EP0419892B1 - Microwave polarisation filter - Google Patents

Microwave polarisation filter Download PDF

Info

Publication number
EP0419892B1
EP0419892B1 EP90116913A EP90116913A EP0419892B1 EP 0419892 B1 EP0419892 B1 EP 0419892B1 EP 90116913 A EP90116913 A EP 90116913A EP 90116913 A EP90116913 A EP 90116913A EP 0419892 B1 EP0419892 B1 EP 0419892B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
angle
bend
longitudinal axis
splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90116913A
Other languages
German (de)
French (fr)
Other versions
EP0419892A3 (en
EP0419892A2 (en
Inventor
Eberhard Dr. Ing. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0419892A2 publication Critical patent/EP0419892A2/en
Publication of EP0419892A3 publication Critical patent/EP0419892A3/en
Application granted granted Critical
Publication of EP0419892B1 publication Critical patent/EP0419892B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a microwave polarization filter according to the preamble of claim 1.
  • Polarization switches which consist of an electrically symmetrical double branch and two mutually identical, in themselves electrically symmetrical series branches and in which the double branch and the two series branches are interconnected via four mutually identical connections, are known for example from DE-OS 27 03 878.
  • An essential area of application of such polarization switches is satellite radio, in which the available transmission and reception frequency bands are occupied by right and left rotating circular polarization and can thus be used twice with the same bandwidth.
  • such polarization switches are required that their two passageways in the transmit and in the receive band should be as low-reflection as possible and in exact phase synchronization.
  • coaxial lines are still used in this known polarization switch in order to achieve the exact phase symmetry.
  • difficulties are to be expected because waveguide-coaxial junctions and coaxial lines cannot be subjected to high power.
  • phase-symmetrical polarization switches are also known, in which the phase symmetry is only approximated by a mostly relatively difficult phase adjustment.
  • the generation of pure circular polarization requires the exact phase synchronization of both passes of the polarization switch.
  • a polarization switch which can be phase-symmetrized by such an adjustment process is, for example from DE-OS 27 08 271, but also from the symmetrical double branch described in detail in DE-PS 28 42 576.
  • DE-PS 30 10 360 discloses the only polarization switch whose two passageways are exactly phase-symmetrical in a wide frequency range and which can also be loaded with a high microwave power, i.e. which does not require coaxial line transitions.
  • This polarization switch has four spatially oblique EH offsets, which, however, cannot disadvantageously be milled with numerically controlled machine tools.
  • Such a millable, initially not phase-symmetrical polarization switch is known from European patent application 0 196 065.
  • a round or square waveguide running in the axial direction is branched by means of a double branch into two pairs of rectangular waveguides which are respectively opposite one another.
  • the first pair consisting of two opposing rectangular waveguides, is fed by a symmetrical waveguide fork with straight arms.
  • the second pair which consists of the two other rectangular waveguides lying opposite one another, is fed by a second, in itself electrically symmetrical, waveguide fork with partial arms bent (E-bends) over their broad sides.
  • E-bends partial arms bent
  • the object of the invention is to provide an exactly phase-symmetrical broadband polarization switch, which consists exclusively of waveguides and which can be produced entirely in cost-effective machine tool-controlled milling technology.
  • E 1 is based on a waveguide arrangement with an E offset, which is used in non-phase-symmetrical polarization switches, as are known from European patent application 0 196 065.
  • This E-offset resulting in an offset distance consists of two E-bends E21 and E22, the waveguide axis running obliquely upwards after the E-bend E21 with the axis elongated vertically upwards in FIG. 1 in front of the bend E21 which is clockwise positive counted kink angle + ⁇ and the waveguide axis running vertically upwards after the E-Kink E22 the axis elongated in FIG. 1 in front of the bend E22 forms the bend angle - ⁇ (directed counterclockwise).
  • the E-bends E21 and E22 thus have mutually opposing bend angles and are connected by an oblique, straight rectangular waveguide section H9.
  • a first step in the direction of the invention now consists in that the intermediate line formed by the rectangular waveguide section H9 in FIG. 1 is separated in the middle of its length by a cut S1.
  • a short rectangular waveguide section B13 with a vertical axis direction is then introduced at this interface, as shown in FIG. 2.
  • a further E-Knick E23 or E24 is connected to both sides of it, again with the opposite direction of buckling and at the same buckling angle as in Fig.
  • the E-Knick E23 thus has a buckling angle - ⁇ and the E-Knick E24 has a buckling angle + ⁇ .
  • the oblique waveguide section H9 from FIG. 1 consists of two half as long rectangular waveguide sections H10 and H11. This results in the double-E waveguide offset according to FIG. 2 with the same offset distance v as in FIG. 1 and with a somewhat greater height.
  • the length of the short rectangular waveguide section B13 is L s .
  • the outer E-bends are designated E25 and E26 and the rectangular waveguide sections between the bends E25 and E27 or E26 and E28 are designated H12 or H13.
  • the length L s of the vertical line sections B13 and B14 must be so large that the E11 interference fields of the adjacent E-bends E23, E24 and E27, E28 do not interlock.
  • ⁇ KE 11 is the cut-off wavelength of the E 1 1 wave in the rectangular waveguide with the broad side dimension a and the narrow side dimension b and ⁇ o the operating wavelength.
  • a polarization switch which is not phase-symmetrical per se and which, with the foregoing prior knowledge, is particularly suitable for expanding to exact phase symmetry, is known from European patent application 0 196 065. It consists of a straight mirror image symmetrical and a rectangular waveguide fork, which runs obliquely to the side and is not mirror image symmetrical, which fit into each other without penetration. These two forks feed a double branching switch head described in more detail in DE-PS 28 42 576, whereby e.g. in a circular waveguide two mutually perpendicular polarized H11 waves E01 and H21 are excited without interference waves.
  • a polarization switch can be created which, in contrast to the switch described in patent application 0 196 065, is exactly phase-symmetrical with regard to the switch arm pairs and thus the entire polarization switch.
  • the polarization switch according to the invention has a symmetrically constructed five-armed double branch D, which contains an arm lying in the double branch longitudinal axis direction L for connecting a further waveguide with a round or square cross section and four identically designed partial arm connections with a rectangular cross section, which are each offset by 90 ° and offset run at the same angle with respect to the double branching longitudinal axis L in the opposite direction to the connecting arm of the further waveguide.
  • two opposing partial arm connections of the double branch D are of mutually equal length, each forming a pair of switch arm sections A1, A2 (FIG. 4) and A3, A4 (FIG. 5) with the two partial arms T1, T2 (FIG. 4) and T3 , T4 (FIG. 5) each one of two identically designed, symmetrical series connections SV1 (FIG. 4) or SV2 (FIG. 5), which are located in the same plane with their connecting flanges.
  • the pair of switch arm sections A1 and A2 shown in FIG. 4, which is not mirror image symmetrical to the double branching longitudinal axis L, has, starting from the double branching D, first in each switch arm section A1 or A2 a short waveguide section B1 or B2 running parallel to the double branching longitudinal axis L.
  • the two short waveguide sections B1 and B2 are followed by a longer waveguide section H1 or H2 via an E-bend E1 or E2 with an angle + ⁇ .
  • the longer waveguide sections H1 and H2 in the two switch arm sections A1 and A2 are followed by a short waveguide section B3 and B4 running parallel to the double branching longitudinal axis L via an E-bend E3 and E4 each with an angle ⁇ relative to the direction of the double branching longitudinal axis L. .
  • a longer waveguide section H3 or H4 is connected to the short waveguide sections B3 and B4 via a further E-bend E5 or E6, each with an angle + ⁇ .
  • the switch arm sections A1 and A2 then continue via bends E7 and E8 with an angle - ⁇ in short waveguide sections B5 and B6 running parallel to the double branching longitudinal axis L.
  • the short waveguide sections B9 and B10 run parallel to the double branching longitudinal axis L.
  • a longer waveguide section H7 follows in the switch arm section A3 via an E-bend E15 with an angle + ⁇ and in the switch arm section A4 also an longer waveguide section via an E-bend with an angle - ⁇ H8.
  • All longer waveguide sections H1 to H8 have the same length in the switch arm sections A1 to A4 of the two pairs of forks.
  • the short waveguide pieces B1, B2, B7 and B8 with the length L s ⁇ , the short waveguide pieces B3, B4, B9 and B10 with the length L s and the short waveguide pieces B5, B6, B11 and B12 are also dimensioned with each other with the same length the length L s '.
  • All short waveguide pieces B1 to B12 of the four switch arm sections A1 to A4 are dimensioned at least so long that there is sufficient E11 interference field attenuation at the highest operating frequency.
  • two parallel double E offsets of FIG. 2 which are placed next to one another in parallel, are interconnected with a broadband rectangular waveguide series branch SV1 known from European patent application 0 196 065 to form a new fork which is not mirror-symmetrical.
  • the lateral offset distance v must be somewhat larger than the broad side a of all rectangular waveguides used, so that both pairs A1, A2 and A3, A4 of the switch arm sections fit into one another without penetration.
  • the pair of switch arm sections A1 and A2 shown in Fig. 4 is symmetrical in itself, for which the lengths L s ' and L s ⁇ must meet the same, already quantified requirements as the length L s .
  • the series branches SV1 and SV2 are designed with the correct wave resistance, the partial arms T1 to T4 having an aspect ratio between the broad side a and the narrow side b of approximately 4: 1.
  • the waveguide feed access Z1 and Z2 of the two series branches SV1 and SV2 has an aspect ratio between the broad side a and the narrow side b o of approximately 2: 1.
  • All E-bends E1 to E20 are provided with a symmetrical corner flattening F on the outer broad side bend of the waveguide.
  • the clear width w between the switch arm sections A3 and A4 of the mirror-symmetrically designed switch arm pair in Fig. 5 must be dimensioned somewhat larger than the broad side a of all rectangular waveguides, so that the switch arm section pair shown in Fig. 4 between the switch arm sections A3 and A4 of the one shown in Fig. 5 Arrangement has space.
  • the width w is also adopted for the switch arm sections A1 and A2 of the arrangement shown in FIG. 4. Since all switch arm components are mutually exactly phase-symmetrical, this also applies to the complete switch arm pairs under the conditions mentioned above. Then the interconnection with the double branching D, which is likewise exactly symmetrical, represents an exactly phase-symmetrical polarization switch.
  • a major advantage of the polarization switch according to the invention is that the two pairs (Gabein) of the switch arm sections A1, A2 and A3, A4 can be completely milled.
  • each of the two forks is divided by a plane that cuts all rectangular waveguides of the respective fork along the center lines of their broad sides - that is to say without cross current and therefore without loss.
  • the two division levels are perpendicular to each other and divide the fork block into four quadrants.
  • all waveguide walls are exactly cylindrical and can therefore be manufactured inexpensively and with very small tolerances using a two-dimensionally numerically controlled milling machine. This is compared to the previous one galvanoplastic manufacturing technology achieved an enormous cost reduction.
  • a crossover can be connected to the waveguide feed accesses Z1 and Z2 of the two series branches SV1 and SV2.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Aerials With Secondary Devices (AREA)
  • Burglar Alarm Systems (AREA)
  • Steering Controls (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention relates to a broadband polarisation filter with a symmetrical double branch (D) to which in each case two identically constructed symmetrical series branches (SV1, SV2) are connected via a pair of filter arm sections (A1, A2; A3, A4). The filter arm sections having bends (E1-E10; E11-E20) exclusively in the E-plane are arranged and designed such that, on the one hand, precise phase symmetry is produced between and within the two pairs, and, on the other hand, it is possible to produce the filter completely using numerically controlled milling technology. The polarisation filter according to the invention can be used for supplying directional radio and satellite radio reflector antennas. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Mikrowellen-Polarisationsweiche gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a microwave polarization filter according to the preamble of claim 1.

Polarisationsweichen, die aus einer elektrisch symmetrischen Doppelverzweigung und zwei untereinander gleich ausgebildeten, in sich elektrisch symmetrischen Serienverzweigungen bestehen und bei denen die Doppelverzweigung und die beiden Serienverzweigungen über vier untereinander gleiche Verbindungen zusammengeschaltet werden, sind beispielsweise aus der DE-OS 27 03 878 bekannt. Ein wesentliches Anwendungsgebiet solcher Polarisationsweichen ist der Satellitenfunk, bei dem die verfügbaren Sende- und Empfangsfrequenzbänder mit rechts-und linksdrehender Zirkularpolarisation belegt sind und so bei gleicher Bandbreite zweifach genutzt werden können. Beispielsweise zur Realisierung von Antennenspeisesystemen wird von solchen Polarisationsweichen gefordert, daß ihre beiden Durchgangswege im Sende- und im Empfangsband möglichst reflexionsarm und möglichst im genauen Phasengleichlauf sein sollen. Bei der praktischen Realisierung sind jedoch bei dieser bekannten Polarisationsweiche noch Koaxialleitungen verwendet, um die exakte Phasensymmetrie zu erzielen. Wenn aber die Übertragung großer Mikrowellenleistungen über solche Polarisationsweichen durchgeführt wird, ist mit Schwierigkeiten zu rechnen, weil Hohlleiterkoaxialübergänge und Koaxialleitungen nicht mit einer hohen Leistung belastbar sind.Polarization switches, which consist of an electrically symmetrical double branch and two mutually identical, in themselves electrically symmetrical series branches and in which the double branch and the two series branches are interconnected via four mutually identical connections, are known for example from DE-OS 27 03 878. An essential area of application of such polarization switches is satellite radio, in which the available transmission and reception frequency bands are occupied by right and left rotating circular polarization and can thus be used twice with the same bandwidth. For the implementation of antenna feed systems, for example, such polarization switches are required that their two passageways in the transmit and in the receive band should be as low-reflection as possible and in exact phase synchronization. In practical implementation, however, coaxial lines are still used in this known polarization switch in order to achieve the exact phase symmetry. However, if the transmission of large microwave powers is carried out via such polarization switches, difficulties are to be expected because waveguide-coaxial junctions and coaxial lines cannot be subjected to high power.

Es sind auch sogenannte phasensymmetrierte Polarisationsweichen bekannt, bei denen die Phasensymmetrie durch einen meist verhältnismäßig schwierigen Phasenabgleich nur angenähert erreicht wird. Die Erzeugung reiner Zirkularpolarisation erfordert jedoch den exakten Phasengleichlauf beider Durchgänge der Polarisationsweiche. Eine durch einen solchen Abgleichvorgang phasensymmetrierbare Polarisationsweiche ist beispielsweise aus der DE-OS 27 08 271, aber auch aus der die symmetrische Doppelverzweigung im einzelnen beschreibenden DE-PS 28 42 576 bekannt.So-called phase-symmetrical polarization switches are also known, in which the phase symmetry is only approximated by a mostly relatively difficult phase adjustment. The generation of pure circular polarization, however, requires the exact phase synchronization of both passes of the polarization switch. A polarization switch which can be phase-symmetrized by such an adjustment process is, for example from DE-OS 27 08 271, but also from the symmetrical double branch described in detail in DE-PS 28 42 576.

Die einzige Polarisationsweiche, deren beide Durchgangswege in einem breiten Frequenzbereich exakt phasensymmetrisch sind und die darüberhinaus auch mit einer hohen Mikrowellenleistung belastbar ist, also ohne Koaxialleitungsübergänge auskommt, ist aus der DE-PS 30 10 360 bekannt. Diese Polarisationsweiche weist vier räumlich schräg verlaufende EH-Versätze auf, die jedoch in nachteiliger Weise nicht mit numerisch gesteuerten Werkzeugmaschinen fräsbar sind.DE-PS 30 10 360 discloses the only polarization switch whose two passageways are exactly phase-symmetrical in a wide frequency range and which can also be loaded with a high microwave power, i.e. which does not require coaxial line transitions. This polarization switch has four spatially oblique EH offsets, which, however, cannot disadvantageously be milled with numerically controlled machine tools.

Eine derart fräsbare, zunächst nicht phasensymmetrische Polarisationsweiche ist aus der europäischen Patentanmeldung 0 196 065 bekannt. Bei dieser Weiche wird ein in Achsrichtung verlaufender, runder oder quadratischer Hohlleiter mittels einer Doppelverzweigung in zwei Paare von einander jeweils gegenüberliegenden Rechteckhohlleitern verzweigt. Das erste, aus zwei einander gegenüberliegenden Rechteckhohlleitern bestehende Paar wird dabei durch eine in sich symmetrische Hohlleitergabel mit geraden Teilarmen gespeist. Das zweite Paar, das aus den beiden weiteren einander gegenüberliegenden Rechteckhohlleitern besteht, wird durch eine zweite, in sich elektrisch-symmetrische Hohlleitergabel mit über ihre Breitseiten geknickten (E-Knicke) Teilarmen gespeist. Von der aus dieser europäischen Patentanmeldung bekannten Polarisationsweiche, die allerdings nicht phasensymmetrisch ausgebildet ist, wird im Oberbegriff des Patentanspruchs 1 ausgegangen.Such a millable, initially not phase-symmetrical polarization switch is known from European patent application 0 196 065. With this switch, a round or square waveguide running in the axial direction is branched by means of a double branch into two pairs of rectangular waveguides which are respectively opposite one another. The first pair, consisting of two opposing rectangular waveguides, is fed by a symmetrical waveguide fork with straight arms. The second pair, which consists of the two other rectangular waveguides lying opposite one another, is fed by a second, in itself electrically symmetrical, waveguide fork with partial arms bent (E-bends) over their broad sides. The preamble of claim 1 is based on the polarization switch known from this European patent application, which, however, is not of phase symmetry.

Aufgabe der Erfindung ist es, eine exakt phasensymmetrische Breitband-Polarisationsweiche anzugeben, die ausschließlich aus Hohlleitern besteht und die vollständig in kostengünstiger werkzeugmaschinengesteuerter Frästechnik hergestellt werden kann.The object of the invention is to provide an exactly phase-symmetrical broadband polarization switch, which consists exclusively of waveguides and which can be produced entirely in cost-effective machine tool-controlled milling technology.

Diese Aufgabe wird bei einer gattungsgemäßen breitbandigen Mikrowellen-Polarisationsweiche durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst.This task is in a broadband generic Microwave polarization switch solved by the features specified in the characterizing part of claim 1.

Zweckmäßige und vorteilhafte Ausgestaltungen sowie Weiterbildungen sind in den Unteransprüchen angegeben.Appropriate and advantageous refinements and developments are specified in the subclaims.

Im folgenden wird die Erfindung anhand von fünf Figuren näher erläutert. Es zeigen:

Fig. 1
die Seitenansicht auf einen einfachen, zwei E-Knicke aufweisenden E-Hohlleiterversatz,
Fig. 2
die Seitenansicht auf einen vier E-Knicke aufweisenden Doppel-E-Hohlleiterversatz mit der gleichen Versatzstrecke wie bei der Anordnung nach Fig. 1,
Fig. 3
die Seitenansicht auf eine streckenlängenmäßige Nachbildung der Hohlleiteranordnung nach Fig. 2, aber ohne seitlichen Versatz,
Fig. 4
eine Querschnittsansicht der Polarisationsweiche nach der Erfindung durch das nicht spiegelbildsymmetrisch zur Doppelverzweigungslängsachse verlaufende Paar der Weichenarmabschnitte,
Fig. 5
eine darauf senkrecht stehende Querschnittsansicht durch die Polarisationsweiche nach der Erfindung und zwar durch das spiegelbildsymmetrisch zur Doppelverzweigungslängsachse verlaufende Paar der Weichenarmabschnitte.
The invention is explained in more detail below with reference to five figures. Show it:
Fig. 1
the side view of a simple, two E-bend E-waveguide offset,
Fig. 2
the side view of a four E-bend double E waveguide offset with the same offset distance as in the arrangement according to FIG. 1,
Fig. 3
2 shows the side view of a path length simulation of the waveguide arrangement according to FIG. 2, but without lateral offset,
Fig. 4
2 shows a cross-sectional view of the polarization switch according to the invention through the pair of switch arm sections which does not run mirror-image symmetrically to the double branching longitudinal axis,
Fig. 5
a cross-sectional view perpendicular to it through the polarizing switch according to the invention, namely through the mirror image symmetrical to the double branching longitudinal axis of the pair of switch arm sections.

Ausgegangen wird in Fig. 1 von einer Hohlleiteranordnung mit einem E-Versatz, der bei nicht phasensymmetrischen Polarisationsweichen, wie sie aus der europäischen Patentanmeldung 0 196 065 bekannt sind, verwendet wird. Dieser eine Versatzstrecke v ergebende E-Versatz besteht aus zwei E-Knicken E21 und E22, wobei die schräg nach oben verlaufende Hohlleiterachse nach dem E-Knick E21 mit der in Fig. 1 senkrecht nach oben verlängerten Achse vor dem Knick E21 den im Uhrzeigersinn positiv gezählten Knickwinkel + α bildet und die nach dem E-Knick E22 senkrecht nach oben verlaufende Hohlleiterachse mit der in Fig. 1 schräg nach oben verlängerten Achse vor dem Knick E22 den Knickwinkel - α (entgegen dem Uhrzeigersinn gerichtet) bildet. Die E-Knicke E21 und E22 haben also untereinander entgegengesetzt gerichtete Knickwinkel und werden durch einen schräg verlaufenden, geraden Rechteckhohlleiterabschnitt H9 verbunden. Für große Bandbreiten der Reflexionsarmut sind Winkelstücke und Zwischenleitungen mit Seitenverhältnissen a = 4b besonders günstig, wobei a die Breitseitenabmessung und b die Schmalseitenabmessung darstellt. Ein erster Schritt in Richtung zur Erfindung besteht nunmehr darin, daß die durch den Rechteckhohlleiterabschnitt H9 gebildete Zwischenleitung in Fig. 1 in der Mitte ihrer Länge durch einen Schnitt S1 getrennt wird. An dieser Schnittstelle wird sodann, wie in Fig. 2 dargestellt ist, ein kurzer Rechteckhohlleiterabschnitt B13 mit senkrechter Achsrichtung eingeführt. Daran wird beidseitig je ein weiterer E-Knick E23 bzw. E24 angeschlossen bei wiederum untereinander entgegengesetzter Knickrichtung und bei gleichem Knickwinkel wie in Fig. 1. Der E-Knick E23 hat somit einen Knickwinkel - α und der E-Knick E24 einen Knickwinkel + α. Der schräge Hohlleiterabschnitt H9 von Fig. 1 besteht in der Anordnung nach Fig. 2 aus zwei halb so langen Rechteckhohlleiterabschnitten H10 und H11. Es entsteht so der Doppel-E-Hohlleiterversatz nach Fig. 2 mit gleicher Versatzstrecke v wie in Fig. 1 und mit etwas größerer Höhe. Die Länge des kurzen Rechteckhohlleiterabschnitts B13 beträgt Ls.1 is based on a waveguide arrangement with an E offset, which is used in non-phase-symmetrical polarization switches, as are known from European patent application 0 196 065. This E-offset resulting in an offset distance consists of two E-bends E21 and E22, the waveguide axis running obliquely upwards after the E-bend E21 with the axis elongated vertically upwards in FIG. 1 in front of the bend E21 which is clockwise positive counted kink angle + α and the waveguide axis running vertically upwards after the E-Kink E22 the axis elongated in FIG. 1 in front of the bend E22 forms the bend angle - α (directed counterclockwise). The E-bends E21 and E22 thus have mutually opposing bend angles and are connected by an oblique, straight rectangular waveguide section H9. For large bandwidths of low reflection, angle pieces and intermediate lines with aspect ratios a = 4b are particularly favorable, with a representing the broad side dimension and b the narrow side dimension. A first step in the direction of the invention now consists in that the intermediate line formed by the rectangular waveguide section H9 in FIG. 1 is separated in the middle of its length by a cut S1. A short rectangular waveguide section B13 with a vertical axis direction is then introduced at this interface, as shown in FIG. 2. A further E-Knick E23 or E24 is connected to both sides of it, again with the opposite direction of buckling and at the same buckling angle as in Fig. 1. The E-Knick E23 thus has a buckling angle - α and the E-Knick E24 has a buckling angle + α . In the arrangement according to FIG. 2, the oblique waveguide section H9 from FIG. 1 consists of two half as long rectangular waveguide sections H10 and H11. This results in the double-E waveguide offset according to FIG. 2 with the same offset distance v as in FIG. 1 and with a somewhat greater height. The length of the short rectangular waveguide section B13 is L s .

Als weiterer Schritt in Richtung zur Erfindung folgt nun ein waagerechter Schnitt S2 in der Hohlleiteranordnung nach Fig. 2 und zwar im Bereich des neuen, senkrecht verlaufenden kurzen Rechteckhohlleiterabschnitts B13 und eine 180°-Drehung des oberhalb oder unterhalb des Schnitts S2 liegenden Leitungszuges um die Hohlleiterachse Y. Dadurch entsteht die in Fig. 3 dargestellte Leitungsstruktur. Sie unterscheidet sich geometrisch vom Doppel-E-Versatz nach Fig. 2 dadurch, daß die Achsen X1 und X2 ihrer Zugänge nicht mehr versetzt sind (v = 0). Trotz dieses Unterschiedes erfüllt die Leitungsstruktur in Fig. 3, verglichen mit derjenigen nach Fig. 2, die Forderung, daß sie an genau gleichen Leitungsorten stets die gleichen Elemente enthält. Diese Forderung reicht jedoch für die angestrebte exakte Phasensymmetrie der in den Fig. 2 und 3 dargestellten Leitungsstrukturen nicht aus; denn in dem unbrauchbaren Fall, daß die Länge Ls des kurzen Rechteckhohlleiterabschnitts B13 zu klein, z.B. Ls = 0 gemacht wird, geht der in Fig. 2 dargestellte Doppelversatz in den einfachen Versatz nach Fig. 1 über. Die nachgebildete Leitungsstruktur nach Fig. 3 enthält für den Fall, daß der kurze Rechteckhohlleiterabschnitt B14 eine Länge Ls = 0 aufweist, einen zusätzlichen E-Knick mit dem Knickwinkel -2 α , weil sich die beiden mittleren E-Knicke E27 und E28 für die Länge Ls = 0 des kurzen Rechteckhohlleiterabschnitts B14 in Fig. 3 mit ihren Knickwinkeln addieren. Demnach sind dann die Leitungszüge der Hohlleiteranordnungen nach Fig. 1 und Fig. 3 (letzteres mit Ls = 0) trotz gleich langer Mittelbahnen grob phasenverschieden.As a further step in the direction of the invention, there follows a horizontal section S2 in the waveguide arrangement according to FIG. 2, namely in the area of the new, perpendicular, short rectangular waveguide section B13 and a 180 ° rotation of the cable run above or below the section S2 about the waveguide axis Y. This creates the line structure shown in FIG. 3. It differs geometrically from the double E offset according to FIG. 2 in that the axes X1 and X2 of their accesses are no longer offset (v = 0). Despite this difference, the line structure in Fig. 3, compared to that of Fig. 2, meets the requirement that it be accurate same line locations always contains the same elements. However, this requirement is not sufficient for the desired exact phase symmetry of the line structures shown in FIGS. 2 and 3; because in the unusable case that the length L s of the short rectangular waveguide section B13 is made too small, for example L s = 0, the double offset shown in FIG. 2 changes into the single offset according to FIG. 1. 3 contains an additional E-bend with the bend angle -2 α because the two middle E-bends E27 and E28 for the case that the short rectangular waveguide section B14 has a length L s = 0 Add length L s = 0 of the short rectangular waveguide section B14 in FIG. 3 with their articulation angles. Accordingly, the lines of the waveguide arrangements according to FIG. 1 and FIG. 3 (the latter with L s = 0) are roughly different in phase despite the middle paths having the same length.

In der nachgebildeten Hohlleiterstruktur nach Fig. 3 sind die äußeren E-Knicke mit E25 und E26 und die Rechteckhohlleiterabschnitte zwischen den Knicken E25 und E27 bzw. E26 und E28 mit H12 bzw. H13 bezeichnet.3, the outer E-bends are designated E25 and E26 and the rectangular waveguide sections between the bends E25 and E27 or E26 and E28 are designated H12 or H13.

Für die angestrebte exakte Phasensymmetrie der Leitungszüge, die in den Fig. 2 und 3 dargestellt sind, muß folgende weitere Bedingung erfüllt sein. Die Länge Ls der senkrechten Leitungsabschnitte B13 bzw. B14 muß so groß sein, daß die E₁₁ Störfelder der benachbarten E-Knicke E23,E24 bzw. E27,E28 nicht ineinander greifen. Kriterium für die Stärke des Abklingens der E₁₁-Störfelder im Rechteckhohlleiter ist seine aperiodische E₁₁-Dämpfung: a apE 11 = 2πL s λ KE 11 1 - λ KE 11 λ o 2 Np

Figure imgb0001

mit λ KE 11 = 2 ab a² + b² .
Figure imgb0002
For the desired exact phase symmetry of the cable runs, which are shown in FIGS. 2 and 3, the following further condition must be met. The length L s of the vertical line sections B13 and B14 must be so large that the E₁₁ interference fields of the adjacent E-bends E23, E24 and E27, E28 do not interlock. The criterion for the strength of the decay of the E₁₁ interference fields in the rectangular waveguide is its aperiodic E₁₁ attenuation: a apE 11 = 2πL s λ KE 11 1 - λ KE 11 λ O 2nd Np
Figure imgb0001

With λ KE 11 = 2 from a² + b² .
Figure imgb0002

In diesen Gleichungen ist λKE 11 die Grenzwellenlänge der E₁₁-Welle im Rechteckhohlleiter mit der Breitseitenabmessung a und der Schmalseitenabmessung b und λo die Betriebswellenlänge.In these equations, λ KE 11 is the cut-off wavelength of the E ₁ 1 wave in the rectangular waveguide with the broad side dimension a and the narrow side dimension b and λ o the operating wavelength.

Hierbei ist immer die höchste Betriebsfrequenz maßgebend; es genügen hier relativ kleine Längen Ls ≈ b (≈ a/4) für ausreichend hohe E₁₁-Dämpfungswerte um 25 dB.The highest operating frequency is always decisive here; it is sufficient here relatively small lengths L s ≈ b (≈ a / 4) for sufficiently high E₁₁ attenuation values around 25 dB.

Die hinreichenden Bedingungen dafür, daß der Doppel-E-Versatz nach Fig. 2 und der Leitungszug nach Fig. 3 exakt und breitbandig phasensymmetrisch sind, d.h. daß der Leitungszug in Fig. 3 eine exakte elektrische Nachbildung des Doppel-E-Versatzes nach Fig. 2 bezüglich exakt gleicher Phase und Reflexion ist, sind nunmehr klargestellt und können auch leicht realisiert werden. Diese Leitungszüge sind damit wie folgt anwendbar.The sufficient conditions for the double E offset according to FIG. 2 and the cable pull according to FIG. 3 to be phase-symmetrical exactly and broadband, i.e. 3 that an exact electrical replica of the double E offset according to FIG. 2 with respect to exactly the same phase and reflection is now clarified and can also be easily implemented. These cables can therefore be used as follows.

Eine an sich nicht phasensymmetrische Polarisationsweiche, die sich mit den vorstehenden Vorkenntnissen zur Erweiterung auf exakte Phasensymmetrie besonders gut eignet, ist aus der europäischen Patentanmeldung 0 196 065 bekannt. Sie besteht aus einer geraden spiegelbildsymmetrischen und einer schräg zur Seite verlaufenden, nicht spiegelbildsymmetrischen Rechteckhohlleitergabel, die durchdringungsfrei ineinander passen. Diese beiden Gabeln speisen einen in der DE-PS 28 42 576 näher beschriebenen Doppelverzweigungs-Weichenkopf, wodurch z.B. in einem Rundhohlleiter zwei aufeinander senkrecht polarisierte H₁₁-Wellen E₀₁ und H₂₁ störwellenfrei angeregt werden.A polarization switch which is not phase-symmetrical per se and which, with the foregoing prior knowledge, is particularly suitable for expanding to exact phase symmetry, is known from European patent application 0 196 065. It consists of a straight mirror image symmetrical and a rectangular waveguide fork, which runs obliquely to the side and is not mirror image symmetrical, which fit into each other without penetration. These two forks feed a double branching switch head described in more detail in DE-PS 28 42 576, whereby e.g. in a circular waveguide two mutually perpendicular polarized H₁₁ waves E₀₁ and H₂₁ are excited without interference waves.

Mit Hilfe des Doppel-E-Versatzes in Fig. 2 und seiner Nachbildung in Fig. 3 läßt sich eine Polarisationsweiche schaffen, die im Gegensatz zu der in der Patentanmeldung 0 196 065 beschriebenen Weiche exakt phasensymmetrisch hinsichtlich der Weichenarmpaare und somit der gesamten Polarisationsweiche ist.With the help of the double-E offset in FIG. 2 and its simulation in FIG. 3, a polarization switch can be created which, in contrast to the switch described in patent application 0 196 065, is exactly phase-symmetrical with regard to the switch arm pairs and thus the entire polarization switch.

Die Fig. 4 und 5 zeigen zwei aufeinander senkrechte Querschnittsseitenansichten durch diese neue, durch die Erfindung erreichte Polarisationsweiche, wobei Fig. 4 einen Schnitt durch das nicht spiegelbildsymmetrisch ausgebildete Weichenarmpaar und Fig. 5 einen Schnitt durch das spiegelbildsymmetrisch ausgebildete Weichenarmpaar der Weiche zeigt. Die Polarisationsweiche nach der Erfindung weist eine symmetrisch aufgebaute fünfarmige Doppelverzweigung D auf, die einen in Doppelverzweigungslängsachsrichtung L liegenden Arm zum Anschluß eines weiterführenden Hohlleiters runden oder auch quadratischen Querschnitts und vier gleichartig ausgebildete Teilarmanaschlüsse rechteckigen Querschnitts enthält, die um jeweils 90° gegeneinander versetzt angeordnet sind und unter jeweils gleichem Winkel gegenüber der Doppelverzweigungslängsachse L in zum Anschlußarm des weiterführenden Hohlleiters entgegenesetzter Richtung verlaufen. Jeweils zwei gegenüberliegende Teilarmanschlüsse der Doppelverzweigung D sind über untereinander gleich lange, jeweils ein Paar bildende Weichenarmabschnitte A1,A2 (Fig. 4) und A3,A4 (Fig. 5) mit den zwei Teilarmen T1,T2 (Fig. 4) bzw. T3,T4 (Fig. 5) jeweils einer von zwei gleichartig ausgebildeten, symmetrischen und mit ihren Anschlußflanschen in ein und derselben Ebene liegenden Serienverzweigungen SV1 (Fig. 4) bzw. SV2 (Fig. 5) verbunden.4 and 5 show two mutually perpendicular cross-sectional side views through this new, through the invention achieved polarization switch, Fig. 4 shows a section through the non-mirror-symmetrical switch arm pair and Fig. 5 shows a section through the mirror-symmetrical switch arm pair of the switch. The polarization switch according to the invention has a symmetrically constructed five-armed double branch D, which contains an arm lying in the double branch longitudinal axis direction L for connecting a further waveguide with a round or square cross section and four identically designed partial arm connections with a rectangular cross section, which are each offset by 90 ° and offset run at the same angle with respect to the double branching longitudinal axis L in the opposite direction to the connecting arm of the further waveguide. In each case two opposing partial arm connections of the double branch D are of mutually equal length, each forming a pair of switch arm sections A1, A2 (FIG. 4) and A3, A4 (FIG. 5) with the two partial arms T1, T2 (FIG. 4) and T3 , T4 (FIG. 5) each one of two identically designed, symmetrical series connections SV1 (FIG. 4) or SV2 (FIG. 5), which are located in the same plane with their connecting flanges.

Das in Fig. 4 dargestellte, nicht spiegelbildsymmetrisch zur Doppelverzweigungslängsachse L verlaufende Paar der Weichenarmabschnitte A1 und A2 weist ausgehend von der Doppelverzweigung D zunächst in jedem Weichenarmabschnitt A1 bzw. A2 ein parallel zur Doppelverzweigungslängsachse L verlaufendes kurzes Hohlleiterstück B1 bzw. B2 auf. An die beiden kurzen Hohlleiterstücke B1 und B2 folgt über einen E-Knick E1 bzw. E2 mit einem Winkel + α ein längeres Hohlleiterstück H1 bzw. H2. Über einen E-Knick E3 bzw. E4 jeweils mit einem Winkel - α gegenüber der Richtung der Doppelverzweigungslängsachse L folgt den längeren Hohlleiterstücken H1 bzw. H2 in den beiden Weichenarmabschnitten A1 bzw. A2 ein parallel zur Doppelverzweigungslängsachse L verlaufendes, kurzes Hohlleiterstück B3 bzw. B4. Über einen weiteren E-Knick E5 bzw. E6 jeweils mit einem Winkel + α ist an die kurzen Hohlleiterstücke B3 und B4 ein längeres Hohlleiterstück H3 bzw. H4 angeschlossen. Die Weichenarmabschnitte A1 und A2 setzen sich danach über Knicke E7 bzw. E8 jeweils mit einem Winkel -α in zur Doppelverzweigungslängsachse L parallel verlaufende kurze Hohlleiterstücke B5 bzw. B6 fort. An das kurze Hohlleiterstück B5 schließt sich über einen E-Knick E9 mit einem Winkel + α′ = + α der eine Teilarm T1 der Serienverzweigung SV1 an, wogegen der andere Teilarm T2 dieser Serienverzweigung SV1 über einem E-Knick E10 vom Winkel -α′ = -α mit dem kurzen Hohlleiterstück B6 verbunden ist.The pair of switch arm sections A1 and A2 shown in FIG. 4, which is not mirror image symmetrical to the double branching longitudinal axis L, has, starting from the double branching D, first in each switch arm section A1 or A2 a short waveguide section B1 or B2 running parallel to the double branching longitudinal axis L. The two short waveguide sections B1 and B2 are followed by a longer waveguide section H1 or H2 via an E-bend E1 or E2 with an angle + α. The longer waveguide sections H1 and H2 in the two switch arm sections A1 and A2 are followed by a short waveguide section B3 and B4 running parallel to the double branching longitudinal axis L via an E-bend E3 and E4 each with an angle α relative to the direction of the double branching longitudinal axis L. . A longer waveguide section H3 or H4 is connected to the short waveguide sections B3 and B4 via a further E-bend E5 or E6, each with an angle + α. The switch arm sections A1 and A2 then continue via bends E7 and E8 with an angle -α in short waveguide sections B5 and B6 running parallel to the double branching longitudinal axis L. The short waveguide section B5 is connected via an E-bend E9 with an angle + α ′ = + α to one arm T1 of the series branch SV1, whereas the other arm T2 of this series branch SV1 is connected via an E-bend E10 from the angle -α ′ = -α is connected to the short waveguide section B6.

Das in Fig. 5 dargestellte, spiegelbildsymmetrisch zur Doppelverzweigungslängsachse L verlaufende Paar der Weichenarmabschnitte A3 und A4 weist ausgehend von der Doppelverzweigung D zunächst in jedem Weichenarmabschnitt A3 bzw. A4 ebenfalls ein zur Doppelverzweigungslängsachse L parallel verlaufendes, kurzes Hohlleiterstück B7 bzw. B8 auf. Danach folgt im Weichenarmabschnitt A3 über einen E-Knick E11 mit einem Winkel -α gegenüber der Richtung der Achse L ein längeres Hohlleiterstück H5 und im Weichenarmabschnitt A4 über einen E-Knick E12 mit einem Winkel + α gegenüber der Achse L ebenfalls ein längeres Hohlleiterstück H6. Danach schließt sich im Weichenarmabschnitt A3 über einen E-Knick E13 mit dem Winkel +α ein kurzes Hohlleiterstück B9 und im Weichenarmabschnitt A4 über einen E-Knick E14 mit dem Winkel -α ebenfalls ein kurzes Hohlleiterstück B10 an. Die kurzen Hohlleiterstücke B9 und B10 verlaufen parallel zur Doppelverzweigungslängsachse L. Danach folgt im Weichenarmabschnitt A3 über einen E-Knick E15 mit einem Winkel +α ein längeres Hohlleiterstück H7 und im Weichenarmabschnitt A4 über einen E-Knick mit einem Winkel -α ebenfalls ein längeres Hohlleiterstück H8. Im Anschluß daran folgt im Weichenarmabschnitt A3 über einen E-Knick E17 mit einem Winkel -α ein kurzes Hohlleiterstück B11 und im Weichenarmabschnitt A4 über einen E-Knick E18 mit einem Winkel +α ebenfalls ein kurzes Hohlleiterstück B12. Die beiden kurzen Hohlleiterstücke B11 und B12 verlaufen parallel zur Doppelverzweigungslängsachse L. Danach schließt sich im Weichenarmabschnitt über einen E-Knick E19 mit einem Winkel + α′ = +α der eine Teilarm T3 der Serienverzweigung SV2 an, wogegen im anderen Weichenarmabschnitt A4 über einen E-Knick E20 mit einem Winkel - α′ = -α der Teilarm T4 der Serienverzweigung SV2 folgt.The pair of switch arm sections A3 and A4 shown in FIG. 5, mirror image symmetrical to the double branching longitudinal axis L, has a short waveguide section B7 and B8 running parallel to the double branching longitudinal axis L, starting from the double branching D in each switch arm section A3 or A4. This is followed by a longer waveguide section H5 in the switch arm section A3 via an E-bend E11 with an angle -α relative to the direction of the axis L and in the switch arm section A4 via an E-bend E12 with an angle + α relative to the axis L also a longer waveguide section H6 . This is followed by a short waveguide section B9 in the switch arm section A3 via an E-bend E13 with the angle + α and in the switch arm section A4 via an E-bend E14 with the angle -α also a short waveguide section B10. The short waveguide sections B9 and B10 run parallel to the double branching longitudinal axis L. Then a longer waveguide section H7 follows in the switch arm section A3 via an E-bend E15 with an angle + α and in the switch arm section A4 also an longer waveguide section via an E-bend with an angle -α H8. This is followed by a short waveguide section B11 in the switch arm section A3 via an E-bend E17 with an angle -α and in the switch arm section A4 via an E-bend E18 with an angle + α also a short waveguide section B12. The two short waveguide sections B11 and B12 run parallel to the double branching longitudinal axis L. Then, in the switch arm section via an E-bend E19 with an angle + α ′ = + α, one arm T3 of the series branch SV2 is connected, while in the other switch arm section A4 via an E. -Kink E20 with one Angle - α ′ = -α of the partial arm T4 follows the series branch SV2.

Alle längeren Hohlleiterstücke H1 bis H8 sind in den Weichenarmabschnitten A1 bis A4 der beiden Gabelpaare gleich lang bemessen. Untereinander gleich lang bemessen sind ebenfalls die kurzen Hohlleiterstücke B1, B2 ,B7 und B8 mit der Länge Ls˝, die kurzen Hohlleiterstücke B3, B4, B9 und B10 mit der Länge Ls und die kurzen Hohlleiterstücke B5, B6, B11 und B12 mit der Länge Ls′. Sämtliche kurzen Hohlleiterstücke B1 bis B12 der vier Weichenarmabschnitte A1 bis A4 sind zumindest so lang bemessen, daß sich eine ausreichende E₁₁-Störfelddämpfung bei der höchsten Betriebsfrequenz ergibt.All longer waveguide sections H1 to H8 have the same length in the switch arm sections A1 to A4 of the two pairs of forks. The short waveguide pieces B1, B2, B7 and B8 with the length L s ˝, the short waveguide pieces B3, B4, B9 and B10 with the length L s and the short waveguide pieces B5, B6, B11 and B12 are also dimensioned with each other with the same length the length L s '. All short waveguide pieces B1 to B12 of the four switch arm sections A1 to A4 are dimensioned at least so long that there is sufficient E₁₁ interference field attenuation at the highest operating frequency.

In der Querschnittsansicht von Fig. 4 werden somit zwei parallel nebeneinander gelegte Doppel-E-Versätze von Fig. 2 mit einer aus der europäischen Patentanmeldung 0 196 065 bekannten, breitbandigen Rechteckhohlleiterserienverzweigung SV1 zur neuen nicht spiegelbildsymmetrischen Gabel zusammengeschaltet. Die Seitenversatzstrecke v muß etwas größer sein als die Breitseite a aller verwendeten Rechteckhohlleiter, damit beide Paare A1, A2 und A3, A4 der Weichenarmabschnitte durchdringungsfrei ineinander passen. Das in Fig. 4 dargestellte Paar von Weichenarmabschnitten A1 und A2 ist in sich symmetrisch, wozu die Längen Ls′ und Ls˝ die gleichen, bereits quantifizierten Forderungen erfüllen müssen wie die Länge Ls.In the cross-sectional view of FIG. 4, two parallel double E offsets of FIG. 2, which are placed next to one another in parallel, are interconnected with a broadband rectangular waveguide series branch SV1 known from European patent application 0 196 065 to form a new fork which is not mirror-symmetrical. The lateral offset distance v must be somewhat larger than the broad side a of all rectangular waveguides used, so that both pairs A1, A2 and A3, A4 of the switch arm sections fit into one another without penetration. The pair of switch arm sections A1 and A2 shown in Fig. 4 is symmetrical in itself, for which the lengths L s ' and L s ˝ must meet the same, already quantified requirements as the length L s .

Die Serienverzweigungen SV1 und SV2 sind wellenwiderstandsrichtig ausgebildet, wobei die Teilarme T1 bis T4 ein Seitenverhältnis zwischen der Breitseite a und der Schmalseite b von etwa 4:1 aufweisen. Der Hohlleiterspeisezugang Z1 bzw. Z2 der beiden Serienverzweigungen SV1 und SV2 weist ein Seitenverhältnis zwischen der Breitseite a und der Schmalseite bo von etwa 2:1 auf.The series branches SV1 and SV2 are designed with the correct wave resistance, the partial arms T1 to T4 having an aspect ratio between the broad side a and the narrow side b of approximately 4: 1. The waveguide feed access Z1 and Z2 of the two series branches SV1 and SV2 has an aspect ratio between the broad side a and the narrow side b o of approximately 2: 1.

Sämtliche E-Knicke E1 bis E20 sind mit einer symmetrischen Eckenabflachung F an der äußeren Breitseitenabknickung des Hohlleiters versehen.All E-bends E1 to E20 are provided with a symmetrical corner flattening F on the outer broad side bend of the waveguide.

Die lichte Weite w zwischen den Weichenarmabschnitten A3 und A4 des spiegelbildsymmetrisch ausgebildeten Weichenarmpaares in Fig. 5 muß etwas größer bemessen sein als die Breitseite a aller Rechteckhohlleiter, damit das in Fig. 4 dargestellte Weichenarmabschnittspaar zwischen den Weichenarmabschnitten A3 und A4 der in Fig. 5 dargestellten Anordnung Platz hat. Aus Gründen gleich langer Teilarme T1 und T2 bzw. T3 und T4 der Serienverzweigungen SV1 und SV2 wird die Weite w auch für die Weichenarmabschnitte A1 und A2 der in Fig. 4 dargestellten Anordnung übernommen. Da alle Weichenarmkomponenten wechselseitig exakt phasensymmetrisch sind, gilt dies unter den oben genannten Bedingungen auch für die kompletten Weichenarmpaare untereinander. Sodann stellt die Zusammenschaltung mit der ebenfalls exakt symmetrisch ausgebildeten Doppelverzweigung D eine exakt phasensymmetrische Polarisationsweiche dar.The clear width w between the switch arm sections A3 and A4 of the mirror-symmetrically designed switch arm pair in Fig. 5 must be dimensioned somewhat larger than the broad side a of all rectangular waveguides, so that the switch arm section pair shown in Fig. 4 between the switch arm sections A3 and A4 of the one shown in Fig. 5 Arrangement has space. For reasons of the same length of partial arms T1 and T2 or T3 and T4 of the series branches SV1 and SV2, the width w is also adopted for the switch arm sections A1 and A2 of the arrangement shown in FIG. 4. Since all switch arm components are mutually exactly phase-symmetrical, this also applies to the complete switch arm pairs under the conditions mentioned above. Then the interconnection with the double branching D, which is likewise exactly symmetrical, represents an exactly phase-symmetrical polarization switch.

Der restliche Phasenfehler Δφ dieser Polarisationsweiche hängt nur noch von den Maßtoleranzen ab; je genauer die elektrisch wichtigen Abmessungen eingehalten werden, um so besser wird die Annäherung an den Idealfall Δφ = 0. Bei hinreichend kleinen Maßtoleranzen entfällt jeglicher Abgleichaufwand sowohl bei den Serienprodukten als auch von Beginn der Entwicklung an, wie bereits erläutert wurde.The remaining phase error Δφ of this polarization switch depends only on the dimensional tolerances; the more precisely the important electrical dimensions are adhered to, the better the approximation to the ideal case Δφ = 0. With sufficiently small dimensional tolerances, there is no need for adjustment, both for the series products and from the start of development, as has already been explained.

Ein wesentlicher Vorteil der Polarisationsweiche nach der Erfindung besteht darin, daß die beiden Paare (Gabein) der Weichenarmabschnitte A1,A2 und A3,A4 vollständig gefräst werden können. Dazu wird jede der beiden Gabeln von einer Ebene geteilt, die sämtliche Rechteckhohlleiter der jeweiligen Gabel entlang den Mittellinien ihrer Breitseiten - also querstromfrei und daher verlustfrei - schneidet. Die beiden Teilungsebenen stehen aufeinander senkrecht und teilen den Gabelblock in vier Quadranten. Bezüglich dieser Teilungsebenen sind alle Hohlleiterwände genau zylindrisch und können daher mit einem zweidimensional numerisch gesteuerten Fräsautomaten kostengünstig und mit sehr kleinen Toleranzen hergestellt werden. Dadurch wird gegenüber der bisherigen galvanoplastischen Herstellungstechnik eine enorme Kostensenkung erreicht.A major advantage of the polarization switch according to the invention is that the two pairs (Gabein) of the switch arm sections A1, A2 and A3, A4 can be completely milled. For this purpose, each of the two forks is divided by a plane that cuts all rectangular waveguides of the respective fork along the center lines of their broad sides - that is to say without cross current and therefore without loss. The two division levels are perpendicular to each other and divide the fork block into four quadrants. With regard to these parting planes, all waveguide walls are exactly cylindrical and can therefore be manufactured inexpensively and with very small tolerances using a two-dimensionally numerically controlled milling machine. This is compared to the previous one galvanoplastic manufacturing technology achieved an enormous cost reduction.

An die Hohlleiterspeisezugänge Z1 und Z2 der beiden Serienverzweigungen SV1 und SV2 läßt sich je eine Frequenzweiche anschließen.A crossover can be connected to the waveguide feed accesses Z1 and Z2 of the two series branches SV1 and SV2.

Claims (8)

  1. Microwave polarization splitter having a symmetrically constructed five-segmented double junction which contains a segment, lying in the longitudinal axis direction of the double junction, for connection of a continuing waveguide of round or square cross-section and four identically designed partial segment connectors of rectangular cross-section, which are in each case offset by 90° with respect to one another and in each case extend at the same angle with respect to the double junction longitudinal axis in the opposite direction to the connection segment of the continuing waveguide, and of which, in each case, two mutually opposite partial segment connectors are connected, via splitter segment sections having the same length as one another, in each case form a pair and are provided exclusively with bends over the wide sides of the waveguide (E bends), to the two partial segments of in each case one of two identically designed, symmetrical series junctions, the connection flanges of which lie in one and the same plane, one pair of the splitter segment sections having, in the same position and extending exclusively opposite, E bends which cause this pair to extend with mirror symmetry with respect to the double junction longitudinal axis, and the other pair of the splitter segment sections, which does not extend with mirror symmetry with respect to the double junction longitudinal axis, having, extending parallel and in the same position, E bends which produce an offset of the associated series junction with respect to the double junction longitudinal axis of at least a length such that the two pairs of splitter segment sections can engage in one another without penetration, characterized in that the pair of splitter segment sections (A1, A2) which does not extend with mirror symmetry with respect to the double junction longitudinal axis (L) has, starting from the double junction (D), first, in each splitter segment section, a short waveguide piece (B1, B2) extending parallel to the double junction longitudinal axis, and thereafter, consecutively one after another, in each case one E bend (E1, E2) having an angle +α (+α is the clockwise angle and -α is the anticlockwise angle between the extended waveguide axis before the corresponding E bend and the waveguide axis after this E bend), a longer waveguide piece (H1, H2), an E bend (E3, E4) having an angle -α, another short waveguide piece (B3, B4), extending parallel to the double junction longitudinal axis, an E bend (E5, E6) having an angle +α, another longer waveguide piece (H3, H4), an E bend (E7, E8), having an angle -α, and another short waveguide piece (B5, B6), extending parallel to the double junction longitudinal axis, followed, via an E bend (E9, E10) having an angle +α′ or -α′, respectively (the definition of the sense of α also applies to α′), by in each case one partial segment (T1, T2) of the associated series junction (SV1), in that the pair of splitter segment sections (A3, A4) which extends with mirror symmetry with respect to the double junction longitudinal axis, has, starting from the double junction, first, in each splitter segment section, likewise a short waveguide piece (B7, B8), extending parallel to the double junction longitudinal axis, and thereafter, following one after another, E bends (E11, E12), having an angle -α and +α, respectively, which cause the two splitter segment sections to spread out from one another, a longer waveguide piece (H5, H6), an E bend (E13, E14) having an angle +α or -α, respectively, another short waveguide piece (B9, B10), extending parallel to the double junction longitudinal axis, an E bend (E15, E16) having an angle +α or -α, respectively, another longer waveguide piece (H7, H8), an E bend (E17, E18) having an angle -α or +α, respectively, and another short waveguide piece (B11, B12), extending parallel to the double junction longitudinal axis, followed, via an E bend (E19, E20) having an angle +α′ or -α′, respectively, by in each case one partial segment (T3, T4) of the associated series junction (SV2), in that the longer waveguide pieces (H1 to H8) in both splitter segment section pairs have the same length, specifically so that the splitter segment section pair not designed with mirror symmetry produces a lateral offset distance (v) which is somewhat larger than the wide side (a) of the rectangular waveguide used, and in that the short waveguide pieces (B1 to B12) are at least long enough for sufficient E₁₁ interference-field attenuation to be produced at the highest operating frequency, at least all those short waveguide pieces which in each case have the same offset separation from the double junction having the same length as one another.
  2. Polarization splitter according to Claim 1, characterized in that the side ratio between the wide side (a) and the narrow side (b) of the rectangular waveguide of the splitter segment sections (Al to A4) is approximately 4:1.
  3. Polarization splitter according to Claim 1 or 2, characterized in that the series junctions (SV1, SV2) are designed with the correct characteristic impedance with partial segments (T1 to T4) with the side ratio between the wide side (a) and the narrow side (b) of approximately 4:1 starting from a waveguide feed input (Z1, Z2) having a side ratio of approximately 2:1 between the wide side (a) and the narrow side (b₀).
  4. Polarization splitter according to one of the preceding claims, characterized in that the E bends (E1 to E20) are provided with a symmetrical corner flat (F), in each case on the outer wide-side bend.
  5. Polarization splitter according to one of the preceding Claims, characterized by implementation using a preferably numerically tool-controlled milling technique.
  6. Polarization splitter according to Claim 5, characterized in that each of the two splitter segment section pairs (A1, A2; A3, A4) is divided by a plane which intersects all of the rectangular waveguides of the corresponding pair along the mid-lines of their wide sides, so that the two dividing planes are perpendicular to one another and divide the entire splitter unit into four quadrants, and in that the waveguide walls which extend exactly cylindrically relative to these dividing planes are produced by using a two-dimensionally numerically controlled automatic milling machine.
  7. Polarization splitter according to one of the preceding claims, characterized in that the angle α′ corresponds with the angle α.
  8. Polarization splitter according to one of the preceding claims, characterized in that a frequency filter is in each case connected to the waveguide feed inputs (Z1, Z2) of the two series junctions (SV1, SV2).
EP90116913A 1989-09-28 1990-09-03 Microwave polarisation filter Expired - Lifetime EP0419892B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3932430 1989-09-28
DE3932430 1989-09-28

Publications (3)

Publication Number Publication Date
EP0419892A2 EP0419892A2 (en) 1991-04-03
EP0419892A3 EP0419892A3 (en) 1992-07-15
EP0419892B1 true EP0419892B1 (en) 1995-11-29

Family

ID=6390416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90116913A Expired - Lifetime EP0419892B1 (en) 1989-09-28 1990-09-03 Microwave polarisation filter

Country Status (4)

Country Link
EP (1) EP0419892B1 (en)
AT (1) ATE130964T1 (en)
DE (1) DE59009918D1 (en)
NO (1) NO175840C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9107191U1 (en) * 1991-06-11 1991-08-08 Siemens AG, 8000 München Microwave coupler polarizer
SE9804498D0 (en) * 1998-04-02 1998-12-22 Allgon Ab Wide band antenna means incorporating a radiating structure having a band shape
GB0419884D0 (en) 2004-09-08 2004-10-13 Invacom Ltd Broadcast signal waveguide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345689A1 (en) * 1983-12-16 1985-07-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn BROADBAND POLARIZING SOFT
DE3675235D1 (en) * 1985-03-27 1990-12-06 Siemens Ag POLARISTATION SWITCH FOR FACILITIES OF HIGH-FREQUENCY TECHNOLOGY.
ATE75559T1 (en) * 1987-02-18 1992-05-15 Siemens Ag MICROWAVE POLARIZATION.
EP0284911B1 (en) * 1987-03-24 1992-06-03 Siemens Aktiengesellschaft Broad-band polarizing junction

Also Published As

Publication number Publication date
DE59009918D1 (en) 1996-01-11
NO175840C (en) 1994-12-14
ATE130964T1 (en) 1995-12-15
NO175840B (en) 1994-09-05
NO904192D0 (en) 1990-09-26
EP0419892A3 (en) 1992-07-15
NO904192L (en) 1991-04-02
EP0419892A2 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
DE2443166C3 (en) System switch for separating two signals, each consisting of two double polarized frequency bands
DE69121352T2 (en) Device for feeding a radiation element for two orthogonal polarizations
DE3781398T2 (en) TWO-MODE SEMICONDUCTOR FILTER WITH A COUPLING ELEMENT TO REACH AN ASYMMETRIC FILTER CURVE.
DE3310095C2 (en) Waveguide arrangement
DE3885856T2 (en) Waveguide matrix with signals crossing in the same plane.
DE3246317A1 (en) WAVE GUIDE FOR DOUBLE POLARIZED TWO FREQUENCY SIGNALS AND METHOD FOR WAVE GUIDING SUCH SIGNALS
DE69013779T2 (en) Waveguide feed network for group antennas.
DE69904550T2 (en) Polarizer with double sidewall coupling
DE3001813A1 (en) MICROWAVE POLARIZER
DE1002828B (en) Directional coupler in the microwave range for asymmetrical ribbon cables
DE2726799C2 (en) Crossover
DE3852650T2 (en) MICROWAVE MULTIPLEXER WITH MULTI-MODE FILTER.
DE69121353T2 (en) Double septum polarization rotator
DE3852981T2 (en) Matrix of coaxial lines with planar crossings.
DE68917548T2 (en) Coaxial waveguide phase shifter.
EP0196065B1 (en) Polarization filter for hf devices
DE3531474A1 (en) AERIAL FEEDING SYSTEM
DE68918426T2 (en) Dual frequency radiating device.
EP0419892B1 (en) Microwave polarisation filter
DE2719283C2 (en) Antenna feed system for double polarization
DE2842576A1 (en) POLARIZATION SOFT
DE3853333T2 (en) Hybrid coupler and crossover with coaxial cables.
DE2842890C2 (en) Waveguide coupler
DE3883727T2 (en) Compact double series waveguide feed.
DE2708271C2 (en) Polarization switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19941104

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951129

Ref country code: FR

Effective date: 19951129

REF Corresponds to:

Ref document number: 130964

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009918

Country of ref document: DE

Date of ref document: 19960111

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19951129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000828

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050903