2 (en) Waveguide coupler
EP0284911A1 (en) Broad-band polarizing junction
EP0285879B1 (en) Broad-band polarizing junction
DE3345689C2 (en)
DE2747632C2 (en) Antenna feed system for double polarization
DE3010360C2 (en) Polarization switch
EP0419892B1 (en) Microwave polarisation filter
DE19938204B4 (en) Broadband polarizer
DE9202152U1 (en) Rectangular waveguide H-angle
EP1224708B1 (en) Coupler for electromagnetic waves
EP0518218A1 (en) Microwave coupler-polariser
DE2135611B1 (en) Mode coupler for direction finding systems
DE4326824C2 (en) Waveguide circuit with two polarization switches
DE19643896A1 (en) Microwave separating shunt
DE2747654B2 (en)
DE2262206A1 (en) ARRANGEMENT FOR INTERCONNECTION OF COAXIAL AND HELICAL RESONATORS AND A BAND FILTER MADE UP OF RESONATORS
DE8804021U1 (en) Broadband polarization switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19910709

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920429

Ref country code: GB

Effective date: 19920429

Ref country code: BE

Effective date: 19920429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920429

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920429

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920429

Ref country code: NL

Effective date: 19920429

REF Corresponds to:

Ref document number: 75559

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3870477

Country of ref document: DE

Date of ref document: 19920604

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920918

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930228

Ref country code: LI

Effective date: 19930228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000426

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201