EP0285879B1 - Broad-band polarizing junction - Google Patents

Broad-band polarizing junction Download PDF

Info

Publication number
EP0285879B1
EP0285879B1 EP88104292A EP88104292A EP0285879B1 EP 0285879 B1 EP0285879 B1 EP 0285879B1 EP 88104292 A EP88104292 A EP 88104292A EP 88104292 A EP88104292 A EP 88104292A EP 0285879 B1 EP0285879 B1 EP 0285879B1
Authority
EP
European Patent Office
Prior art keywords
polarisation
waveguide
inner conductor
junction according
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88104292A
Other languages
German (de)
French (fr)
Other versions
EP0285879A1 (en
Inventor
Eberhard Dr.-Ing. Schuegraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88104292T priority Critical patent/ATE90813T1/en
Publication of EP0285879A1 publication Critical patent/EP0285879A1/en
Application granted granted Critical
Publication of EP0285879B1 publication Critical patent/EP0285879B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to a broadband polarization switch for separating orthogonally linearly polarized electromagnetic microwaves with a branching device which divides a waveguide guiding the two orthogonal polarizations into two rectangular waveguide arms which each only carry one of these polarizations and which have the same line impedance.
  • K / a the cross-sectional factor for the respective wave in the rectangular waveguide
  • Z o the field wave resistance of a plane wave in free space
  • ⁇ o the wavelength in free space
  • ⁇ k the respective critical wavelength, which is also called the cut-off wavelength of the wave type under consideration.
  • a broadband adaptation of the wave resistance jump between the lines is - in principle over wide bandwidths of one octave and more - impossible.
  • a polarization switch for separating two orthogonally linearly polarized electromagnetic waves using a branching device which divides a horn radiator guiding the two orthogonal polarizations into two rectangular waveguide arms which each only carry one of these polarizations.
  • the latter two arms have equally large line wave resistance values.
  • the polarization switch known from GB-A-2 175 145 behaves in a similar manner and just as disadvantageously, in which the transition zone to the wave resistance transformation does not contain an ideal pyramid-shaped core, but rather a core which is often stepped in the manner of a staircase and consists of a series of parallelepipedic elements of square cross-section consists.
  • the object of the invention is to provide a possibility with which the interfering jumps in wave resistance in the case of broadband polarization switches to be used are reduced or completely eliminated.
  • the waveguide carrying the two polarizations has a line impedance whose value corresponds at least approximately to that of the two rectangular waveguide arms, for which two conditions are met, namely on the one hand, the approximation of the cross-sectional factors in the wave resistance equations of the waveguides to be matched to one another and, on the other hand, the approximation of the cut-off frequencies of the wave types to be merged into one another in these waveguides, and that transformation measures requiring only short lengths to adapt remaining reactances in the waveguides are provided.
  • the invention is based on the idea that the line wave resistances of the rectangular crossover waveguide arms with their aspect ratio a ⁇ 2 b are fixed, whereas the line wave resistance of the waveguide carrying the two orthogonal polarizations is not fixed and can therefore be freely selected.
  • This opens up the previously unused possibility of lowering the line wave resistance of the waveguide guiding the two orthogonal polarizations by the specified measures and thus at least approximating the line wave resistances of the rectangular waveguide arms.
  • Ideal adaptation conditions prevail if the line wave resistances of the waveguide carrying the two orthogonal polarizations are broadband matched to those of the rectangular waveguide arms.
  • either a symmetrical arrangement of at least four metal webs 2, 3, 4 and 5 on the inner surface of the wall of the outer conductor is suitable according to the left representation of FIG 1 or / and, as shown in the right-hand illustration of FIG. 1, a concentrically arranged inner conductor 6.
  • the inner conductor 6 is easier to manufacture than the conductive webs 2, 3, 4 and 5 extending in the longitudinal direction of the waveguide.
  • the inner conductor 6 is arranged in the central longitudinal axis of the outer conductor 1 and thus runs concentrically.
  • the inner conductor 1 is preferably fixed in the bifurcation zone of the three polarization switch waveguides with the outer conductor contours, i.e. conductive, connected. This specially created attachment can be used universally and can be used for reflection compensation of both polarizations.
  • the simplest form of an inner conductor 6 is the circular cross-sectional shape shown in the right-hand illustration of FIG. 1.
  • a significant expansion of the uniqueness range for the coaxial waveguide is also achieved, for which quantitative information will follow in the further course of the description.
  • the inner conductor 6 can be, for example, cruciform, and combinations with a round or square outer conductor 1 without or with conductive longitudinal webs 2, 3, 4 and 5 are also possible.
  • the inner conductor 6 causes very little additional loss and brings the following additional advantages.
  • the inner conductor 6, which is extended beyond the polarization switch, is suitable for improving the behavior of a consumer connected to the polarization switch, e.g. to improve the bandwidth of the low reflection of a grooved horn and its cross-polarization properties compared to horn feeding through a pure waveguide - i.e. without an inner conductor.
  • the inner conductor 6 can end in the horn neck, in the groove area or outside the horn aperture in a steady, stepped or abrupt manner. Furthermore, space can be created in a hollow inner conductor 6 for waves of the same or different type with the same or different frequency as those waves already present outside the inner conductor 6.
  • the interior of the inner conductor can in turn be suitably provided with conductive material or with a dielectric.
  • coupling devices for waves can also be arranged, which are coupled from the space outside the inner conductor to its interior and vice versa.
  • the inner conductor 6 predominantly increases the transverse capacitance in the wave resistance equivalent circuit diagram for H waves.
  • the wave resistance of the H11 wave or the H10 wave - as intended - and the associated cutoff wavelengths increase.
  • the coaxial waveguide with a circular inner and outer conductor 3 shows the quantitative relationship between the characteristic impedance of this coaxial waveguide and its diameter ratio d / D k from inner conductor diameter d to outer conductor diameter D k .
  • the measurements are carried out in such a way that, for coaxial waveguides with specific values of the diameter ratios (d / D K ) n , that rectangular waveguide with its aspect ratio (b / a) n is determined, which results in broadband adaptation at the abrupt transition between the respective coaxial waveguide and the rectangular waveguide.
  • the limit frequencies of the H10 wave in the rectangular waveguide and the H11 wave in the coaxial waveguide are made the same.
  • the diameter D o of the imaginary circular waveguide that determines the has the same H11 cutoff frequency as the coaxial waveguide.
  • the reactance remaining at the cross-sectional jump is compensated for by a suitable longitudinal offset of the beginning of the inner conductor relative to the jump point.
  • Such abrupt transitions from the rectangular waveguide to the coaxial waveguide require practically no overall length. They reach bandwidths of poor reflection up to an octave, and over 50% bandwidth their reflection is less than 1%.
  • An important basic component of wave resistance homogeneous polarization switches is thus available.
  • their theoretical uniqueness ranges are then determined in view of the E11 interference wave that occurs first with symmetrical H11 excitation.
  • the E11-following H31 interference wave according to Fig. 6 is also included in the observation.
  • the H31 interference wave is excited despite symmetrical excitation next to the H11 fundamental wave, because according to Fig. 6 e.g. the E field strengths of the H13 wave at diametrically opposite points on the circumference in the coaxial waveguide always have the same direction as the E fields of the H11 wave.
  • the range of uniqueness f kH31 / f kH11 is also expanded.
  • a broadband polarization filter of a two-band antenna system for the directional radio frequency ranges 3.58 to 4.2 GHz and 6.425 to 7.125 GHz is explained below with reference to FIG. 7.
  • the inevitable expansion of the uniqueness range succeeds with the introduction of an inner conductor 8, so that according to FIG. 7, for example from the article by E.
  • the E11 interference field of the double branch 9 is sufficiently attenuated; and - since the inner conductor 8 is extended into the vicinity of the first groove of a connected grooved horn - the E11 useful excitation in the groove region is decoupled from the horn waveguide with the aperiodic E11 damping as desired.
  • the shape of the inner conductor 8 has a very decisive influence on the horn reflection and also on the cross-polarization suppression, even with very small changes.
  • the rotationally symmetrical transformer offers many, easily implemented correction options that always have the same effect for both polarizations.
  • the polarization switch shown in the exemplary embodiment according to FIG. 7 has a very large useful bandwidth. Therefore, it is particularly suitable for the fact that on its rectangular waveguide arms 10 and 11 a crossover for two or more microwave radio frequency ranges different frequency position is connected (directly).
  • the connection between the two rectangular waveguide arms 10 and 11 of the polarization crossover shown in FIG. 7 and the two crossovers can also be established by two long lines, which are designed, for example, as having corresponding transitions, overmoded, bendable rectangular waveguides and by all conceivable measures are suitable to expand their clear transmission frequency range, more than one directional radio range of the same polarization from the location of the crossovers, e.g. at the foot of the antenna tower, low attenuation, reflection and delay distortion to the broadband polarization switch arranged directly on the antenna, i.e. for example on the tower and vice versa.
  • the inner conductor shown in Figure 7 of the already mentioned article by E. Schuegraf in the magazine “NTZ”, volume 38 (1985), number 8, pages 554-560 is not a round inner conductor in the Acting with the invention, with which a wave resistance homogenization is achieved along the two passages of a polarization filter, but rather a ⁇ / 4 transformer.
  • the inner conductor shown in FIGS. 2a and 2b of DE-C2-28 42 576 also represents a narrow-band ⁇ / 4 transformer network with additional reactances, which are specifically designed for good adaptation in two narrow frequency ranges that are relatively far apart (scarce Octave), specially cut and cannot be compared with an inner conductor dimensioned according to the invention.
  • new polarization switches can now be dimensioned, each of which has two rectangular waveguide arms, for example, with the following aspect ratios (calculation table):
  • the coaxial waveguide is determined in each case which has the same H11 cutoff frequency and frequency-independent same waveguide resistances as the rectangular waveguide arms in the case of a round outer and inner conductor.
  • the diameter ratio of the coaxial waveguide which is the same as the wave resistance, follows from the b / a value of the rectangular waveguide arm
  • For the respective d / D K value of the coaxial waveguide follows from Fig.

Abstract

Measures are provided in two waveguides (7) carrying two orthogonal linear polarisations, e.g. the incorporation of an inner conductor (8) and/or of symmetrically arranged metal longitudinal webs, as a result of which its characteristic impedance can be approximated to (or, if necessary, matched to) the characteristic impedances of the two polarisation-selective rectangular waveguide arms (10, 11). In this case, two conditions must be met, namely, firstly matching the cross-section factors in the characteristic impedance equations of the waveguides to be matched to one another and secondly, matching the limit frequencies of the wave types which are to be merged. Residual reactances in the junction passages can then be matched, in a broadband manner, in a very short space without difficulties. The measures specified in the invention can be used in the case of broadband polarising junctions for satellite radio and directional radio antennas. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Breitband-Polarisationsweiche zur Trennung orthogonal linear polarisierter elektromagnetischer Mikrowellen mit einer Verzweigungseinrichtung, die einen die beiden orthogonalen Polarisationen führenden Wellenleiter in zwei nur noch jeweils eine dieser Polarisationen führende Rechteckhohlleiterarme untereinander gleichen Leitungswellenwiderstandes aufteilt.The invention relates to a broadband polarization switch for separating orthogonally linearly polarized electromagnetic microwaves with a branching device which divides a waveguide guiding the two orthogonal polarizations into two rectangular waveguide arms which each only carry one of these polarizations and which have the same line impedance.

Praktisch allen bekannten Polarisationsweichen fehlt die Grundvoraussetzung für eine echte Breitbandanpassung, nämlich die Wellenwiderstandshomogenität entlang den beiden Durchgängen einer solchen Weiche; denn zwischen jedem der beiden polarisationsselektiven Weichenanschlüsse, die stets als Rechteckhohlleiter mit dem Seitenverhältnis a ≈ 2b ausgebildet sind, und dem Hohlleiter kreisrunden oder quadratischen Querschnitts ( a = b

Figure imgb0001
) besteht bei allen bekannten Polarisationsweichen nach der Wellenwiderstandsgleichung
Figure imgb0002

ein Wellenwiderstandssprung Zrund bwz. ZQuadrat / ZRechteck ≈ 2. In der vorstehenden Gleichung ist Z der Leitungswellenwiderstand, b . K / a der Querschnittsfaktor für die jeweilige Welle im Rechteckhohlleiter, Zo der Feldwellenwiderstand einer ebenen Welle im freien Raum, λo die Wellenlänge im freien Raum und λk die jeweilige kritische Wellenlänge, die auch Grenzwellenlänge des betrachteten Wellentyps genannt wird. Eine breitbandige Anpassung des Wellenwiderstandssprungs zwischen den Leitungen ist - jedenfalls über große Bandbreiten von einer Oktave und mehr - prinzipiell unmöglich.Practically all known polarization switches lack the basic prerequisite for a real broadband adaptation, namely the wave resistance homogeneity along the two passages of such a switch; because between each of the two polarization-selective switch connections, which are always designed as rectangular waveguides with the aspect ratio a ≈ 2b, and the waveguide has a circular or square cross-section ( a = b
Figure imgb0001
) exists in all known polarization switches according to the wave resistance equation
Figure imgb0002

a wave resistance jump Z around bwz. Z square / Z rectangle ≈ 2. In the above equation, Z is the line impedance, b. K / a the cross-sectional factor for the respective wave in the rectangular waveguide, Z o the field wave resistance of a plane wave in free space, λ o the wavelength in free space and λ k the respective critical wavelength, which is also called the cut-off wavelength of the wave type under consideration. A broadband adaptation of the wave resistance jump between the lines is - in principle over wide bandwidths of one octave and more - impossible.

Es ist versucht worden, mit stetigen Übergängen, mit Umlenk- und Kurzschlußblechen unterschiedlichsten Zuschnitts beider Stirnflächen, mit Blenden, Schraubenansammlungen und ähnlichem den diagnostizierten Wellenwiderstandssprung wenigstens schmalbandig (bis ca. 20 %) reflektionsarm zu machen.Attempts have been made to make the diagnosed surge in wave resistance at least narrow-band (up to approx. 20%) with low reflection with steady transitions, with deflection and short-circuit plates of the most varied cut of both end faces, with diaphragms, screw accumulations and the like.

Aus US-A-3 150 333 ist eine Polarisationsweiche zur Trennung zweier orthogonal linear polarisierter elektromagnetischer Wellen unter Verwendung einer Verzweigungseinrichtung bekannt, die einen die beiden orthogonalen Polarisationen führenden Hornstrahler in zwei nur noch jeweils eine dieser Polarisationen führende Rechteckhohlleiterarme aufteilt. Die beiden letztgenannten Arme weisen gleich große Leitungswellenwiderstandswerte auf. Durch Anordnung eines pyramidenförmigen Metallkerns im Inneren des Hornstrahlers, wobei die Pyramidenspitze im Aperturbereich des Horns und die Pyramidenbasis im Inneren des Verzweigungsbereiches am Speiseende des Horns liegt, wird eine allmähliche, stetige Impedanztransformation vom Wellenwiderstandswert der beide Polarisationen führenden Rechteckhohlleiterarme auf den Wellenwiderstandswert des Hornstrahlers im Bereich seiner Apertur erreicht. Bei diesem bekannten stetigen Impedanzübergang wird der Wellenwiderstandssprung nur schmalbandig reflexionsarm gemacht. Für eine breitbandige Anwendung ist dieser Übergang nicht geeignet.From US-A-3 150 333 a polarization switch for separating two orthogonally linearly polarized electromagnetic waves using a branching device is known which divides a horn radiator guiding the two orthogonal polarizations into two rectangular waveguide arms which each only carry one of these polarizations. The latter two arms have equally large line wave resistance values. By arranging a pyramid-shaped metal core inside the horn, with the pyramid tip in the aperture area of the horn and the pyramid base in the interior of the branching area at the feed end of the horn, a gradual, steady impedance transformation from the wave resistance value of the rectangular waveguide arms guiding both polarizations to the wave resistance value of the horn radiator in the area reached its aperture. With this known steady-state impedance transition, the wave resistance jump is only made narrow-band with low reflection. This transition is not suitable for a broadband application.

In ähnlicher Weise und ebenso nachteilig verhält sich die aus GB-A-2 175 145 bekannte Polarisaitonsweiche, bei der die Übergangszone zur Wellenwiderstandstransformation keinen ideal pyramidenförmigen Kern, sondern einen nach Art einer Treppe vielfach abgestuften Kern enthält, der aus einer Reihe parallelepipedischer Elemente quadratischen Querschnitts besteht.The polarization switch known from GB-A-2 175 145 behaves in a similar manner and just as disadvantageously, in which the transition zone to the wave resistance transformation does not contain an ideal pyramid-shaped core, but rather a core which is often stepped in the manner of a staircase and consists of a series of parallelepipedic elements of square cross-section consists.

Aufgabe der Erfindung ist es, eine Möglichkeit anzugeben, mit welcher die störenden Wellenwiderstandssprünge bei breitbandig zu verwendenden Polarisationsweichen reduziert oder ganz eliminiert werden.The object of the invention is to provide a possibility with which the interfering jumps in wave resistance in the case of broadband polarization switches to be used are reduced or completely eliminated.

Gemäß der Erfindung, die sich auf Breitband-Polarisationsweichen der eingangs genannten Art bezieht, wird diese Aufgabe dadurch gelöst, daß der die beiden Polarisationen führende Wellenleiter einen Leitungswellenwiderstand aufweist, dessen Wert demjenigen der beiden Rechteckhohlleiterarme zumindest angenähert entspricht, wozu zwei Bedingungen erfüllt sind, nämlich zum einen die Angleichung der Querschnittsfaktoren in den Wellenwiderstandsgleichungen der aneinander anzupassenden Wellenleiter und zum anderen die Angleichung der Grenzfrequenzen der ineinander überzuführenden Wellentypen in diesen Wellenleitern, und daß nur kurze Baulängen erfordernde Transformationsmaßnahmen zur Anpassung verbleibender Reaktanzen in den Wellenleitern vorgesehen sind. Die Erfindung geht von dem Gedanken aus, daß die Leitungswellenwiderstände der rechteckigen Polarisationsweichen-Hohlleiterarme mit ihrem Seitenverhältnis a ≈ 2 b fest vorgegeben sind, wogegen der Leitungswellenwiderstand des die beiden Orthogonalpolarisationen führenden Wellenleiters nicht festgelegt und daher frei wählbar ist. Dies eröffnet die bislang ungenutzte Möglichkeit, den Leitungswellenwiderstand des die beiden orthogonalen Polarisationen führenden Wellenleiters durch die angegebenen Maßnahmen abzusenken und damit an die Leitungswellenwiderstände der Rechteckhohlleiterarme zumindest anzunähern. Ideale Anpassungsbedingungen herrschen, wenn die Leitungswellenwiderstände des die beiden orthogonalen Polarisationen führenden Wellenleiters an diejenigen der Rechteckhohlleiterarme breitbandig angeglichen sind. Durch die Erfüllung der angegebenen beiden Bedingungen, nämlich zum einen der Angleichung der Querschnittsfaktoren in den Wellenwiderstandsgleichungen der aneinander anzupassenden Wellenleiter, z.B. nach der vorstehend angegebenen Wellenwiderstandsgleichung der Faktor b . K / a für die H₁₀-Welle im Rechteckhohlleiter, und der Angleichung der Grenzfrequenzen der ineinander überzuführenden Wellentypen, wird eine Angleichung der Wellenwiderstände über sehr große Bandbreiten erreicht. Beide Durchgänge solcher wellenwiderstandshomogenisierter Polarisationsweichen enthalten dann keinerlei Wellenwiderstandssprünge mehr, sondern nur noch Reaktanzen, die bekanntlich - im Gegensatz zu Wellenwiderstandssprüngen - sehr breitbandig anpaßbar sind. Dieses Prinzip der Wellenwiderstandshomogenisierung ist auf praktisch alle bekannten Polarisationsweichen anwendbar. Das Ergebnis ist stets eine gegenüber bisher wesentlich vergrößerte Bandbreite der Reflexionsarmut.According to the invention, which relates to broadband polarization switches of the type mentioned, this object is achieved in that the waveguide carrying the two polarizations has a line impedance whose value corresponds at least approximately to that of the two rectangular waveguide arms, for which two conditions are met, namely on the one hand, the approximation of the cross-sectional factors in the wave resistance equations of the waveguides to be matched to one another and, on the other hand, the approximation of the cut-off frequencies of the wave types to be merged into one another in these waveguides, and that transformation measures requiring only short lengths to adapt remaining reactances in the waveguides are provided. The invention is based on the idea that the line wave resistances of the rectangular crossover waveguide arms with their aspect ratio a ≈ 2 b are fixed, whereas the line wave resistance of the waveguide carrying the two orthogonal polarizations is not fixed and can therefore be freely selected. This opens up the previously unused possibility of lowering the line wave resistance of the waveguide guiding the two orthogonal polarizations by the specified measures and thus at least approximating the line wave resistances of the rectangular waveguide arms. Ideal adaptation conditions prevail if the line wave resistances of the waveguide carrying the two orthogonal polarizations are broadband matched to those of the rectangular waveguide arms. By fulfilling the specified two conditions, namely on the one hand Alignment of the cross-sectional factors in the wave resistance equations of the waveguides to be matched to one another, for example the factor b according to the wave resistance equation given above. K / a for the H₁₀ wave in the rectangular waveguide, and the approximation of the cut-off frequencies of the wave types to be converted into one another, an adaptation of the wave resistances over very wide bandwidths is achieved. Both passes of such wave resistance-homogenized polarization switches then no longer contain any jumps in wave resistance, but only reactances which, as is known - in contrast to jumps in wave resistance - can be adapted very broadband. This principle of wave resistance homogenization can be applied to practically all known polarization switches. The result is always a wide range of reflection poor compared to previously much wider.

In den Unteransprüchen sind vorteilhafte und zweckmäßige Ausführungsmöglichkeiten der Erfindung zur Erreichung einer Wellenwiderstandshomogenität entlang den beiden Durchgängen einer Breitband-Polarisationsweiche angegeben.In the subclaims, advantageous and expedient implementation options of the invention for achieving a wave resistance homogeneity along the two passages of a broadband polarization filter are specified.

Die Erfindung und Ausführungsbeispiele davon werden im folgenden anhand von sieben Figuren erläutert. Es zeigen

Fig. 1
zwei wellenwiderstandssenkende Maßnahmen im die beiden Orthogonalpolarisationen führenden Wellenleiter,
Fig. 2
eine Anzahl von Querschnittsmöglichkeiten bei einem die beiden Orthogonalpolarisationen führenden Wellenleiter jeweils mit einem Innenleiter mit reduziertem Wellenwiderstand und erweiterten Frequenz-Eindeutigkeitsbereichen,
Fig.3
einen meßtechnisch gewonnenen, quantitativen Zusammenhang zwischen dem Wellenwiderstand eines Koaxialwellenleiters mit rundem Innenleiter und seinem Durchmesserverhältnis von Innen- zu Außenleiterdurchmesser,
Fig. 4
ein Diagramm, bei dem für das Durchmesserverhältnis eines jeweils betrachteten Koaxialwellenleiters der Durchmesser desjenigen gedachten Rundhohlleiters ermittelt wird, der die gleiche H₁₁-Grenzfrequenz hat wie der Koaxialwellenleiter,
Fig. 5
ein Diagramm, in dem Frequenz-Eindeutigkeitsbereiche in Koaxialwellenleitern abhängig von ihrem Durchmesserverhältnis dargestellt sind,
Fig. 6
in einer Querschnittsdarstellung eines Koaxialwellenleiters das E-Feld der H₃₁-Störwelle,
Fig. 7
in einer Schrägansicht die Struktur einer Zweiband-Polarisationsweiche mit einem Innenleiter zur Reduzierung der Wellenwiderstandssprünge.
The invention and exemplary embodiments thereof are explained below with reference to seven figures. Show it
Fig. 1
two measures reducing the wave resistance in the waveguide guiding the two orthogonal polarizations,
Fig. 2
a number of cross-sectional possibilities in the case of a waveguide guiding the two orthogonal polarizations, each with an inner conductor with reduced wave resistance and extended frequency uniqueness ranges,
Fig. 3
a quantitative relationship between the wave resistance of a coaxial waveguide with a round inner conductor and its diameter ratio of inner to outer conductor diameter,
Fig. 4
a diagram in which the diameter of the imaginary circular waveguide is determined for the diameter ratio of a respective coaxial waveguide which has the same H₁₁ cut-off frequency as the coaxial waveguide,
Fig. 5
1 shows a diagram in which frequency uniqueness ranges in coaxial waveguides are shown depending on their diameter ratio,
Fig. 6
in a cross-sectional view of a coaxial waveguide, the E field of the H₃₁ interference wave,
Fig. 7
in an oblique view, the structure of a two-band polarization switch with an inner conductor to reduce the jumps in wave resistance.

Zur angestrebten Wellenwiderstandssenkung in einem einen Außenleiter 1 runden oder quadratischen Querschnitts aufweisenden, beide Orthogonalpolarisationen führenden Wellenleiter eignet sich nach der linken Darstellung von Fig.1 entweder eine symmetrische Anordnung von wenigstens vier Metallstegen 2, 3, 4 und 5 an der Innenfläche der Wand des Außenleiters 1 oder/und, wie in der rechten Darstellung von Fig. 1 gezeigt ist, ein konzentrisch angeordneter Innenleiter 6. Der Innenleiter 6 ist in der Praxis leichter herzustellen als die sich in Hohlleiterlängsrichtung erstreckenden leitenden Stege 2, 3, 4 und 5. Der Innenleiter 6 ist in der mittleren Längsachse des Außenleiters 1 angeordnet und verläuft somit konzentrisch. Der Innenleiter 1 wird vorzugsweise in der Gabelungszone der drei Polarisationsweichenhohlleiter mit den Außenleiterkonturen fest, d.h. leitend, verbunden. Diese eigens dafür geschaffene Befestigung ist universell einsetzbar und läßt sich zur Reflexionskompensation beider Polarisationen ausnützen.To achieve the desired reduction in wave resistance in a waveguide having a round or square cross-section with an outer conductor 1 and having both orthogonal polarizations, either a symmetrical arrangement of at least four metal webs 2, 3, 4 and 5 on the inner surface of the wall of the outer conductor is suitable according to the left representation of FIG 1 or / and, as shown in the right-hand illustration of FIG. 1, a concentrically arranged inner conductor 6. In practice, the inner conductor 6 is easier to manufacture than the conductive webs 2, 3, 4 and 5 extending in the longitudinal direction of the waveguide. The inner conductor 6 is arranged in the central longitudinal axis of the outer conductor 1 and thus runs concentrically. The inner conductor 1 is preferably fixed in the bifurcation zone of the three polarization switch waveguides with the outer conductor contours, i.e. conductive, connected. This specially created attachment can be used universally and can be used for reflection compensation of both polarizations.

Die einfachste Form eines Innenleiters 6 ist die in der rechten Darstellung von Fig. 1 gezeigte kreisrunde Querschnittsform. Damit wird neben der angestrebten Wellenwiderstandssenkung zusätzlich eine wesentliche Ausweitung des Eindeutigkeitsbereiches beim Koaxialwellenleiter erreicht, wozu im weiteren Verlauf der Beschreibung noch quantitative Angaben folgen.The simplest form of an inner conductor 6 is the circular cross-sectional shape shown in the right-hand illustration of FIG. 1. In addition to the desired reduction in wave resistance, a significant expansion of the uniqueness range for the coaxial waveguide is also achieved, for which quantitative information will follow in the further course of the description.

Für noch breitere Eindeutigkeitsbereiche fkE11 / fkH11, fkH31 / fkH11 und fkE21 / fkH10 sind günstigere Querschnittsformen des Innenleiters 6 möglich, die in Fig. 2 im einzelnen dargestellt sind. Danach läßt sich der Innenleiter 6 z.B. kreuzförmig ausbilden, und auch Kombinationen mit einem runden oder quadratischen Außenleiter 1 ohne oder mit leitenden Längsstegen 2, 3, 4 und 5 sind möglich.For even broader ranges of uniqueness f kE11 / f kH11 , f kH31 / f kH11 and f kE21 / f kH10 , cheaper cross-sectional shapes of the Inner conductor 6 possible, which are shown in Fig. 2 in detail. Thereafter, the inner conductor 6 can be, for example, cruciform, and combinations with a round or square outer conductor 1 without or with conductive longitudinal webs 2, 3, 4 and 5 are also possible.

Nach dem Aufsatz W. Baier: "Wellentypen in Leitungen rechteckigen Querschnitts" aus der Zeitschrift "AEÜ", Band 22 (1968), Heft 4, Seiten 179-185, insbesondere Seite 184-185 bewirkt der Innenleiter 6 sehr geringe Zusatzverluste und bringt folgende weitere Vorteile. Der über die Polarisationsweiche hinaus verlängerte Innenleiter 6 eignet sich dazu, das Verhalten eines an die Polarisationsweiche angeschlossenen Verbrauchers zu verbessern, so z.B. die Bandbreite der Reflexionsarmut eines Rillenhorns und seine Kreuzpolarisationseigenschaften gegenüber der Hornspeisung durch einen reinen Hohlleiter - also ohne Innenleiter - zu verbessern. Dabei kann der Innenleiter 6 im Hornhals, im Rillenbereich oder ausserhalb der Hornapertur stetig, gestuft oder sprunghaft enden. Ferner kann in einem hohl gestalteten Innenleiter 6 Raum geschaffen werden für Wellen gleicher oder anderer Art mit gleicher oder anderer Frequenz wie diejenigen außerhalb des Innenleiters 6 bereits vorhandenen Wellen. Dazu kann der Innenraum des Innenleiters seinerseits in geeigneter Weise mit leitendem Material oder mit einem Dielektrikum versehen werden. Im Innenraum des Innenleiters 6 und/oder nahe seiner Oberfläche können ferner Koppeleinrichtungen für Wellen angeordnet werden, die aus dem Raum außerhalb des Innenleiters in sein Inneres und umgekehrt gekoppelt werden.According to the article by W. Baier: "Wave types in cables with a rectangular cross-section" from the magazine "AEÜ", volume 22 (1968), number 4, pages 179-185, in particular pages 184-185, the inner conductor 6 causes very little additional loss and brings the following additional advantages. The inner conductor 6, which is extended beyond the polarization switch, is suitable for improving the behavior of a consumer connected to the polarization switch, e.g. to improve the bandwidth of the low reflection of a grooved horn and its cross-polarization properties compared to horn feeding through a pure waveguide - i.e. without an inner conductor. In this case, the inner conductor 6 can end in the horn neck, in the groove area or outside the horn aperture in a steady, stepped or abrupt manner. Furthermore, space can be created in a hollow inner conductor 6 for waves of the same or different type with the same or different frequency as those waves already present outside the inner conductor 6. For this purpose, the interior of the inner conductor can in turn be suitably provided with conductive material or with a dielectric. In the interior of the inner conductor 6 and / or near its surface, coupling devices for waves can also be arranged, which are coupled from the space outside the inner conductor to its interior and vice versa.

Der Innenleiter 6 erhöht unabhängig von seiner jeweiligen Querschnittsform und derjenigen des zugehörigen Außenleiters 1 überwiegend die Querkapazität im Wellenwiderstandsersatzschaltbild für H-Wellen. Somit sinkt der Wellenwiderstand der H₁₁-Welle bzw. der H₁₀-Welle - wie beabsichtigt - und die zugehörigen Grenzwellenlängen steigen an.Irrespective of its respective cross-sectional shape and that of the associated outer conductor 1, the inner conductor 6 predominantly increases the transverse capacitance in the wave resistance equivalent circuit diagram for H waves. Thus, the wave resistance of the H₁₁ wave or the H₁₀ wave - as intended - and the associated cutoff wavelengths increase.

Für den einfachen, praktisch interessanten Fall des koaxialen Wellenleiters mit einem kreisrunden Innen- und Außenleiter zeigt Fig. 3 den meßtechnisch gewonnenen, quantitativen Zusammenhang zwischen dem Wellenwiderstand dieses Koaxialwellenleiters und seinem Durchmesserverhältnis d/Dk von Innenleiterdurchmesser d zu Außenleiterdurchmesser Dk. Die Messungen sind so ausgeführt, daß für Koaxialwellenleiter mit bestimmten Werten der Durchmesserverhältnisse (d/DK)n jeweils derjenige Rechteckhohlleiter mit seinem Seitenverhältnis (b/a)n ermittelt ist, der am sprunghaften Übergang zwischen dem jeweiligen Koaxialwellenleiter und dem Rechteckhohlleiter Breitbandanpassung ergibt. Hierbei sind zuvor die Grenzfrequenzen der H₁₀-Welle im Rechteckhohlleiter und der H₁₁-Welle im Koaxialwellenleiter gleich gemacht. Dazu wird für das Durchmesserverhältnis d/Dk des jeweils betrachteten Koaxialwellenleiters aus der Fig. 4 nach Meinke, Gundlach: "Taschenbuch der Hochfrequenztechnik", 2. Auflage, Springer-Verlag, Seite 309 der Durchmesser Do desjenigen gedachten Rundhohlleiters ermittelt, der die gleiche H₁₁-Grenzfrequenz hat wie der Koaxialwellenleiter. Mithin ergibt sich die Grenzwellenlänge des Koaxialwellenleiters als λkH11 = 1,706 Do und daraus dann die gesuchte Breitseite a des Rechteckhohlleiters mit der angeglichenen H₁₀-Grenzwellenlänge 2a = 1,706 Do.For the simple, practical interesting case of the coaxial waveguide with a circular inner and outer conductor 3 shows the quantitative relationship between the characteristic impedance of this coaxial waveguide and its diameter ratio d / D k from inner conductor diameter d to outer conductor diameter D k . The measurements are carried out in such a way that, for coaxial waveguides with specific values of the diameter ratios (d / D K ) n , that rectangular waveguide with its aspect ratio (b / a) n is determined, which results in broadband adaptation at the abrupt transition between the respective coaxial waveguide and the rectangular waveguide. Here, the limit frequencies of the H₁₀ wave in the rectangular waveguide and the H₁₁ wave in the coaxial waveguide are made the same. For this purpose, for the diameter ratio d / D k of the respective coaxial waveguide from FIG. 4 according to Meinke, Gundlach: "Taschenbuch der Hochfrequenztechnik", 2nd edition, Springer-Verlag, page 309, the diameter D o of the imaginary circular waveguide that determines the has the same H₁₁ cutoff frequency as the coaxial waveguide. The limit wavelength of the coaxial waveguide thus results as λ kH11 = 1.706 D o and from this the desired broad side a of the rectangular waveguide with the matched H₁₀ limit wavelength 2a = 1.706 D o .

Außerdem ist bei diesen Messungen die am Querschnittssprung verbleibende Reaktanz durch einen passenden Längsversatz des Innenleiteranfangs gegenüber der Sprungstelle breitbandig kompensiert. Solche sprunghaften Übergänge vom Rechteckwellenleiter auf den Koaxialwellenleiter beanspruchen praktisch keine Baulänge. Sie erreichen Bandbreiten der Reflexionsarmut bis zu einer Oktave, und über 50 % Bandbreite ist ihre Reflexion kleiner als 1 %. Damit ist eine wichtige Grundkomponente wellenwiderstandshomogener Polarisationsweichen verfügbar.In addition, in these measurements the reactance remaining at the cross-sectional jump is compensated for by a suitable longitudinal offset of the beginning of the inner conductor relative to the jump point. Such abrupt transitions from the rectangular waveguide to the coaxial waveguide require practically no overall length. They reach bandwidths of poor reflection up to an octave, and over 50% bandwidth their reflection is less than 1%. An important basic component of wave resistance homogeneous polarization switches is thus available.

Anhand der quantitativen Zusammenhänge der Durchmesserverhältnisse d/Dk von Koaxialwellenleitern mit ihren Wellenwiderständen, dargestellt in Fig. 3, und ihren H₁₁-Grenzfrequenzen, dargestellt in Fig. 4, lassen sich zunächst für die zumeist gegebenen Rechteckhohlleiter mit a = 2b die hinsichtlich des Wellenwiderstands und der H₁₁-Grenzfrequenz dazu passenden Koaxialwellenleiter ermitteln. In diesem Zusammenhang wird auf die linke Spalte der am Schluß der Beschreibung angefügten Berechnungstabelle hingewiesen. Darüber hinaus ergeben sich ganz neue Konzeptperspektiven für die Realisierung von Polarisationsweichen mit extrem großen Bandbreiten aufgrund der Einführung von niedrigeren Rechteckhohlleitern mit b < a/2 und den daran angepaßten Koaxialwellenleitern mit relativ dicken Innenleitern. Hierzu werden in der am Schluß der Beschreibung angegebenen Berechnungstabelle die Beispiele a = 3b und a = 4b ausgewertet. Zur Beurteilung der zugehörigen Koaxialwellenleiter werden sodann ihre theoretischen Eindeutigkeitsbereiche im Blick auf die bei symmetrischer H₁₁-Anregung zuerst auftretende E₁₁-Störwelle ermittelt. Quantitativ kennzeichnend hierfür sind die Grenzfrequenzverhältnisse fkE11 / fkH11 abhängig vom Durchmesserverhältnis d/Dk der Koaxialwellenleiter nach Fig. 5 aus Meinke, Gundlach: "Taschenbuch der Hochfrequenztechnik", Springer-Verlag, 2. Auflage, 1962, Seite 309. Es ergeben sich für niedriger gewählte Rechteckhohlleiter mit b < a/2 und die daran angepaßten Koaxialwellenleiter mit relaiv dicken Innenleitern Einideutigkeitsbereiche fkE11 / fkH11, die mit zunehmendem Durchmesserverhältnis d/DK äußerst rasch breiter werden und deren Breite für d/DK → 1 gegen ∞ gehen.Based on the quantitative relationships of the diameter ratios d / D k of coaxial waveguides with their wave resistances, shown in Fig. 3, and their H₁₁ cut-off frequencies, shown in Fig. 4, can initially for the mostly given rectangular waveguide with a = 2b with respect to the wave resistance and the H₁₁ cutoff frequency to match Determine the coaxial waveguide. In this context, reference is made to the left column of the calculation table at the end of the description. In addition, there are completely new concept perspectives for the realization of polarization switches with extremely wide bandwidths due to the introduction of lower rectangular waveguides with b <a / 2 and the coaxial waveguides adapted to them with relatively thick inner conductors. For this purpose, the examples a = 3b and a = 4b are evaluated in the calculation table given at the end of the description. To assess the associated coaxial waveguide, their theoretical uniqueness ranges are then determined in view of the E₁₁ interference wave that occurs first with symmetrical H₁₁ excitation. The limiting frequency ratios f kE11 / f kH11 depending on the diameter ratio d / D k of the coaxial waveguide according to FIG. 5 from Meinke, Gundlach: "Taschenbuch der Hochfrequenztechnik", Springer-Verlag, 2nd edition, 1962, page 309 are quantitative in character for lower-selected rectangular waveguides with b <a / 2 and the matching coaxial waveguides with relatively thick inner conductors, ambiguity ranges f kE11 / f kH11 , which become extremely rapidly wider with increasing diameter ratio d / D K and whose width for d / D K → 1 against ∞ go.

Sodann wird auch die auf die E₁₁-folgende H₃₁-Störwelle nach Fig. 6 in die Betachtung einbezogen. Die H₃₁-Störwelle wird trotz symmetrischer Anregung neben der H₁₁-Grundwelle angeregt, weil nach Fig. 6 z.B. die E-Feldstärken der H₁₃-Welle an diametral gegenüberliegenden Stellen des Umfangs im Koaxialwellenleiter stets die gleiche Richtung haben wie die E-Felder der H₁₁-Welle.Then the E₁₁-following H₃₁ interference wave according to Fig. 6 is also included in the observation. The H₃₁ interference wave is excited despite symmetrical excitation next to the H₁₁ fundamental wave, because according to Fig. 6 e.g. the E field strengths of the H₁₃ wave at diametrically opposite points on the circumference in the coaxial waveguide always have the same direction as the E fields of the H₁₁ wave.

Mit der Einführung des Innenleiters wird neben der breitbandigen Angleichung der Wellenwiderstände auch die Erweiterung des Eindeutigkeitsbereiches fkH31 / fkH11 erreicht. Nach Fig. 5 hat der an den Rechteckhohlleiter mit a = 2b angepaßte Koaxialwellenleiter mit d/DK = 0,37 einen nutzbaren Eindeutigkeitsbereich fkH31 / fkH11 = 2,73 (gegenüber dem nutzbaren Eindeutigkeitsbereich fkE11 / fkH11 = 2,08 beim Rundhohlleiter ohne Innenleiter). Wegen der notwendigen Abstände der Betriebsfrequenzen von den Grenzfrequenzen entspricht fkH31 / fkH11 = 2,73 einer nutzbaren Bandbreite von fh / fn = 2,5 maximal. Nach Fig. 5 erreicht der Koaxialwellenleiter bei d/DK = 0,77 ein Maximum der Breite des Eindeutigkeitsbereiches bei fkH31 / fkH11 = 3,09 entsprechend einer nutzbaren Bandbreite von maximal fh / fn = 2,8.With the introduction of the inner conductor, in addition to the broadband adjustment of the wave resistances, the range of uniqueness f kH31 / f kH11 is also expanded. According to FIG. 5, the coaxial waveguide matched to the rectangular waveguide with a = 2b with d / D K = 0.37 has a usable uniqueness range f kH31 / f kH11 = 2.73 (compared to the usable uniqueness range f kE11 / f kH11 = 2.08 for the round waveguide without inner conductor). Because of the necessary distances between the operating frequencies and the limit frequencies, f kH31 / f kH11 = 2.73 corresponds to a usable bandwidth of f h / f n = 2.5 maximum. 5, the coaxial waveguide at d / D K = 0.77 reaches a maximum of the width of the uniqueness range at f kH31 / f kH11 = 3.09 corresponding to a usable bandwidth of at most f h / f n = 2.8.

Diese Zahlenwerte gelten für Koaxialwellenleiter mit runden Innen- und Außenleitern. Noch größere Nutzbandbreiten sind mit Koaxialwellenleitern zu erwarten, deren Querschnittsvarianten in Fig. 2 skizziert sind. Die Gestaltung dieser Querschnitte zielt auf eine möglichst starke kapazitive Belastung der H₁₁-Welle - also auf eine niedrige H₁₁-Grenzfrequenz - bei zugleich möglichst geringer kapazitiver Belastung der H₃₁-Welle und einer folglich hohen H₃₁-Grenzfrequenz. Mit diesen Methoden erscheint es möglich, z.B. die praktisch interessierende Kombination der beiden Richtfunkbereiche von 3,4 bis 4,2 GHz und von 10,7 bis 11,7 GHz mit einer einzigen Polarisationsweiche zu beherrschen.These numerical values apply to coaxial waveguides with round inner and outer conductors. Even larger useful bandwidths can be expected with coaxial waveguides, the cross-sectional variants of which are outlined in FIG. 2. The design of these cross-sections aims at the highest possible capacitive load on the H₁₁ wave - that is, on a low H₁₁ cutoff frequency - with the lowest possible capacitive load on the H₃₁ wave and a consequently high H₃₁ cutoff frequency. With these methods it seems possible, e.g. to master the practically interesting combination of the two directional radio ranges from 3.4 to 4.2 GHz and from 10.7 to 11.7 GHz with a single polarization switch.

Als praktischer Anwendungsfall der Erfindung wird im folgenden anhand der Fig. 7 eine Breitband-Polarisationsweiche eines Zweiband-Antennensystems für die Richtfunkfrequenzbereiche 3,58 bis 4,2 GHz und 6,425 bis 7,125 GHz erläutert. Für diesen Frequenzquotienten fh / fn = 1,99 ist der Rundhohlleiter 7 wegen seiner "Mehrwelligkeit" über Frequenzbereiche, die einschließlich der notwendigen Grenzfrequenzabstände fkE11 / fkH11 = 2,08 erreichen, sowohl als Polarisationsweichenhohlleiter wie auch als Hornhohlleiter untauglich. Die unumgängliche Erweiterung des Eindeutigkeitsbereiches gelingt mit der Einführung eines Innenleiters 8, so daß nach Fig. 7 an die z.B. aus dem Aufsatz von E. Schuegraf "Neuartige Mikrowellenweichen für Zweibandantennen" aus "NTZ", Band 38 (1985), Heft 8, Seiten 554 bis 560 bekannte Doppelverzweigung 9, die der E₁₁- und H₂₁-störwellenfreien Anregung beider Polarisationen dient, ein Koaxialwellenleiter, bestehend aus dem Innenleiter 8 und dem Außenleiter 7, angeschlossen ist. Sein Eindeutigkeitsbereich kann schon mit einem relativ dünnen Innenleiter 8 von d = 7,3 mm im Außenleiter 7 mit DK = 52,2 mm auf fkE11 / fkH11 = 2,274 ausgeweitet werden. Damit ist fkH11 = 3,21 GHz (11 % unter fn = 3,58 GHz) und fkE11 = 7,3 GHz, d.h. 2,5 % über fh = 7,125 GHz, bei der sich demnach eine ausreichende Störfelddämpfung für die E₁₁-Welle ergibt. Somit wird einerseits das E₁₁-Störfeld der Doppelverzweigung 9 genügend gedämpft; und - da der Innenleiter 8 bis in die Nähe der ersten Rille eines angeschlossenen Rillenhorns verlängert ist - ist die E₁₁-Nutzanregung im Rillenbereich vom Hornhohlleiter mit der aperiodischen E₁₁-Dämpfung erwünschtermaßen entkoppelt. Im übrigen hat die Gestalt des Innenleiters 8 auch bei sehr kleinen Änderungen einen ganz entscheidenden Einfluß auf die Hornreflexion und ebenso auf die Kreuzpolarisationsunterdrückung.As a practical application of the invention, a broadband polarization filter of a two-band antenna system for the directional radio frequency ranges 3.58 to 4.2 GHz and 6.425 to 7.125 GHz is explained below with reference to FIG. 7. For this frequency quotient f h / f n = 1.99, the circular waveguide 7 is unsuitable as a polarization waveguide as well as a horn waveguide because of its “multi-ripple” over frequency ranges which, including the necessary cut-off frequency spacings f kE11 / f kH11 = 2.08. The inevitable expansion of the uniqueness range succeeds with the introduction of an inner conductor 8, so that according to FIG. 7, for example from the article by E. Schuegraf "Novel microwave switches for two-band antennas" from "NTZ", volume 38 (1985), number 8, pages 554 to 560 known double branch 9, which serves the E₁₁ and H₂₁ interference wave-free excitation of both polarizations, a coaxial waveguide, consisting of the inner conductor 8 and the outer conductor 7, is connected. Its uniqueness can be expanded to f kE11 / f kH11 = 2.274 with a relatively thin inner conductor 8 of d = 7.3 mm in outer conductor 7 with D K = 52.2 mm. This means that f kH11 = 3.21 GHz (11% below f n = 3.58 GHz) and f kE11 = 7.3 GHz, ie 2.5% above f h = 7.125 GHz, at which there is sufficient interference field attenuation for the E₁₁ wave results. Thus, on the one hand, the E₁₁ interference field of the double branch 9 is sufficiently attenuated; and - since the inner conductor 8 is extended into the vicinity of the first groove of a connected grooved horn - the E₁₁ useful excitation in the groove region is decoupled from the horn waveguide with the aperiodic E₁₁ damping as desired. In addition, the shape of the inner conductor 8 has a very decisive influence on the horn reflection and also on the cross-polarization suppression, even with very small changes.

Die Rechteckhohlleiterzugänge 10 und 11 der in Fig. 7 dargestellten Polarisationsweiche sind mit a = 2 b = 46 mm ausgeführt. Beide Hohlleitergabeln 12, 12ʹ und 13, 13ʹ und die Doppelverzweigung 9 sind wellenwiderstandshomogen, und der dazu passende Koaxialwellenleiter hat nach Fig. 3 und 4 DK = 43 mm und d = 16 mm. Diese Dimensionierung stellt den Prototyp der erfindungsgemäßen wellenwiderstandshomogenen Polarisationsweiche dar.The rectangular waveguide accesses 10 and 11 of the polarization switch shown in FIG. 7 are designed with a = 2 b = 46 mm. Both waveguide forks 12, 12' and 13, 13' and the double branch 9 are impedance homogeneous, and matching coaxial waveguide has. 3 and 4 D K = 43 mm and d = 16 mm according to FIG. This dimensioning represents the prototype of the wave resistance-homogeneous polarization switch according to the invention.

Bei der Anordnung in Fig. 7 ist der verbleibende Wellenwiderstandssprung zwischen dem zuvor ermittelten Koaxialwellenleiter (d = 16 mm, DK = 43 mm) und dem zum Horn weiterführenden mit DK = 52,2 mm und d = 7,3 mm vorteilhafterweise auf 1,6 reduziert und wird durch λ H / 4-Transformationsstufen reflexionsarm überbrückt. Der rotationssymmetrisch ausgeführte Transformator bietet viele, einfach ausführbare Korrekturmöglichkeiten, die stets für beide Polarisationen gleiche Wirkung haben.In the arrangement in FIG. 7, the remaining jump in wave resistance between the previously determined coaxial waveguide (d = 16 mm, D K = 43 mm) and that leading to the horn with D K = 52.2 mm and d = 7.3 mm is advantageously on 1.6 reduced and is bridged by λ H / 4 transformation stages with little reflection. The rotationally symmetrical transformer offers many, easily implemented correction options that always have the same effect for both polarizations.

Die im Ausführungsbeispiel nach Fig. 7 dargestellte Polarisationsweiche hat eine sehr große Nutzbandbreite. Daher ist sie besonders dazu geeignet, daß an ihre Rechteckhohlleiterarme 10 und 11 je eine Frequenzweiche für zwei oder mehr Richtfunkfrequenzbereiche unterschiedlicher Frequenzlage angeschlossen wird (direkt). Außerdem kann die Verbindung zwischen den beiden Rechteckhohleiterarmen 10 und 11 der in Fig. 7 dargestellten Polarisationsweiche und den beiden Frequenzweichen auch durch zwei lange Leitungen hergestellt werden, die z.B. als mit entsprechenden Übergängen versehene, übermodierte, biegbare Rechteckhohlleiter ausgebildet sind und die durch alle erdenklichen Maßnahmen zur Erweiterung ihres eindeutigen Übertragungsfrequenzbereiches dazu geeignet sind, jeweils mehr als einen Richtfunkbereich gleicher Polarisation vom Ort der Frequenzweichen, z.B. am Fuße des Antennenturms, dämpfungs-, reflexions- und laufzeitverzerrungsarm zur unmittelbar an der Antenne, d.h. also beispielsweise auf dem Turm angeordneten Breitband-Polarisationsweiche und umgekehrt zu übertragen.The polarization switch shown in the exemplary embodiment according to FIG. 7 has a very large useful bandwidth. Therefore, it is particularly suitable for the fact that on its rectangular waveguide arms 10 and 11 a crossover for two or more microwave radio frequency ranges different frequency position is connected (directly). In addition, the connection between the two rectangular waveguide arms 10 and 11 of the polarization crossover shown in FIG. 7 and the two crossovers can also be established by two long lines, which are designed, for example, as having corresponding transitions, overmoded, bendable rectangular waveguides and by all conceivable measures are suitable to expand their clear transmission frequency range, more than one directional radio range of the same polarization from the location of the crossovers, e.g. at the foot of the antenna tower, low attenuation, reflection and delay distortion to the broadband polarization switch arranged directly on the antenna, i.e. for example on the tower and vice versa.

Es wird noch darauf hingewiesen, daß es sich bei dem in Bild 7 des bereits erwähnten Aufsatzes von E. Schuegraf in der Zeitschrift "NTZ", Band 38 (1985), Heft 8, Seiten 554-560 dargestellten Innenleiter nicht um einen runden Innenleiter im Sinne der Erfindung handelt, mit dem eine Wellenwiderstandshomogenisierung entlang der beiden Durchgänge einer Polarisationsweiche erreicht wird, sondern um einen λ/4-Transformator. Auch der in den Figuren 2a und 2b der DE-C2-28 42 576 dargestellte Innenleiter stellt ein schmalbandiges λ/4-Trafo-Netzwerk mit Zusatzreaktanzen dar, das speziell auf eine gute Anpassung in zwei schmalen Frequenzbereichen, die relativ weit auseinander liegen (knappe Oktave), speziell zugeschnitten und mit einem gemäß der Erfindung bemessenen Innenleiter nicht vergleichbar ist.It is pointed out that the inner conductor shown in Figure 7 of the already mentioned article by E. Schuegraf in the magazine "NTZ", volume 38 (1985), number 8, pages 554-560 is not a round inner conductor in the Acting with the invention, with which a wave resistance homogenization is achieved along the two passages of a polarization filter, but rather a λ / 4 transformer. The inner conductor shown in FIGS. 2a and 2b of DE-C2-28 42 576 also represents a narrow-band λ / 4 transformer network with additional reactances, which are specifically designed for good adaptation in two narrow frequency ranges that are relatively far apart (scarce Octave), specially cut and cannot be compared with an inner conductor dimensioned according to the invention.

Nach den erfindungsgemäßen Grundsätzen können nun neue Polarisationsweichen dimensioniert werden, deren je zwei Rechteckhohlleiterarme beispielsweise mit folgenden Seitenverhältnissen ausgestattet werden (Berechnungstabelle):

Figure imgb0003

Dazu wird jeweils derjenige Koaxialwellenleiter ermittelt, der bei rundem Außen- und Innenleiter die gleiche H₁₁-Grenzfrequenz und frequenzunabhängig gleiche Welllenwiderstände aufweist wie die Rechteckhohlleiterarme. Aus dem b/a-Wert des Rechteckhohlleiterarms folgt nach Fig. 3 das Durchmesserverhältnis des wellenwiderstandsgleichen Koaxialwellenleiters zu
Figure imgb0004

Für den jeweiligen d/DK-Wert des Koaxialwellenleiters folgt aus Fig. 4 das Durchmesserverhältnis (DK / Do) mit Do als Durchmesser desjenigen Rundhohlleiters, der die gleiche H₁₁-Grenzfrequenz hat wie der jeweilige Koaxialwellenleiter
Figure imgb0005

Für den jeweiligen Koaxialwellenleiter mit d / DK ergibt sich nach Fig. 5 aus Meinke, Gundlach "Taschenbuch der Hochfrequenztechnik", 2. Auflage, Seite 309 der Eindeutigkeitsbereich fkE11 / fkH11 bzw. fkH31 / fkH11:
Figure imgb0006

Als konkretes Beispiel werden für den 4-GHz-Rechteckhohlleiter mit a = 58,17 mm und den obigen Seitenverhältnissen folgende vollständige Dimensionierungen angegeben.
Figure imgb0007
According to the principles of the invention, new polarization switches can now be dimensioned, each of which has two rectangular waveguide arms, for example, with the following aspect ratios (calculation table):
Figure imgb0003

For this purpose, the coaxial waveguide is determined in each case which has the same H₁₁ cutoff frequency and frequency-independent same waveguide resistances as the rectangular waveguide arms in the case of a round outer and inner conductor. According to FIG. 3, the diameter ratio of the coaxial waveguide, which is the same as the wave resistance, follows from the b / a value of the rectangular waveguide arm
Figure imgb0004

For the respective d / D K value of the coaxial waveguide follows from Fig. 4, the diameter ratio (D K / D o ) with D o as the diameter of that circular waveguide that has the same H₁₁ cut-off frequency as the respective coaxial waveguide
Figure imgb0005

According to FIG. 5 from Meinke, Gundlach "Taschenbuch der Hochfrequenztechnik", 2nd edition, page 309, the uniqueness range f kE11 / f kH11 or f kH31 / f kH11 results for the respective coaxial waveguide with d / D K :
Figure imgb0006

As a concrete example, the following complete dimensions are given for the 4 GHz rectangular waveguide with a = 58.17 mm and the above aspect ratios.
Figure imgb0007

Claims (17)

  1. Broadband polarisation junction for separating orthogonally linearly polarised electromagnetic microwaves, comprising a branching device which divides a waveguide (7) carrying the two orthogonal polarisations into two rectangular waveguide arms (10,11), in each case now only carrying one of these polarisations, of mutually identical characteristic line impedance, characterised in that the waveguide (7) carrying the two polarisations exhibits a characteristic line impedance, the value of which at least approximately corresponds to that of the two rectangular waveguide arms (10,11), for which purpose two conditions are met, namely, on the one hand, matching the cross-sectional factors in the characteristic impedance equations of the waveguides to be matched to one another and, on the other hand, matching the cut-off frequencies of the wave types to be changed into one another in these waveguides, and in that transformation measures requiring only short constructional lengths are provided for matching remaining reactances in the waveguides.
  2. Polarisation junction according to Claim 1, characterized in that, in the case of a spatially symmetric excitation of both linear polarisations with in each case one electrically balanced rectangular waveguide fork (12,12',13,13'), in each case consisting of two fork part arms, the fork part arms open with half the height b of the external accesses to the rectangular waveguide arms and with unchanged wide side a into the waveguide (7) carrying the two orthogonal polarisations.
  3. Polarisation junction according to Claim 1, characterised in that at least four metal ribs (2,3,4,5) are symmetrically arranged in the longitudinal direction of the waveguide on the inside surface of the outer wall (1), constructed to be circular or square, of the waveguide carrying the two polarisations.
  4. Polarisation junction according to one of the preceding claims, characterised in that, in the inner space of the outer conductor (1) of the waveguide of circular or square cross-section, an inner conductor (6), which is arranged concentrically, that is to say on the centre longitudinal axis, is provided which is cross-sectionally dimensioned and possibly stepped in such a manner that the given conditions for homogeneous approximation or homogenisation of the characteristic impedance are met.
  5. Polarisation junction according to Claim 4, characterised in that the accesses to the two rectangular waveguide arms (10,11) are constructed with a height which is significantly reduced compared with the normal height b = a/2
    Figure imgb0009
    , and in that the characteristic line impedance of the waveguide (7) carrying the two orthogonal polarisations is matched to the characteristic line impedance of these rectangular waveguide arm accesses, reduced in waveguide height, by increased capacitive loading by means of a thicker inner conductor (8) in the waveguide carrying the two orthogonal polarisations and/or by means of longitudinal metal ribs on the inside on its outer wall.
  6. Polarisation junction according to Claims 4 or 5, characterised in that the inner conductor (8) is mounted in the forking zone of the three polarisation junction waveguides, for example at a double branch (9), and is there permanently, that is to say conductively, connected to the waveguide contours.
  7. Polarisation junction according to one of Claims 4 to 6, characterised in that the inner conductor (8) exhibits a circular cross-section.
  8. Polarisation junction according to one of Claims 4 to 6, characterised in that the inner conductor (6) exhibits a cruciform cross-section.
  9. Polarisation junction according to one of Claims 4 to 6, characterised in that the inner conductor (6) exhibits a square cross-section.
  10. Polarisation junction according to one of Claims 4 to 6, characterised in that the inner conductor (6) exhibits a circular cross-section with symmetrically arranged longitudinal ribs.
  11. Polarisation junction according to one of Claims 4 to 10, characterised in that the inner conductor (8) is extended in the outer conductor (7) with circular or square cross-section past the actual polarisation junction area in the direction of the connected load.
  12. Polarisation junction according to Claim 11, characterised in that the inner conductor terminates gradually, stepped or abruptly in the load, for example a horn radiator, particularly a corrugated horn radiator, in the horn radiator neck, in the corrugated area or outside the horn radiator aperture.
  13. Polarisation junction according to one of Claims 4 to 12, characterised in that the inner conductor is constructed to be hollow so that waves of the same or different type and having the same or a different frequency as those waves already existing outside the inner conductor can be carried therein.
  14. Polarisation junction according to Claim 13, characterised in that the hollow inner space of the inner conductor, in turn, is suitably provided with conductive and/or dielectric material.
  15. Polarisation junction according to Claim 12 or 14, characterised in that in the hollow inner space of the inner conductor and/or near to its surface, coupling devices for waves are arranged which are coupled out of the space outside the inner conductor into its interior and conversely.
  16. Polarisation junction according to one of the preceding claims, characterised in that one frequency filter each is directly connected to both polarisation-selective rectangular waveguide arms (10,11).
  17. Polarisation junction according to one of Claims 1 to 15, characterised in that one frequency filter each is connected to both polarisation-selective rectangular waveguide arms (10,11) via in each case a long line which is constructed as overmoded rectangular waveguide provided with corresponding transitions.
EP88104292A 1987-03-24 1988-03-17 Broad-band polarizing junction Expired - Lifetime EP0285879B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88104292T ATE90813T1 (en) 1987-03-24 1988-03-17 BROADBAND POLARIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3709558 1987-03-24
DE3709558 1987-03-24

Publications (2)

Publication Number Publication Date
EP0285879A1 EP0285879A1 (en) 1988-10-12
EP0285879B1 true EP0285879B1 (en) 1993-06-16

Family

ID=6323816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88104292A Expired - Lifetime EP0285879B1 (en) 1987-03-24 1988-03-17 Broad-band polarizing junction

Country Status (4)

Country Link
EP (1) EP0285879B1 (en)
AT (1) ATE90813T1 (en)
AU (1) AU614279B2 (en)
DE (1) DE3881741D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284911B1 (en) * 1987-03-24 1992-06-03 Siemens Aktiengesellschaft Broad-band polarizing junction
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
DE9107191U1 (en) * 1991-06-11 1991-08-08 Siemens Ag, 8000 Muenchen, De
FR2907601B1 (en) 2006-10-24 2009-11-20 Satimo Sa ULTRA-WIDE ORTHOGONAL JUNCTION OPERATING STRAP COUPLER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150333A (en) * 1960-02-01 1964-09-22 Airtron Division Of Litton Pre Coupling orthogonal polarizations in a common square waveguide with modes in individual waveguides
DE2521956C3 (en) * 1975-05-16 1978-07-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Polarization switch
FR2582449B1 (en) * 1979-07-24 1988-08-26 Thomson Csf BROADBAND POLARIZATION DIPLEXER DEVICE AND ANTENNA ASSOCIATED WITH A RADAR OR A COUNTER-MEASURING DEVICE COMPRISING SUCH A DEVICE
EP0196065B1 (en) * 1985-03-27 1990-10-31 Siemens Aktiengesellschaft Polarization filter for hf devices
EP0284911B1 (en) * 1987-03-24 1992-06-03 Siemens Aktiengesellschaft Broad-band polarizing junction

Also Published As

Publication number Publication date
AU1339988A (en) 1988-09-22
ATE90813T1 (en) 1993-07-15
DE3881741D1 (en) 1993-07-22
AU614279B2 (en) 1991-08-29
EP0285879A1 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
EP2830156B1 (en) Waveguide radiator, group antenna radiator and synthetic aperture radar radiator
DE2656729C3 (en) Broadband dipole antenna
EP1239543A1 (en) Flat antenna for the mobil satellite communication
DE2443166A1 (en) SYSTEM SWITCH FOR THE SEPARATION OF TWO SIGNALS, EACH OF TWO DOUBLE POLARIZED FREQUENCY BANDS
DE3013903A1 (en) ANTENNA FOR TWO FREQUENCY BANDS
DE2738326A1 (en) MICROWAVE ARRANGEMENT FOR CONVERTING A HOLLOW CONDUCTOR STRUCTURE INTO A MICROSTRIPE CONDUCTOR STRUCTURE
DE837404C (en) Connection piece for connecting an earth symmetrical circuit with an earth asymmetrical one
DE10022107A1 (en) Integrated antenna for mobile phones
DE2930932A1 (en) RILLED HORN SPOTLIGHT
DE102006057144B4 (en) Waveguide radiators
DE2136759C2 (en) Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole
EP0154692A1 (en) Polarisation-selective circuit for two frequency bands
DE3111106C2 (en)
EP0285879B1 (en) Broad-band polarizing junction
DE2521956C3 (en) Polarization switch
DE2842576A1 (en) POLARIZATION SOFT
DE60004703T2 (en) BROADBAND, SCISSOR-SHAPED ANTENNA
DE2719283A1 (en) ANTENNA FEEDING SYSTEM FOR DOUBLE POLARIZATION
DE102004024800A1 (en) Multiband antenna for motor vehicles has at least one parasitic element in addition to main radiator, whereby it also radiates in at least one other frequency band in addition to main frequency band
EP0284911A1 (en) Broad-band polarizing junction
DE2708271C2 (en) Polarization switch
DE19715726A1 (en) Antenna device, especially for mobile communication instrument
DE2431278C2 (en) Quadrupole filter
DE2135611C2 (en) Mode coupler for direction finding systems
EP0122391B1 (en) Broadband microwave radiator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19910703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930616

Ref country code: FR

Effective date: 19930616

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930616

Ref country code: BE

Effective date: 19930616

REF Corresponds to:

Ref document number: 90813

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3881741

Country of ref document: DE

Date of ref document: 19930722

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88104292.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

EUG Se: european patent has lapsed

Ref document number: 88104292.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010312

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050317