EP0284911B1 - Broad-band polarizing junction - Google Patents

Broad-band polarizing junction Download PDF

Info

Publication number
EP0284911B1
EP0284911B1 EP88104293A EP88104293A EP0284911B1 EP 0284911 B1 EP0284911 B1 EP 0284911B1 EP 88104293 A EP88104293 A EP 88104293A EP 88104293 A EP88104293 A EP 88104293A EP 0284911 B1 EP0284911 B1 EP 0284911B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
filter according
rectangular
polarisation filter
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88104293A
Other languages
German (de)
French (fr)
Other versions
EP0284911A1 (en
Inventor
Eberhard Dr.-Ing. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88104293T priority Critical patent/ATE77004T1/en
Publication of EP0284911A1 publication Critical patent/EP0284911A1/en
Application granted granted Critical
Publication of EP0284911B1 publication Critical patent/EP0284911B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a broadband.
  • Such a polarization switch is known from DE-OS 33 45 689.
  • this known polarizing switch has a relatively large overall length and is also not structurally designed so that it can be used with less complex manufacturing methods, e.g. with simple numerically controlled milling machines.
  • the object of the invention is to provide a very broadband polarizing switch of the type mentioned, but which is designed so that it can be produced inexpensively using simple methods and can be designed to be particularly small in terms of its transverse dimensions and overall length.
  • this object is achieved in that in the second waveguide arm provided with a right-angled E-bend is anchored in its transition zone to the waveguide guiding the two orthogonal polarizations, a central plate extending over its entire broad side dimension, which is approximately half as wide as its narrow side dimension and thus divides it fork-like into two symmetrical arms in this transition zone, taking into account an exact constant maintenance of the wave resistances.
  • the polarization switch according to the invention can be formed in two parts with the exception of the access to the second waveguide arm, which has a rectangular cross-section, the mirror image being the same, the plane of the game being formed by the cross-current-free central plane of the two partial arms of the waveguide fork of the first waveguide arm.
  • These two parts can be made by milling control in a single plane.
  • An essential commercial value for the polarizing filter according to the invention can thus be seen in the fact that it consists of only two main parts which are largely mirror-like and which can be produced very inexpensively using simple numerically controlled automatic milling machines.
  • the in Figures 1 and 2 in top or Side view broadband polarization switch has a first waveguide arm 1 rectangular cross-section with the side lengths a and b1.
  • the distance l K is selected so that the other rectangular waveguide arm 2 has space between the inner broad side walls of the waveguide fork formed by the two partial arms 20 and 21.
  • the regions of the two partial arms 20 and 21 running parallel to one another are then angled mirror-symmetrically to the longitudinal axis of the polarization switch by a further E-bend 5 or 5 ⁇ .
  • the penetration begins with the waveguide arm 2. From the access of the waveguide arm 1 to these cross sections 3, 3 ⁇ , the waveguide fork is exactly homogeneous in terms of the wave resistance.
  • the partial arms 20 and 21 open into a coaxial waveguide 4 consisting of an inner conductor 10 with a circular cross section and an outer conductor 11 with a round cross section, the characteristic impedance of which is matched to the characteristic impedance of the two partial arms 20 and 21 connected in series.
  • the inhomogeneous zone with respect to the wave resistance is thus reduced to a very short area between the cross sections 3, 3 ⁇ on the one hand and 6 on the other hand with this polarization switch, which considerably facilitates adaptation work.
  • the second waveguide arm 2 of rectangular cross-section is angled in the longitudinal direction with a normal profile E-bend 12, the E-bend 12 being formed with a 90 ° corner projection 7 instead of with an inclined outside corner to facilitate production. Furthermore, the waveguide arm 2 with a central plate 8, the entire broad side dimension a is sufficient and which has a thickness dimension of approximately b 1/2, divided into two partial arms 14 and 15, the wave resistances being kept exactly constant.
  • the adjustment of the lateral offset is carried out by optimizing the distance b ⁇ between the front end face 17 of the middle plate 8 and the level of a gradation 16.
  • the reactance at the transition point 6 to the wave resistance adapted, from the inner conductor 10 and the outer conductor 11 existing coaxial waveguide 4 is smaller and therefore easier to compensate.
  • the inner conductor 10 is fastened to the rear face 18 of the plate 8, which is firmly anchored in the narrow side walls of the waveguide arm 2 by means of two surfaces 9, 9 ⁇ . This type of attachment and mounting of an inner conductor can also be used to transfer many other known polarization switches.
  • the polarization switch according to the invention is divided by the parting plane 13 into two mirror-symmetrical parts with the exception of the switch access on the waveguide arm 2, which parts can be produced by milling control in a single plane.
  • the coaxial waveguide 4 with the inner conductor 10 and the outer conductor 11 according to the cross section 6 can be passed along in a longitudinally homogeneous manner to a subsequent consumer, for example a horn antenna. If, on the other hand, the inner conductor 10 is to disappear, this can be accomplished with a steady or stepped transition will.
  • a two-stage, rotationally symmetrical quarter-wave transformer with a stepped inner layer 19 and an oppositely stepped outer conductor 25 (constant H11 cut-off frequency, frequency-independent wave resistance levels) is shown in dashed lines. It is also possible to push the transformer further into the bifurcation zone of the polarization switch - in Figures 1 and 2 - so that only the lowest transformer stage is designed as a coaxial waveguide.
  • the inner conductor 10 By using the inner conductor 10, it is possible to reduce or completely eliminate the disturbing wave resistance jumps along the two passages of the polarization switch. While the line wave resistances of the rectangular polarizing waveguide arms 1 and 2 with their aspect ratios a ⁇ 2b1 are fixed, the line wave resistance of the round waveguide 11 is not fixed and therefore freely selectable. This opens up the possibility of lowering the line wave resistance of the round waveguide 11 and thus approximating the line wave resistance of the rectangular waveguide arms 1 and 2. Ideal adaptation conditions prevail when the line wave resistances of the round waveguide 11 are broadband matched to those of the rectangular waveguide arms 1 and 2.
  • This adjustment of the wave resistances is achieved over very large bandwidths if the following two conditions are met, namely on the one hand the adjustment of the cross-sectional factors in the wave resistance equations of the waveguides to be matched to one another and on the other hand the adjustment of the cut-off frequencies of the wave types to be merged, with the remaining reactance jumps then can be adapted in the waveguides by means of transformation measures requiring only short overall lengths. Using this principle results in a significantly increased range of reflection poor.
  • the inner conductor 10 in addition to the desired reduction in wave resistance, a substantial expansion of the uniqueness range of the coaxial waveguide 4 is also achieved.
  • other cross-sectional shapes of the inner conductor 10 are possible, e.g. a cross-shaped or a square cross-section.
  • the inner conductor 10 causes very little additional losses and brings a number of further advantages.
  • the inner conductor 10, which is extended beyond the polarization switch, is suitable for improving the behavior of a consumer connected to the polarization switch, e.g. the bandwidth of the low reflection of a grooved horn and its cross-polarization properties compared to horn feeding.
  • the inner conductor 10 can end in the horn neck, in the groove area or outside the horn aperture in a stepped, stepped or abrupt manner. Furthermore, space can be created in a hollow inner conductor 10 for waves of the same or different type with the same or different frequency as those waves already present outside the inner conductor 10.
  • the interior of the inner conductor 10 can be provided in a suitable manner with conductive material or with dielectric. Coupling devices for waves can also be arranged in the interior of the inner conductor 10 and / or near its surface, which are coupled from the space outside the inner conductor 10 into its interior and vice versa.

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguide Connection Structure (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Details Of Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention relates to a broadband, compact polarising junction which can be manufactured using milling techniques and has a waveguide (4) carrying two orthogonal linear polarisations, a first rectangular waveguide arm (1) of which, which runs at its end axially with respect to the waveguide carrying the two orthogonal polarisations, is branched via a first waveguide fork, designed symmetrically with two partial arms (20, 21), and a second waveguide arm (2) of which originates in the axial direction and is led out laterally, with a rectangular cross-section, via an E-bend (12) from the space between the waveguide fork partial arms (20, 21) and, in whose transition zone to the waveguide carrying the two orthogonal polarisations, there is anchored a centre plate (8), extending over the complete broad side dimension (a) of the waveguide, which is approximately half as wide as the narrow side (b1) of the waveguide and which thus splits the waveguide in this transition zone, in the manner of a fork, into two partial arms (14, 15), taking into account that the characteristic impedances are kept precisely constant. A broadband polarising junction constructed according to the invention can be used in satellites and directional radio antennas. <IMAGE>

Description

Die Erfindung bezieht sich auf einebreitbandige. Polarisationsweiche für Mikrowellen mit einem einen zwei orthogonal lineare Polarisationen führenden Wellenleiter, von dem an sich gegenüberleigenden Stellen unter einem spitzen Winkel zwei eine symmetrische Hohlleitergabel bildende Teilarme abgezweigt sind, die über jeweils einen ersten E-Knick, jeweils einen Bereich mit zueinander parallel verlaufender Führung, jeweils einen zweiten E-Knick und eine Serienverzweigung in einen ersten, hinsichtlich seiner Längsachse mit dem die beiden orthogonalen Polarisationen führenden Wellenleiter fluchtenden Hohleiterarm rechteckförmigen Querschnitts übergeführt sind, und von dem in Axialrichtung ein zweiter Hohlleiterarm ausgeht, der mit rechteckförmigem Querschnitt über einen E-Knick seitlich aus dem Raum zwischen den beiden Teilarmen herausgeführt ist.The invention relates to a broadband. Polarization switch for microwaves with a waveguide that carries two orthogonally linear polarizations, from which two arms that form a symmetrical waveguide fork are branched off at opposite points at an acute angle, each of which has a first E-bend, an area with a parallel guide, in each case a second E-bend and a series branching into a first, with respect to its longitudinal axis with the waveguide aligning the two orthogonal polarizations aligned waveguide arm rectangular cross-section are transferred, and from which a second waveguide arm extends in the axial direction, which has a rectangular cross-section over an E-bend is led out laterally from the space between the two arms.

Eine derartige Polarisationsweiche ist aus der DE-OS 33 45 689 bekannt. Diese bekannte Polarisationsweiche hat jedoch eine verhältnismäßig große Baulänge und ist auch konstruktiv nicht so ausgelegt, daß sie sich mit wenig aufwendigen Herstellungsmethoden, z.B. mit einfachen numerisch gesteuerten Fräsautomaten, produzieren läßt.Such a polarization switch is known from DE-OS 33 45 689. However, this known polarizing switch has a relatively large overall length and is also not structurally designed so that it can be used with less complex manufacturing methods, e.g. with simple numerically controlled milling machines.

Aufgabe der Erfindung ist es, eine sehr breitbandig arbeitende Polarisationsweiche der eingangs genannten Art zu schaffen, die aber so gestaltet ist, daß sie mit einfachen Methoden kostengüngstig herstellen läßt und dabei hinsichtlich ihrer Querabmessungen und Baulänge besonders klein ausgelegt werden kann.The object of the invention is to provide a very broadband polarizing switch of the type mentioned, but which is designed so that it can be produced inexpensively using simple methods and can be designed to be particularly small in terms of its transverse dimensions and overall length.

Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß in dem mit einem rechwinkligen E-Knick versehenen zweiten Hohlleiterarm in seiner Übergangzone zum die beiden orthogonalen Polarisationen führenden Wellenleiter eine über seine gesamte Breitseitenabmessung reichende Mittelplatte verankert ist, die etwa halb so breit wie seine Schmalseitenabmessung ist und ihn somit in dieser Übergangszone gabelartig in zwei symmetrische Teilarme unter Berücksichtigung einer genauen Konstanthaltung der Wellenwiderstände aufteilt.According to the invention, this object is achieved in that in the second waveguide arm provided with a right-angled E-bend is anchored in its transition zone to the waveguide guiding the two orthogonal polarizations, a central plate extending over its entire broad side dimension, which is approximately half as wide as its narrow side dimension and thus divides it fork-like into two symmetrical arms in this transition zone, taking into account an exact constant maintenance of the wave resistances.

Die Polarisationsweiche nach der Erfindung läßt sich in zwei mit Ausnahme des Zugangs des zweiten, einen Rechteckquerschnitt aufweisenden Hohlleiterarms spiegelbildlich gleichen Teilen ausbilden, wobei die Spielgelebene durch die querstromfreie Mittelbene der beiden Teilarme der Hohlleitergabel des ersten Hohlleiterarms gebildet wird. Diese beiden Teile können durch Fräsersteuerung in einer einzigen Ebene hergestellt werden. Für die Polarisationsweiche nach der Erfindung kann somit ein wesentlicher kommerzieller Wert darin gesehen werden, daß sie aus nur zwei, weitgehend spiegelgleichen Hauptteilen besteht, die mit einfachen numerisch gesteuerten Fräsautomaten sehr kostengünstig herzustellen sind.The polarization switch according to the invention can be formed in two parts with the exception of the access to the second waveguide arm, which has a rectangular cross-section, the mirror image being the same, the plane of the game being formed by the cross-current-free central plane of the two partial arms of the waveguide fork of the first waveguide arm. These two parts can be made by milling control in a single plane. An essential commercial value for the polarizing filter according to the invention can thus be seen in the fact that it consists of only two main parts which are largely mirror-like and which can be produced very inexpensively using simple numerically controlled automatic milling machines.

Vorteilhafte und zweckmäßige Weiterbildungen sowie Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.Advantageous and expedient developments and refinements of the invention are described in the subclaims.

Im folgenden wird die Erfindung anhand eines in zwei Figuren dargestellten Ausführungsbeispiels erläutert. Es zeigen jeweils in einer Schnittdarstellung:

  • FIG 1 eine Breitband-Polarisationsweiche nach der Erfindung in Draufsicht,
  • FIG 2 die Breitband-Polarisationsweiche der FIG 1 in einer Seitenansicht.
The invention is explained below with reference to an embodiment shown in two figures. Each shows in a sectional view:
  • 1 shows a broadband polarization switch according to the invention in plan view,
  • 2 shows the broadband polarization switch of FIG 1 in a side view.

Die in den Figuren 1 und 2 in Drauf-bzw. Seitenansicht gezeigte Breitband-Polarisationsweiche weist einen ersten Hohlleiterarm 1 rechteckigen Querschnitts mit den Seitenlängen a und b₁ auf. Dieser Hohlleiterarm 1 wird, wie in FIG 1 dargestellt ist, mit einer angepaßten Serienverzweigung 22, die aus zwei spiegelsymmetrisch aneinander gesetzten Schmalprofil E-Knicken besteht ,in zwei Teilarme 20, 21 mit halbierter Hohlleiterhöhe b T =b₁=a/4

Figure imgb0001
aufgeteilt. In FIG 1 sind die Rechteckhohlleiterarme 1 und 2 mit den Seitenabmessungen a=2b₁ gezeichnet. Sie können aber auch mit b₁ < a/2 ausgeführt werden. An jedem der Teilarme 20, 21 ist im Abstand lK von E-Knicken der Serienverzweigung 22 ein E-Knick 23 bzw. 24 mit gleichem Knickwinkel, allerdings in entgegengesetzter Knickrichtung, angeschlossen. Der Abstand lK ist so gewählt, daß zwischen den innenleigenden Breitseitenwänden der durch die beiden Teilarme 20 und 21 gebildeten Hohlleitergabel der andere Rechteckhohlleiterarm 2 Platz hat. Die parallel zueinaner verlaufenden Bereiche der beiden Teilarme 20 und 21 werden dann durch je einen weiteren E-Knick 5 bzw. 5ʹ spiegelsymmetrisch zur Längsachse der Polarisationsweiche hin abgewinkelt. In den Querschnitten 3, 3ʹ beginnt die Durchdringung mit dem Hohlleiterarm 2. Vom Zugang des Hohlleiterarms 1 bis zu diesen Querschnitten 3, 3ʹ ist die Hohlleitergabel exakt wellenwiderstandshomogen. Im Querschnitt 6 münden die Teilarme 20 und 21 in einen aus einem Innenleiter 10 kreisrunden Querschnitts und einem Außenleiter 11 runden Querschnitts bestehenden Koaxialwellenleiter 4, dessen Wellenwiderstand an den Wellenwiderstand der beiden in Serie geschalteten Teilarme 20 und 21 angeglichen ist. Die hinsichtlich des Wellenwiderstands inhomogene Zone ist also bei dieser Polarisationsweiche auf einen sehr kurzen Bereich zwischen den Querschnitten 3, 3ʹ einerseits und 6 andererseits reduziert, was eine Anpassungsarbeit wesentlich erleichtert.The in Figures 1 and 2 in top or Side view broadband polarization switch has a first waveguide arm 1 rectangular cross-section with the side lengths a and b₁. This waveguide arm 1, as shown in FIG. 1, is fitted with an adapted series branch 22, which consists of two narrow profile E-bends set in mirror symmetry, in two partial arms 20, 21 with halved waveguide height b T = b₁ = a / 4
Figure imgb0001
divided up. In Figure 1, the rectangular waveguide arms 1 and 2 are drawn with the side dimensions a = 2b₁. But they can also be performed with b₁ <a / 2. An E-bend 23 or 24 with the same bend angle, but in the opposite bend direction, is connected to each of the partial arms 20, 21 at a distance l K from E-bends of the series branch 22. The distance l K is selected so that the other rectangular waveguide arm 2 has space between the inner broad side walls of the waveguide fork formed by the two partial arms 20 and 21. The regions of the two partial arms 20 and 21 running parallel to one another are then angled mirror-symmetrically to the longitudinal axis of the polarization switch by a further E-bend 5 or 5ʹ. In the cross sections 3, 3ʹ the penetration begins with the waveguide arm 2. From the access of the waveguide arm 1 to these cross sections 3, 3ʹ, the waveguide fork is exactly homogeneous in terms of the wave resistance. In cross section 6, the partial arms 20 and 21 open into a coaxial waveguide 4 consisting of an inner conductor 10 with a circular cross section and an outer conductor 11 with a round cross section, the characteristic impedance of which is matched to the characteristic impedance of the two partial arms 20 and 21 connected in series. The inhomogeneous zone with respect to the wave resistance is thus reduced to a very short area between the cross sections 3, 3ʹ on the one hand and 6 on the other hand with this polarization switch, which considerably facilitates adaptation work.

Der zweite Hohlleiterarm 2 rechteckigen Querschnitts wird mit einem Normalprofil-E-Knick 12 in Längsrichtung abgewinkelt, wobei der E-Knick 12 statt mit einer schrägen Außenecke zur Fertigungserleichterung mit einem 90°-Eckvorsprung 7 ausgebildet ist. Weiterhin wird der Hohlleiterarm 2 mit einer Mittelplatte 8, die gesamte Breitseitenabmessung a reicht und die eine Dickenabmessung von etwa b₁/2 aufweist, in zwei Teilarme 14 und 15 geteilt, wobei die Wellenwiderstände genau konstant gehalten werden. Der Abgleich des Seitenversatzes erfolgt durch eine Optimierung des Abstandes bʹ zwischen der Vorderstirnfläche 17 der Mittelplatte 8 und der Ebene einer Abstufung 16. Durch die Teilung in zwei Teilarme 14 und 15 wird erreicht, daß die Reaktanz an der Übergangsstelle 6 zum wellenwiderstandsangepaßten, aus dem Innenleiter 10 und dem Außenleiter 11 bestehenden Koaxialwellenleiter 4 kleiner und daher besser kompensierbar wird. Außerdem wird an der Platte 8, die in den Schmalseitenwänden des Hohlleiterarms 2 mittels zweier Flächen 9, 9ʹ fest verankert ist, der Innenleiter 10 an deren hinteren Stirnfläche 18 befestigt. Diese Art der Anbringung und Halterung eines Innenleiters ist auch viele andere bekannte Polarisationsweichen nutzbringend zu übertragen.The second waveguide arm 2 of rectangular cross-section is angled in the longitudinal direction with a normal profile E-bend 12, the E-bend 12 being formed with a 90 ° corner projection 7 instead of with an inclined outside corner to facilitate production. Furthermore, the waveguide arm 2 with a central plate 8, the entire broad side dimension a is sufficient and which has a thickness dimension of approximately b 1/2, divided into two partial arms 14 and 15, the wave resistances being kept exactly constant. The adjustment of the lateral offset is carried out by optimizing the distance bʹ between the front end face 17 of the middle plate 8 and the level of a gradation 16. By dividing into two partial arms 14 and 15 it is achieved that the reactance at the transition point 6 to the wave resistance adapted, from the inner conductor 10 and the outer conductor 11 existing coaxial waveguide 4 is smaller and therefore easier to compensate. In addition, the inner conductor 10 is fastened to the rear face 18 of the plate 8, which is firmly anchored in the narrow side walls of the waveguide arm 2 by means of two surfaces 9, 9ʹ. This type of attachment and mounting of an inner conductor can also be used to transfer many other known polarization switches.

Nach FIG 2 ist die Polarisationsweiche nach der Erfindung durch die Teilungsebene 13 in zwei mit Ausnahme des Weichenzugangs am Hohlleiterarm 2 spiegelsymmetrische Teile geteilt, die durch Fräsersteuerung in einer einzigen Ebene hergestellt werden können.According to FIG. 2, the polarization switch according to the invention is divided by the parting plane 13 into two mirror-symmetrical parts with the exception of the switch access on the waveguide arm 2, which parts can be produced by milling control in a single plane.

Wie in FIG 1 und 2 unten dargestellt ist, kann der Koaxialwellenleiter 4 mit dem Innenleiter 10 und dem Außenleiter 11 nach dem Querschnitt 6 längshomogen bis zu einem nachfolgenden Verbraucher, z.B. einem Hornstrahler, weitergeführt werden. Soll dagegen der Innenleiter 10 verschwinden¸ so kann dies mit einem stetigen oder gestuften Übergang bewerkstelligt werden. In den FIG 1 und 2 ist ein zweitstufiger, rotationssymmetrischer Viertelwellenlängen-Transformator mit einem gestuften Innenlieter 19 und einem gegenläufig gestuften Außenleiter 25 (konstante H₁₁-Grenzfrequenz, frequenzunabhängige Wellenwiderstandsstufen) gestrichelt eingezeichnet. Es ist auch möglich, den Transformator weiter in die Gabelungszone der Polarisationsweiche - in den Figuren 1 und 2 nach oben -zu schieben¸ so daß nur noch die unterste Transformatorstufe als Koaxialwellenleiter ausgebildet ist.As shown in FIGS. 1 and 2 below, the coaxial waveguide 4 with the inner conductor 10 and the outer conductor 11 according to the cross section 6 can be passed along in a longitudinally homogeneous manner to a subsequent consumer, for example a horn antenna. If, on the other hand, the inner conductor 10 is to disappear, this can be accomplished with a steady or stepped transition will. In Figures 1 and 2, a two-stage, rotationally symmetrical quarter-wave transformer with a stepped inner layer 19 and an oppositely stepped outer conductor 25 (constant H₁₁ cut-off frequency, frequency-independent wave resistance levels) is shown in dashed lines. It is also possible to push the transformer further into the bifurcation zone of the polarization switch - in Figures 1 and 2 - so that only the lowest transformer stage is designed as a coaxial waveguide.

Durch die Verwendung des Innenleiters 10, wird es ermöglicht, die störenden Wellenwiderstandssprünge entlang den beiden Druchgängen der Polarisationsweiche zu reduzieren oder ganz zu eliminieren. Während die Leitungswellenwiderstände der rechteckigen Polarisationsweichen-Hohlleiterarme 1 und 2 mit ihren Seitenverhältnissen a≈2b₁ fest vorgegeben sind, ist der Leitungswellenwiderstand der Rundhohlleiters 11 nicht festgelegt und daher frei wählbar. Dies eröffnet die Möglichkeit, den Leitungswellenwiderstand des Rundhohlleiters 11 abzusenken und damit an die Leitungswellenwiderstände der Rechteckhohlleiterarme 1 und 2 anzunähern. Ideale Anpassungsbedingungen herrschen, wenn die Leitungswellenwiderstände des Rundhohlleiters 11 an diejenigen der Rechteckhohlleiterarme 1 und 2 breitbandig angeglichen sind.By using the inner conductor 10, it is possible to reduce or completely eliminate the disturbing wave resistance jumps along the two passages of the polarization switch. While the line wave resistances of the rectangular polarizing waveguide arms 1 and 2 with their aspect ratios a≈2b₁ are fixed, the line wave resistance of the round waveguide 11 is not fixed and therefore freely selectable. This opens up the possibility of lowering the line wave resistance of the round waveguide 11 and thus approximating the line wave resistance of the rectangular waveguide arms 1 and 2. Ideal adaptation conditions prevail when the line wave resistances of the round waveguide 11 are broadband matched to those of the rectangular waveguide arms 1 and 2.

Dies Angleichung der Wellenwiderstände wird über sehr große Bandbreiten erreicht, wenn folgende zwei Bedingungen erfüllt sind, nämlich zum einen die Angleichung der Querschnittsfaktoren in den Wellenwiderstandsgleichungen der aneinander anzupassenden Hohlleiter und zum anderen die Angleichung der Grenzfrequenzen der ineinander überzuführenden Wellentypen, wobei dann die noch verbleibenden Reaktanzsprünge in den Hohlleitern durch nur kurze Baulängen erfordernde Transformationsmaßnahmen angepaßt werden können. Es ergibt sich bei Verwendung dieses Prinzips eine wesentlich vergrößerte Bandbreite der Reflektionsarmut.This adjustment of the wave resistances is achieved over very large bandwidths if the following two conditions are met, namely on the one hand the adjustment of the cross-sectional factors in the wave resistance equations of the waveguides to be matched to one another and on the other hand the adjustment of the cut-off frequencies of the wave types to be merged, with the remaining reactance jumps then can be adapted in the waveguides by means of transformation measures requiring only short overall lengths. Using this principle results in a significantly increased range of reflection poor.

Durch die Verwendung des Innenleiters 10 wird neben der angestrebten Wellenwiderstandssenkung zusätzlich eine wesentliche Ausweitung des Eindeutigkeitsbereichs beim Koaxialwelllenleiter 4 erreicht. Für noch breiters Eindeutigkeitsbereiche sind andere Querschnittsformen des Innenleiters 10 möglich z.B. ein kreuzförmiger oder ein vierkantförmiger Querschnitt. Der Innenleiter 10 bewirkt sehr geringe Zusatzverluste und bringt eine Reihe von weiteren Vorteilen. Der über die Polarisationsweiche hinaus verlängerte Innenleiter 10 eignet sich dazu, das Verhalten eines an die Polarisationsweiche angeschlossenen Verbrauchers zu verbessern, so z.B. die Bandbreite der Reflektionsarmut eines Rillenhorns und seine Kreuzpolarisationseigenschaften gegenüber der Hornspeisung. Dabei kann der Innenleiter 10 im Hornhals, im Rillenbereich oder außerhalb der Hornapertur stetig, gestuft oder sprunghaft enden. Ferner kann in einem hohl gestalteten Innenleiter 10 Raum geschaffen werden für Wellen gleicher oder anderer Art mit gleicher oder anderer Frequenz wie diejenigen außerhalb des Innenleiters 10 bereits vorhandenen Wellen. Dazu kann der Innenraum des Innenleiters 10 in geeigneter Weise mit leitendem Material oder mit Dielektrikum versehen werden. Im Innenraum des Innenleiters 10 und/oder nahe seiner Oberfläche können ferner Koppeleinrichtungen für Wellen angeordnet werden, die aus dem Raum außerhalb des Innenleiters 10 in sein Inneres und umgekehrt gekoppelt werden.Through the use of the inner conductor 10, in addition to the desired reduction in wave resistance, a substantial expansion of the uniqueness range of the coaxial waveguide 4 is also achieved. For even broader areas of uniqueness, other cross-sectional shapes of the inner conductor 10 are possible, e.g. a cross-shaped or a square cross-section. The inner conductor 10 causes very little additional losses and brings a number of further advantages. The inner conductor 10, which is extended beyond the polarization switch, is suitable for improving the behavior of a consumer connected to the polarization switch, e.g. the bandwidth of the low reflection of a grooved horn and its cross-polarization properties compared to horn feeding. In this case, the inner conductor 10 can end in the horn neck, in the groove area or outside the horn aperture in a stepped, stepped or abrupt manner. Furthermore, space can be created in a hollow inner conductor 10 for waves of the same or different type with the same or different frequency as those waves already present outside the inner conductor 10. For this purpose, the interior of the inner conductor 10 can be provided in a suitable manner with conductive material or with dielectric. Coupling devices for waves can also be arranged in the interior of the inner conductor 10 and / or near its surface, which are coupled from the space outside the inner conductor 10 into its interior and vice versa.

Claims (14)

  1. Broadband polarisation filter for microwaves, having a waveguide (4) which conducts two mutually orthogonal linear polarisations, and from which two partial arms (20, 21) forming a symmetrical waveguide fork are branched off at mutually opposite positions at an acute angle, which partial arms are conducted via a first E-bend (5; 5') in each case, a region with mutually parallel guidance in each case, a second E-bend (23; 24) and a series junction (22) in each case over into a first waveguide arm (1) of rectangular cross-section which is flush with respect to its longitudinal axis with the waveguide (4) conducting the two orthogonal polarisations, and from which a second waveguide arm (2) proceeds in the axial direction, which second waveguide arm, with rectangular cross-section, is led laterally via an E-bend (12) out of the space between the two partial arms (20, 21), characterised in that, a central plate (8) extending over its entire broad-side dimension a is anchored in the second waveguide arm (2), which is provided with a rectangular E-bend (12), in its transition zone to the waveguide (4) conducting the two orthogonal polarisations, which central plane is approximately half as thick as its narrow-side dimension (b₁) and thus divides it in this transition zone into two symmetrical partial arms (14, 15) in the manner of a fork, while taking account of keeping the characteristic impedances exactly constant.
  2. Polarisation filter according to Claim 1, characterised in that given spatially symmetrical excitation of both linear polarisations with an electrically symmetrical rectangular waveguide fork in each case, the fork partial arms (20, 21 and 14, 15) merge with half of the narrow-side dimension b₁ of the outer entrances to the rectangular waveguide arms (1, 2) and with unchanged broad side (a) into the waveguide (4) conducting the two orthogonal polarisations.
  3. Polarisation filter according to Claim 1 or 2, characterised in that the narrow-side dimension (b₁) of the second waveguide arm (2) has a step (16) between the central plane end and the rectangular E-bend (12), and in that the lateral offset is compensated by optimising the distance (b') between the front end face (17) of the central plate (8) and the plane of the step (16).
  4. Polarisation filter according to one of Claims 1 to 3, characterised in that the rectangular E-bend (12) of the second waveguide arm (2) is provided with a 90° corner projection (7) of the outer corner directed into the interior.
  5. Polarisation filter according to one of the preceding claims, characterised in that an inner guide (10) for the waveguide having a round or square outer guide (11) and conducting the two orthogonal polarisations is secured to the rear end face (18) of the central plate (8) so that a coaxial waveguide (4) is formed, this inner guide being dimensioned such that the originally approximately double line characteristic impedance of the round or square waveguide is matched to the inherently equal line characteristic impedances of the two rectangular waveguide arms (1, 2), for which two conditions must be fulfilled, namely on the one hand the matching of the cross-section factors in the characteristic impedance equations of the waveguides to be matched to one another, and on the other hand the matching of the limit frequencies of the wave modes requiring transition into one another, remaining reactances in the waveguides being matched by transformation measures requiring only short overall lengths.
  6. Polarisation filter according to one of Claims 1 to 4, characterised in that, in a waveguide having a round or square outer guide and conducting the two orthogonal polarisations, there is secured to the rear end face (18) of the central plate (8) an inner guide (19), which tapers gradually or in steps and thus forms a part of a quarter-wavelength transformer, whose outer guide (25), which is formed by the circular or square outer guide (11), is formed to run gradually or in steps counter thereto.
  7. Polarisation filter according to Claim 5 or 6, characterised in that the entrances to the two rectangular waveguide arms (1, 2) are designed with substantially reduced narrow-side dimension compared with the normal narrow-side dimension b₁ = a/2,
    Figure imgb0003
    and in that the line characteristic impedance of these rectangular waveguide arm entrances reduced with respect to the waveguide narrow-side dimension is compensated by increased capacitive loading by means of thicker inner guides (10 and 19 respectively) in the waveguide (4) conducting the two orthogonal polarisations and/or with longitudinal metal webs on the inside of the outer wall thereof.
  8. Polarisation filter according to Claim 5 or 7, characterised in that the inner guide (10) is continued longitudinally homogeneously beyond the actual polarisation filter region to a load, for example a horn radiator.
  9. Polarisation filter according to one of Claims 5 to 8, characterised in that the inner guide (10, 19) has a circular cross-section.
  10. Polarisation filter according to one of Claims 5 to 8, characterised in that the inner guide (10, 19) has a cross-shaped or a square cross-section.
  11. Polarisation filter according to one of Claims 5 to 8, characterised in that the inner guide (10, 19) has a circular cross-section with symmetrically arranged longitudinal webs.
  12. Polarisation filter according to one of the preceding claims, characterised by a design in two mirror-symmetrical identical parts with the exception of the entrance to the second waveguide arm (2), the mirror plane being formed by the cross-current-free central plane (13) of the waveguide fork having two symmetrical partial arms (20, 21) for the first waveguide arm (1).
  13. Polarisation filter according to one of the preceding claims, characterised by production using milling technology, in which the preferably numerical cutter control is executed in a single plane.
  14. Polarisation filter according to one of the preceding claims, characterised in that there is connected to the two polarisation-selective rectangular waveguide arms (1, 2) in each case one frequency separating filter via a long line in each case, which is designed as an overmodulated rectangular waveguide provided with appropriate transitions.
EP88104293A 1987-03-24 1988-03-17 Broad-band polarizing junction Expired - Lifetime EP0284911B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88104293T ATE77004T1 (en) 1987-03-24 1988-03-17 WIDE BAND POLARIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3709559 1987-03-24
DE3709559 1987-03-24

Publications (2)

Publication Number Publication Date
EP0284911A1 EP0284911A1 (en) 1988-10-05
EP0284911B1 true EP0284911B1 (en) 1992-06-03

Family

ID=6323817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88104293A Expired - Lifetime EP0284911B1 (en) 1987-03-24 1988-03-17 Broad-band polarizing junction

Country Status (4)

Country Link
EP (1) EP0284911B1 (en)
AT (1) ATE77004T1 (en)
AU (1) AU613607B2 (en)
DE (1) DE3871586D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425048A1 (en) * 1994-07-15 1996-01-18 Siemens Ag Directional radio antenna feed system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285879B1 (en) * 1987-03-24 1993-06-16 Siemens Aktiengesellschaft Broad-band polarizing junction
DE59008236D1 (en) * 1989-09-22 1995-02-23 Siemens Ag Rectangular waveguide E-elbow.
DE59009918D1 (en) * 1989-09-28 1996-01-11 Siemens Ag Microwave polarizing switch.
IT1238534B (en) * 1989-11-14 1993-08-18 Cselt Centro Studi Lab Telecom RIGHT ANGLE JOINT FOR RECTANGULAR WAVE GUIDES
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
EP3358669B1 (en) * 2017-02-07 2020-01-08 SIAE Microelettronica S.p.A. Connecting structure and emission/reception system of the dual-band type with dual polarization per frequency band

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2882500A (en) * 1955-07-26 1959-04-14 Int Standard Electric Corp Hybrid-t waveguide structure
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
FR2582449B1 (en) * 1979-07-24 1988-08-26 Thomson Csf BROADBAND POLARIZATION DIPLEXER DEVICE AND ANTENNA ASSOCIATED WITH A RADAR OR A COUNTER-MEASURING DEVICE COMPRISING SUCH A DEVICE
US4556853A (en) * 1984-09-28 1985-12-03 Rca Corporation Mode-controlling waveguide-to-coax transition for TV broadcast system
DE3675235D1 (en) * 1985-03-27 1990-12-06 Siemens Ag POLARISTATION SWITCH FOR FACILITIES OF HIGH-FREQUENCY TECHNOLOGY.
EP0285879B1 (en) * 1987-03-24 1993-06-16 Siemens Aktiengesellschaft Broad-band polarizing junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425048A1 (en) * 1994-07-15 1996-01-18 Siemens Ag Directional radio antenna feed system

Also Published As

Publication number Publication date
AU613607B2 (en) 1991-08-08
AU1339888A (en) 1988-09-22
ATE77004T1 (en) 1992-06-15
EP0284911A1 (en) 1988-10-05
DE3871586D1 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
DE69821884T2 (en) Multifrequency stripline antenna and device with such an antenna
DE3885856T2 (en) Waveguide matrix with signals crossing in the same plane.
DE2726799C2 (en) Crossover
DE3852650T2 (en) MICROWAVE MULTIPLEXER WITH MULTI-MODE FILTER.
DE3433068A1 (en) SWITCHABLE ANTENNA FOR VHF AND UHF FREQUENCY RANGES
DE1027266B (en) Serial coupler for microwaves with strip or ribbon lines
DE3042456A1 (en) ANTENNA WITH A DEVICE FOR ROTATING THE POLARIZATION LEVEL
DE69121632T2 (en) Polarization switch between a circular waveguide and a coaxial cable
EP0284911B1 (en) Broad-band polarizing junction
EP0196065B1 (en) Polarization filter for hf devices
DE3786664T2 (en) MICROWAVE EXCITER FOR ORTHOGONAL POLARIZED WAVES.
DE69112943T2 (en) Transition piece between electromagnetic waveguides, in particular between a round waveguide and a coaxial waveguide.
DE3785811T2 (en) SHORT SLOT HYBRID COUPLERS WIDE BANDWIDTH.
DE3111106C2 (en)
DE1909655A1 (en) Microwave discriminator
DE3215323A1 (en) Antenna in the form of a slotted line
DE3127693C2 (en) Transition from a waveguide to a microstrip line
DE10143688A1 (en) Directional coupler, antenna device and radar system
DE3587607T2 (en) COMPOSED DIELECTRIC MULTI-WIRE TRANSMISSION LINE.
DE1957866A1 (en) Miniature microwave isolator for ribbon cables
DE2521956C3 (en) Polarization switch
DE2503850A1 (en) WAVE CONDUCTOR ANTENNA WITH APERTURE SWITCH
DE2842576A1 (en) POLARIZATION SOFT
DE3941125C2 (en) Planar broadband antenna
EP0285879B1 (en) Broad-band polarizing junction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19910709

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920603

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19920603

Ref country code: FR

Effective date: 19920603

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920603

Ref country code: BE

Effective date: 19920603

REF Corresponds to:

Ref document number: 77004

Country of ref document: AT

Date of ref document: 19920615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3871586

Country of ref document: DE

Date of ref document: 19920709

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010312

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050317