EP0181587B1 - Mélanges polymères thermoplastiques antistatiques ou électriquement semi-conducteurs, procédé pour leur fabrication et leur mise en oeuvre - Google Patents

Mélanges polymères thermoplastiques antistatiques ou électriquement semi-conducteurs, procédé pour leur fabrication et leur mise en oeuvre Download PDF

Info

Publication number
EP0181587B1
EP0181587B1 EP85114008A EP85114008A EP0181587B1 EP 0181587 B1 EP0181587 B1 EP 0181587B1 EP 85114008 A EP85114008 A EP 85114008A EP 85114008 A EP85114008 A EP 85114008A EP 0181587 B1 EP0181587 B1 EP 0181587B1
Authority
EP
European Patent Office
Prior art keywords
polymer
copolymer
polymers
ethylene
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85114008A
Other languages
German (de)
English (en)
Other versions
EP0181587A3 (en
EP0181587A2 (fr
Inventor
Bernhard Dr. Wessling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zipperling Kessler GmbH and Co
Original Assignee
Zipperling Kessler GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zipperling Kessler GmbH and Co filed Critical Zipperling Kessler GmbH and Co
Priority to AT85114008T priority Critical patent/ATE43745T1/de
Publication of EP0181587A2 publication Critical patent/EP0181587A2/fr
Publication of EP0181587A3 publication Critical patent/EP0181587A3/de
Application granted granted Critical
Publication of EP0181587B1 publication Critical patent/EP0181587B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • thermoplastic polymers which are electrical insulators per se.
  • Mainly non-polymeric additives such as in particular antistatic agents, can be used to provide statically easily chargeable polymers with antistatic properties.
  • the surface resistance can be reduced from 10 12 to 10 16 Q to approximately 10 8 to 10 10 Q (cf. DE-PS-3 347 704.3).
  • a further reduction in the specific resistance to approx. 10 1 to 10 7 Qcm semiconductor to antistatic finish
  • conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)).
  • These additives are used in amounts of approximately 10 to 30% by weight. They not only lead to a superficial antistatic finish, but also to a reduction in volume resistance.
  • the increase in the electrical conductivity from the initial value of the non-conductive polymer to a value characteristic of the conductive substance is not linearly dependent on the concentration of the substance added. Rather, a more or less steep increase in conductivity is observed at the breakthrough point (percolation point), which is due to the fact that the particles of the conductive substance are now sufficiently close or touching, thereby forming continuous current paths or conductor tracks.
  • the breakthrough point is extremely dependent on the geometry, in particular the ratio of length to diameter, and the surface of the added particles, on the type of polymer and on the dispersion method used.
  • the percolation point is the turning point of the curve when the logarithm of the conductivity is plotted against the concentration of the conductive additive.
  • DE-OS-2 901 758 and 2 901 776 describe the production of a network of conductive carbon black (through which the current flows) in a molding compound made of polyethylene as a matrix.
  • the molding compound described is only suitable for the discontinuous production of plates in the pressing process, but not for continuous processing by extrusion or other conventional processing methods for thermoplastics, since the network and thus the conductivity are destroyed.
  • DE-OS-3 208 841 and 3 208 842 disclose the two- to three-stage production of conductive black-containing polyvinyl chloride blends with other polymers, in particular ethylene-vinyl acetate copolymers.
  • the thermoplastic composition should contain 15% by weight of carbon black, the polymer components and the process serve to improve the processability.
  • DE-OS 25 17 358 mentions the addition of rubber to increase the impact strength without reducing the proportion of soot.
  • the carbon black is added to a previously produced homogeneous polymer / rubber mixture.
  • DE-AS-2 808 675 describes a process in which polyethylene with conductive carbon black is added to the polyoxymethylene resin. In this way, however, only surface resistances of more than 10 6 Q can be achieved.
  • the additional quantities required to achieve percolation are approximately 10 to 20% by weight of carbon black or approximately 30 to 50% by weight of metal powder, depending on the geometry and surface of the particles, the interfacial tension of the polymer and the temperature (cf. also Miyasaka, loc. cit., whereby the theoretical values have so far not been achievable).
  • the invention relates to antistatic or electrically semiconducting thermoplastic polymer blends based on organic polymers and electrically conductive substances, which are characterized in that they contain two partially compatible thermoplastic polymers A and B, of which the polymer A at a given temperature compared to the polymer B. has a lower melt viscosity and solubility parameter between which a difference of about 0.3 to 1.5 (cal / cm 3) 1/2 exists, wherein the polymer a forming the continuous phase substantially contains the electrically conductive substances.
  • polymer A and / or polymer B can be mixtures of thermoplastic polymers which are fully compatible with one another.
  • examples of such mixtures are styrene-acrylonitrile Copolymer (SAN) with chlorinated polyethylene (PEC) and polyvinyl butyral (PVB) with polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA).
  • the conductive additive is essentially in polymer A, which forms the continuous phase of the blend.
  • polymer A is normally in a deficit, i.e. a weight ratio of polymer A: polymer B ⁇ 1: 1 is used.
  • the proportion of polymer A in the mixture of polymers A and B is preferably about 20 to 40% by weight.
  • the amount of polymer A depends on the amount of conductive additives present, since, based on the total blend, the amount of polymer A and conductive additives is preferably less than 50% by weight, for example 10 to 49% by weight should.
  • the electrically conductive auxiliary is preferably conductive carbon black with a BET surface area> 250 m 2 / g and with a dibutylphthalate absorption> 140 cm 3/100 g use.
  • carbon fibers, metal powder or fibers, electrically conductive organic polymers or non-polymeric organic conductors are also suitable.
  • Conductive polymers are understood to mean polyconjugated systems as used in polyacetylene (PAc), poly-1,3,5, ... n-substituted polyacetylenes, acetylene copolymers, and 1,3-tetramethylene-bridged polymers, e.g. B.
  • polymers and similar derivatives of polyacetylene resulting from the polymerization of 1,6-heptadiin also include the different modifications of polyparaphenylenes (PPP), the different modifications of polypyrroles (PPy), the different modifications of polyphthalocyanines (PPhc) and other polymeric organic conductors.
  • PPP polyparaphenylenes
  • PPy polypyrroles
  • PPhc polyphthalocyanines
  • organic conductors are understood to mean conductive non-polymeric organic substances, in particular complex salts or charge transfer complexes, e.g. B. the different modifications of tetracyanoquinodimethane (TCNQ) salts.
  • Carbon black is preferably added to the polymer blends according to the invention in an amount of 0.5 to 10, in particular 4 to 10% by weight, based on the polymer blend.
  • the required content may be higher and up to 30 wt .-%; however, it is regularly lower than in the previously known products, in which the conductive additive is present in the polymer in a uniformly dispersed manner.
  • Surface resistance values of 10 to 10 6 S2 are achieved.
  • polycaprolactone can be incorporated into almost all polymers, with single-phase microstructures (with styrene / acrylonitrile copolymer, polyvinyl chloride or polycarbonate as polymer B), drop structures (with polyethylene or ethylene-vinyl acetate as polymer B) or the particularly preferred ones in the light microscope Can form conductor tracks (with polyether polyurethane or acrylonitrile / methacrylate / butadiene copolymer as polymer B). Even with an addition of the order of 1 to 3% by weight, a surface resistance of approximately 10 5 to 10 8 2 is obtained.
  • the polymer blends according to the invention can also contain conventional additives such as stabilizers, pigments, lubricants, etc.
  • conventional additives such as stabilizers, pigments, lubricants, etc.
  • chemical crosslinkers e.g. B. a preferably liquid peroxide, and thereby to achieve a crosslinking of the polymers in the subsequent processing of the blends with heating, which brings about a mechanical stabilization of the conductor tracks achieved according to the invention.
  • the crosslinking agent is particularly preferably added to polymer A or to the conductivity concentrate consisting of polymer A and the conductive substances, in order to stabilize the conductor tracks in the matrix made of polymer B.
  • the procedure can be followed in a first step by dispersing the conductive substances in a solution or melt of polymer A or a prepolymer for polymer A, if appropriate removing the solvent, and then in a second step prepared conductivity melt with the polymer B and polymerized when using a prepolymer.
  • suitable polymer combinations it is also possible to disperse the conductive substances directly into a melt of polymers A and B.
  • the first-mentioned method of operation is particularly suitable, for example, for the combination of ethylene-vinyl acetate (polymer A) and polyvinyl chloride (polymer B), since the preparation of a conductivity concentrate from this polymer A and carbon black and subsequent melt mixing with the polymer B gives substantially better results, in particular one even lower soot content with the same electrical conductivity, obtained than with the one-step process.
  • polymer A ethylene-vinyl acetate
  • polymer B polyvinyl chloride
  • the mechanical properties of the polymer blends according to the invention are excellent. In particular, they show very good impact strength values ("without break").
  • Conductivity concentrates which contain polymer A and a conductive substance are used for the production process described above.
  • conductive carbon black in an amount of more than 15% by weight, preferably about 20% by weight
  • metal powder in an amount of more than 50% by weight
  • organic conductive polymer or a non-polymeric organic conductor be present in an amount of more than 10, preferably about 15% by weight.
  • crosslinking it may be desirable to crosslink the polymers to stabilize the structure. If chemical crosslinking agents are added to the polymer blend, this can be done by heating during the manufacture of the blend or during its processing. On the other hand, it is also possible to achieve crosslinking in a manner known per se by irradiation.
  • conductive substances such as conductive carbon black and mix this with caprolactam (as polymer B) and a catalyst in a manner known per se.
  • caprolactam as polymer B
  • a catalyst in a manner known per se.
  • a conductive, thermoplastically processable block copolymer is obtained in which the blocks derived from the prepolymer form a continuous conductor track in the matrix.
  • specific conductivity values of around 10 2 to 10 4 Qcm are achieved with a prepolymer content of 10 to 20% by weight and a carbon black content in the prepolymer of approximately 20%, corresponding to a carbon black content in the blend of 2 to 4% by weight.
  • the desired coupling reaction may need to be catalyzed, e.g. B. transesterification or transamidation reactions with p-toluenesulfonic acid.
  • EP-A-168 620 describes the crystallization of N-methylquinoline-TCNQ dissolved in polycaprolactone.
  • TCNQ salt crystallizes out, however, some of the phases separate again, since the mixture must be kept thermoplastic for long periods without shearing and the compatibility is not sufficient to maintain the microscopic network structure under these conditions.
  • the addition of p-toluenesulfonic acid stabilizes the interfaces by catalytic transesterification.
  • the polymer blends according to the invention can, if appropriate, first be granulated and supplied as granules to further processors. On the other hand, they can also be processed directly into finished products.
  • the blends are particularly suitable for the production of antistatic, electrically conductive coatings, foils, molded parts or moldings.
  • the films or molded parts produced from the polymer blends are mechanically stretched, this leads to an alignment of the conductor tracks, with the result that the stretched materials show a preferred flow direction, which can be particularly advantageous for various applications.
  • the granulate By extrusion, the granulate could be used to produce thermoformed sheets with a surface resistance of 0.5 to 5.10 4 ⁇ .
  • the plates had an impact strength (DIN 53453) "without break” and a notched impact strength of 14 mJ / mm 2 .
  • Example 1 As described in Example 1, 79% by weight of ethylene-vinyl acetate copolymer (with a vinyl acetate content of 7%), in addition to conventional stabilizers and processing aids, were admixed with 20% by weight of carbon black and mixed with one another at 170.degree.
  • the conductivity concentrate obtained in this way (specific resistance according to the four-point method approx. 5 Qcm) was granulated in a second operation with stabilized polyvinyl chloride granules (K value 67 or 70) or immediately to a finished product (e.g. a plate). extruded, the melt temperature was about 185 to 190 ° C.
  • the semiconducting polymer blend obtained or the finished plate showed an impact strength "without break" and the electrical properties listed in Table 1 below.
  • the conductivity carbon black is largely in the polystyrene phase, while the SBS radial block copolymer is dispersed in the matrix without interrupting the conductivity bridges.
  • the correct dispersion was checked by mixing three parts of the polyacetylene-polycaprolactone concentrate with 100 parts of polycaprolactone on a roller mill and squeezing them thinly in a laboratory press. A deep blue color appeared and no black dots (polyacetylene agglomerates) were visible.
  • the polyacetylene concentrate was extruded on a single-screw extruder with the polymers B listed in the table below to form a polymer blend, with either a granulate or a finished product being produced.
  • the product obtained can, for example, be made more conductive ("doped") by treatment with iodine. The results shown in the following table were obtained.
  • a mixture of 1.2% TCNQ complex in PCL is mixed in an internal mixer with the same amount of EVA (30% VA) at 130 - 160 °.
  • the mass obtained is pressed out into a film. This is pressed at 190 ° C. for 30 seconds, the TCNQ complex dissolving.
  • the film is then immediately annealed in hot water at 95 ° C. for 10 minutes and then quenched in water at 15 ° C. Tempering at 95 ° produces tuft-shaped, very long TCNQ complex crystal needles.
  • the film has a surface resistance of 3 x 10 8 ⁇ (without TCNQ: ca.1012Q).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Conductive Materials (AREA)

Claims (15)

1. Mélanges de polymères thermoplastiques antistatiques ou semiconducteurs de l'électricité, à base de polymères organiques, de substances conductrices de l'électricité et d'additifs usuels, caractérisés en ce qu'ils contiennent deux polymères thermoplastiques A et B partiellement compatibles, dont le polymère A présente, à une temperarature donnée, une plus faible viscosité à chaud que le polymère B, et entre lesquels existe une différence d'environ 0,3 à 1,5 (cal/cm3)1/2 de paramètre de solubilité, le polymère A, qui constitue la phase continue, contenant essentiellement les substances conductrices de l'électricité.
2. Mélanges de polymères selon la revendication 1, caractérisés en ce qu'ils contiennent, en tant que polymères A et B, l'une des combinaisons copolymère éthylène/acétate de
vinyle-polychlorure de vinyle,
copolymère éthylène/acétate de vinyle-polyéthylène,
polyéthylène chloré-copolymère acrylonitrile/butadiène/styrène,
copolymère séquencé styrène/butadiène/styrène-polyéthylène,
polystyrène-copolymère séquencé styrène/butadiène/styrène,
copolymère polyamide-polyamide, polyamide-polyoxyméthylène,
copolymère éthylène/acétate de vinyle-copolymère acrylonitrile/butadiène/styrène,
poly-a-méthylstyrène-polychlorure de vinyle,
copolymère éthylène/acétate de vinyle/monoxyde de carbone-polychlorure de vinyle,
copolymère éthylène/acétate de vinyle/monoxyde de carbone-polyuréthanne,
polyuréthanne-polyamide, polyuréthanne-polycarbonate,
polycaprolactone-polyéther polyuréthanne,
polyester polyuréthanne-polychlorure de vinyle,
polyuréthanne-copolymère acrylonitrile/butadiène/styrène,
polycaprolactone-copolymère acrylonitrile/méthacrylate/butadiène,
polycaprolactone-polyuréthanne ou polycaprolactone copolymère éthylène/acétate de vinyle.
3. Mélanges de polymères selon la revendication 1 ou 2, caractérisés en ce que les polymères A et/ou B sont chacun des mélanges de polymères thermoplastiques compatibles entre eux.
4. Mélanges de polymères selon l'une des revendications 1 à 3, caractérisés en ce que le rapport pondéral polymère A : polymère B est < 1 : 1.
5. Mélanges de polymères selon l'une des revendications 1 à 4, caractérisé en ce qu'ils contiennent, en tant que substances conductrices, une poudre ou des fibres métalliques, des fibres de carbone, du noir de carbone conducteur ayant une surface BET > 250 m2/g et une absorption de phtalate de dibutyle > 140 CM 2/100 g, des polymères organiques conducteurs de l'électricité ou des conducteurs organiques non polymères, ou des mélanges de ceux-ci.
6. Mélanges de polymères selon l'une des revendications 1 à 5, caractérisés en ce qu'ils contiennent les substances conductrices en une quantité de 0,5 à 10 % en poids, par rapport au mélange de polymères.
7. Mélanges de polymères selon les revendications 1 à 5, caractérisés en ce qu'ils contiennent des agents chimiques de réticulation pour un ou plusieurs des polymères.
8. Procédé pour la préparation des mélanges de polymères selon les revendications 1 à 7, caractérisé en ce que
a) dans une première étape, on disperse les substances conductrices dans une solution ou masse fondue du polymère A ou d'un prépolymère pour le polymère A, éventuellement on élimine le solvant et ensuite, dans une seconde étape, on fait fondre le concentré conférant la conductibilité ainsi préparé, ou, dans le cas d'utilisation d'un prépolymère, on le polymérise, avec le polymère B, ou
b) on disperse les substances conductrices directement dans une masse fondue constituée des polymères A et B, et éventuellement on granule le mélange de polymères ainsi obtenu.
9. Procédé selon la revendication 8, caractérisé en ce que l'on applique le procédé b) à la combinaison de polymères polystyrène (polymère A) et copolymère styrène/butadiène/ styrène (polymère B).
10. Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que, pour la réticulation des polymères, on chauffe le mélange de polymères contenant l'agent chimique de réticulation ou on irradie le mélange de polymères.
11. Procédé selon l'une des revendications 8 à 10, caractérisé en ce que l'on engendre la compatibilité partielle requise des polymères par réaction chimique pendant la préparation thermoplastique du mélange ou pendant le formage thermoplastique de celui-ci.
12. Procédé selon la revendication 11, caractérisé en ce que l'on effectue, sur ou entre des polymères A et B réactifs, des réactions d'addition, d'estérification, de transestérification, de saponification, de transamidation et/ou d'élimination, catalysées ou non catalysées.
13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce que l'on utilise, en tant que polymères A et B, l'une des combinaisons terpolymère éthylène modifié avec de l'anhydride maléique/propylène/diène- polyamide,
polyéthylène modifié avec de l'anhydride maléique-polyamide,
polyéthylène modifié avec de l'anhydride maléique-polystyrène,
polystyrène modifié avec de l'anhydride maléique-polyéthylène,
polycaprolactone-polyéthylène modifié avec de l'anhydride maléique,
polycaprolactone-terpolymère éthylène modifié avec de l'anhydride maléique/propylène/ diène,
polycaprolactone-polystyrène modifié avec de l'anhydride maléique,
poly(alcool vinylique)-copolymère éthylène/acétate de vinyle,
propionate de cellulose-copolymère éthylène/acétate de vinyle,
propionate de cellulose-polytéréphtalate d'éthylène,
propionate de cellulose-polycarbonate,
copolymère éthylène/acétate de vinyle-polytéréphtalate d'éthylène, ou copolymère éthylène/acétate de - vinyle-polycarbonate.
14. Utilisation des mélanges de polymères selon l'une des revendications 1 à 7, pour la préparation de revêtements, feuilles, pièces moulées ou corps moulés, à volume constant, antistatiques ou semiconducteurs de l'électricité.
15. Utilisation selon la revendication 13, caractérisée en ce que l'on étire les feuilles, pièces moulées ou corps moulés, pour l'obtention d'une direction préférentielle pour le passage du courant.
EP85114008A 1984-11-07 1985-11-04 Mélanges polymères thermoplastiques antistatiques ou électriquement semi-conducteurs, procédé pour leur fabrication et leur mise en oeuvre Expired EP0181587B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85114008T ATE43745T1 (de) 1984-11-07 1985-11-04 Antistatische bzw. elektrisch halbleitende thermoplastische polymerblends, verfahren zu deren herstellung und deren verwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3440617 1984-11-07
DE3440617A DE3440617C1 (de) 1984-11-07 1984-11-07 Antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends,Verfahren zu deren Herstellung und deren Verwendung

Publications (3)

Publication Number Publication Date
EP0181587A2 EP0181587A2 (fr) 1986-05-21
EP0181587A3 EP0181587A3 (en) 1986-12-30
EP0181587B1 true EP0181587B1 (fr) 1989-05-31

Family

ID=6249690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114008A Expired EP0181587B1 (fr) 1984-11-07 1985-11-04 Mélanges polymères thermoplastiques antistatiques ou électriquement semi-conducteurs, procédé pour leur fabrication et leur mise en oeuvre

Country Status (4)

Country Link
US (1) US4929388A (fr)
EP (1) EP0181587B1 (fr)
AT (1) ATE43745T1 (fr)
DE (2) DE3440617C1 (fr)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296263A1 (fr) * 1987-06-23 1988-12-28 The Dow Chemical Company Composite de polymère-latex électroconducteur
WO1989000755A1 (fr) * 1986-01-14 1989-01-26 Raychem Corporation Composition polymere conductrice
ATE103095T1 (de) * 1986-01-14 1994-04-15 Raychem Corp Leitfaehige polymerzusammensetzung.
JP2578881B2 (ja) * 1987-02-25 1997-02-05 昭和電工株式会社 ラジカル重合性組成物
US5106538A (en) * 1987-07-21 1992-04-21 Raychem Corporation Conductive polymer composition
GB2214511A (en) * 1988-01-29 1989-09-06 Zipperling Kessler & Co A method of preparing compositions with optimized conductivity behaviour
US5213736A (en) * 1988-04-15 1993-05-25 Showa Denko K.K. Process for making an electroconductive polymer composition
JP2603511B2 (ja) * 1988-04-15 1997-04-23 昭和電工株式会社 導電性プラスチック
US5045141A (en) * 1988-07-01 1991-09-03 Amoco Corporation Method of making solderable printed circuits formed without plating
US5498761A (en) * 1988-10-11 1996-03-12 Wessling; Bernhard Process for producing thin layers of conductive polymers
CA2004760C (fr) * 1988-12-09 1998-12-01 Norio Mori Element composite thermosensible et generateur thermique contenant cet element
US5130371A (en) * 1989-10-24 1992-07-14 Exxon Chemical Patents Inc. Crystalline polyolefin graft copolymers
AU6548590A (en) * 1989-10-24 1991-05-31 Exxon Chemical Patents Inc. Graft copolymer of polylactone on a polymer backbone
JP2883128B2 (ja) * 1989-11-13 1999-04-19 三菱化学株式会社 導電性熱可塑性樹脂組成物
US5209872A (en) * 1989-12-25 1993-05-11 Shin-Etsu Chemical Co., Ltd. Rubber composition and method for making
DE3943420A1 (de) * 1989-12-30 1991-07-04 Zipperling Kessler & Co Verfahren zur herstellung von antistatisch bzw. elektrisch leitfaehig ausgeruesteten polymeren zusammensetzungen
US5476612A (en) * 1989-12-30 1995-12-19 Zipperling Kessler & Co., (Gmbh & Co.). Process for making antistatic or electrically conductive polymer compositions
US5217649A (en) * 1991-01-31 1993-06-08 Americhem, Inc. Electrically conductive blends of intrinsically conductive polymers and thermoplastic polymers containing sulfonamide plasticizer and acidic surfactant
JPH0826231B2 (ja) * 1991-08-16 1996-03-13 インターナショナル・ビジネス・マシーンズ・コーポレイション 導電性ポリマー材料及びその使用
ATE180594T1 (de) * 1991-10-08 1999-06-15 Americhem Inc Verfahren zur herstellung eines eigenleitfähigen polymeren und dieses enthaltende gegenstände aus thermoplastischer polymermischung
US5494609A (en) * 1992-04-15 1996-02-27 Kulkarni; Vaman G. Electrically conductive coating compositions and method for the preparation thereof
EP0578245A3 (en) * 1992-07-10 1994-07-27 Mitsubishi Petrochemical Co Process for producing a resin compound
CN1086929A (zh) * 1992-09-04 1994-05-18 单一检索有限公司 挠性塑料电极及其制造方法
DE4317010A1 (de) * 1993-05-17 1994-11-24 Zipperling Kessler & Co Dispergierbares intrinsisch leitfähiges Polymer und Verfahren zu dessen Herstellung
DE9308242U1 (de) * 1993-06-02 1993-08-05 Benecke-Kaliko AG, 30419 Hannover Ein- oder mehrschichtige Oberflächenfolie zum Aufkaschieren auf Substrate
US5597864A (en) * 1993-06-02 1997-01-28 Benecke-Kaliko Ag Single-layer or multiple-layer surface foil for laminating on substrates
US5472639A (en) * 1993-08-13 1995-12-05 The Dow Chemical Company Electroconductive foams
US5464570A (en) * 1993-10-25 1995-11-07 Delco Electronics Corporation THFA/PDP thermoset thick films for printed circuits
EP0685527B1 (fr) * 1994-06-01 1997-03-05 General Electric Company Composition thermoplastique de mélanges compatibilisés de polyphenylenether-polyamide et noir de carbon conducteur d'électricité
FR2721324B1 (fr) * 1994-06-16 1996-08-23 Tiag Ind Matériau polymère antistatique.
US5595689A (en) * 1994-07-21 1997-01-21 Americhem, Inc. Highly conductive polymer blends with intrinsically conductive polymers
US5484837A (en) * 1994-10-25 1996-01-16 Far Eastern Textile, Ltd. Black masterbatch
US5606983A (en) * 1994-12-02 1997-03-04 Monty; Lawrence P. Hair care appliance with thermochromic hair curlers and method of manufacturing same
US5700398A (en) * 1994-12-14 1997-12-23 International Business Machines Corporation Composition containing a polymer and conductive filler and use thereof
US5629050A (en) * 1995-08-30 1997-05-13 The Dow Chemical Company Process for preparing coated articles
US5844037A (en) * 1996-07-24 1998-12-01 The Dow Chemical Company Thermoplastic polymer compositions with modified electrical conductivity
US5733480A (en) * 1996-09-24 1998-03-31 Quantum Chemical Corporation Semiconductive extrudable polyolefin compositions and articles
US5902517A (en) * 1996-10-28 1999-05-11 Cabot Corporation Conductive polyacetal composition
US5843340A (en) * 1997-03-17 1998-12-01 General Electric Company Method for the preparation of conductive polyphenylene ether-polyamide compositions
US5908898A (en) * 1998-02-12 1999-06-01 Monsanto Company Intrinsically conductive polymer blends having a low percolation threshold
DE19814263A1 (de) * 1998-03-31 1999-10-07 Basf Ag Formkörper aus Polyoxymethylenen
US6277303B1 (en) 1998-07-10 2001-08-21 Pirelli Cable Corporation Conductive polymer composite materials and methods of making same
US6514608B1 (en) 1998-07-10 2003-02-04 Pirelli Cable Corporation Semiconductive jacket for cable and cable jacketed therewith
US6284832B1 (en) 1998-10-23 2001-09-04 Pirelli Cables And Systems, Llc Crosslinked conducting polymer composite materials and method of making same
WO2000024816A1 (fr) 1998-10-23 2000-05-04 Pirelli Cables And Systems Llc Materiaux composites polymeres conducteurs reticules et procede de production
US6610773B1 (en) 1998-12-09 2003-08-26 General Electric Company Conductive, low warp polyetherimide resin compositions
US6315956B1 (en) 1999-03-16 2001-11-13 Pirelli Cables And Systems Llc Electrochemical sensors made from conductive polymer composite materials and methods of making same
US6331353B1 (en) * 1999-08-17 2001-12-18 Pirelli Cables And Systems Llc Stranded conductor filling compound and cables using same
US6441084B1 (en) 2000-04-11 2002-08-27 Equistar Chemicals, Lp Semi-conductive compositions for wire and cable
US6777496B2 (en) * 2000-11-28 2004-08-17 Honeywell International Inc. Polymeric additives and polymeric articles comprising said additive
JP2002173602A (ja) * 2000-12-05 2002-06-21 Learonal Japan Inc 非帯電性樹脂複合材料および該樹脂複合材料の製造方法
US6455771B1 (en) * 2001-03-08 2002-09-24 Union Carbide Chemicals & Plastics Technology Corporation Semiconducting shield compositions
FI117511B (fi) 2001-04-04 2006-11-15 Premix Oy Menetelmä sähköä johtavan polymeeriseoksen valmistamiseksi ja sähköä johtava polymeeriseos
US6602974B1 (en) * 2001-12-04 2003-08-05 Carnegie Mellon University Polythiophenes, block copolymers made therefrom, and methods of forming the same
DE10242955B4 (de) * 2002-09-17 2005-03-10 Schuetz Gmbh & Co Kgaa Kunststoffaß und Verfahren zur Herstellung des Fasses
KR101025868B1 (ko) * 2002-11-27 2011-03-30 스미토모 고무 고교 가부시키가이샤 화상형성장치용 도전성부재
US7316791B2 (en) * 2003-12-30 2008-01-08 E.I. Du Pont De Nemours And Company Polyimide based substrate comprising doped polyaniline
DE102004003784B4 (de) * 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
US20090154059A1 (en) * 2004-03-18 2009-06-18 Ormecon Gmbh Composition comprising a conductive polymer in colloidal form and carbon
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
KR100646412B1 (ko) 2004-12-21 2006-11-14 (주)켐텍솔루션 전기 전도성 폴리올레핀 수지 조성물 및 이를 채용한전자부품 포장용 용기, 시트
EP1851048B1 (fr) 2005-02-10 2016-06-29 Solvay USA Inc. Compositions de couches d'injection et de transport de trous et dispositifs associes
DE102005010162B4 (de) * 2005-03-02 2007-06-14 Ormecon Gmbh Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
US7413684B2 (en) * 2005-04-15 2008-08-19 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)/polyamide composition
EP1728822A1 (fr) * 2005-05-30 2006-12-06 Nanocyl S.A. Nanocomposite et procédé d'obtention
DE102005039608A1 (de) * 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
DE602007008687D1 (de) * 2006-02-06 2010-10-07 Dow Global Technologies Inc Halbleitende zusammensetzungen
MY148477A (en) 2006-07-21 2013-04-30 Plextronics Inc Sulfonation of conducting polymers and oled, photovoltaic, and esd devices
EP2062467B1 (fr) * 2006-09-13 2012-02-15 Enthone, Inc. Article à revêtement combiné de polymère électro-conducteur et de métal précieux/semi-précieux et son procédé de production
US8969705B2 (en) * 2007-08-03 2015-03-03 Battelle Memorial Institute Thermoelectric device and thermoelectric generator
US7874674B2 (en) 2007-12-12 2011-01-25 Allred Lloyd G Aberrometer having reduced noise
KR101605213B1 (ko) 2008-02-29 2016-03-21 솔베이 유에스에이 인크. 평탄화제 및 소자
JP2013515094A (ja) 2009-12-18 2013-05-02 プレックストロニクス インコーポレーティッド 3,4−ジアルコキシチオフェンのコポリマーならびに作製法およびデバイス
DE102010025938A1 (de) 2010-07-02 2012-01-05 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Trennfolie mit dauerhaft antistatischer Wirkung
WO2014039687A1 (fr) 2012-09-06 2014-03-13 Plextronics, Inc. Dispositifs électroluminescents comprenant des grilles métalliques sans isolant
US9921526B2 (en) * 2015-01-09 2018-03-20 Ricoh Company, Ltd. Semiconductive resin composition, member for electrophotography and image forming apparatus
US9972838B2 (en) 2016-07-29 2018-05-15 Blue Current, Inc. Solid-state ionically conductive composite electrodes
US10079404B1 (en) 2017-03-03 2018-09-18 Blue Current, Inc. Polymerized in-situ hybrid solid ion-conductive compositions
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
US11394054B2 (en) * 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes
EP4078698A4 (fr) 2019-12-20 2024-08-14 Blue Current Inc Électrolytes composites avec liants

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3200056A (en) * 1959-02-13 1965-08-10 Minnesota Mining & Mfg Stabilized polyethylene
US3178384A (en) * 1962-02-19 1965-04-13 Du Pont Semi-conductive fabric comprising an ethylene-vinyl acetate copolymer, wax and carbon black
JPS533416B2 (fr) * 1973-07-23 1978-02-06
US4265789A (en) * 1979-10-22 1981-05-05 Polymer Cencentrates, Inc. Conductive polymer processable as a thermoplastic
JPS59189142A (ja) * 1983-04-12 1984-10-26 Ube Ind Ltd 導電性熱可塑性樹脂組成物
US4510076A (en) * 1983-11-23 1985-04-09 Gte Laboratories, Inc. Electrically conductive polymer blends of an acetylene polymer and a triblock thermoplastic elastomer
US4622355A (en) * 1984-07-16 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Radiation-hardened polymeric films
JPS6164739A (ja) * 1984-09-05 1986-04-03 Nippon Yunikaa Kk 接着性と剥離性を併有する半導電性樹脂組成物

Also Published As

Publication number Publication date
EP0181587A3 (en) 1986-12-30
EP0181587A2 (fr) 1986-05-21
DE3570796D1 (en) 1989-07-06
DE3440617C1 (de) 1986-06-26
US4929388A (en) 1990-05-29
ATE43745T1 (de) 1989-06-15

Similar Documents

Publication Publication Date Title
EP0181587B1 (fr) Mélanges polymères thermoplastiques antistatiques ou électriquement semi-conducteurs, procédé pour leur fabrication et leur mise en oeuvre
DE3855678T2 (de) Intrinsisch leitfähiges polymer in form eines dispergierbaren körpers, seine herstellung und seine anwendung
DE2948350C2 (fr)
DE69229253T2 (de) Verfahren zur Herstellung eines eigenleitfähigen Polymeren und dieses enthaltende Gegenstände aus thermoplastischer Polymermischung
DE69321673T2 (de) Leitendes Kunststoffmaterial und Methode zu seiner Herstellung
DE2652683C3 (de) Anisotroper elektrisch leitender platten-oder folienförmiger Körper und Verfahren zu seiner Herstellung
EP0168620A2 (fr) Procédé de fabrication des mélanges polymériques moulables à partir de polymères électriquement conducteurs et utilisation de ces mélanges
DE3707503A1 (de) Ptc-zusammensetzung
DE3876709T2 (de) Verfahren zur herstellung eines selbstheilenden schutzgegenstandes gegen ueberstrom durch ent-methode.
DE2640059C2 (fr)
DE2901776A1 (de) Verfahren zum herstellen kleinteiliger, mit leitfaehigkeitsruss versehener polyolefin-formmassen und deren verwendung zur herstellung von formkoerpern
DE2530810C3 (de) Polymermischung aus einem ionisch quervernetzten Polymer mit einem bevorzugten Weichmacher
DE2524640A1 (de) Elektrisch leitfaehige materialien und verfahren zu ihrer herstellung
DE3542231A1 (de) Organische polymere mit elektrischen eigenschaften
DE2422914C2 (de) Elektrisches Hoch- oder Höchstspannungskabel
EP0186887A2 (fr) Procédé de fabrication d&#39;une mousse de polyoléfine réticulée électriquement conductrice et sa mise en oeuvre
DE3625950A1 (de) Glasfaser-verstaerkte harzzusammensetzung auf propylen/ethylen-copolymer-basis
DE2737729A1 (de) Verfahren zum verteilen eines antioxidans in einem vernetzbaren polymer
EP0144600B1 (fr) Fabrication d&#39;une matière plastique
DE3015271A1 (de) Verfahren zur herstellung von polymeren elektrolyten
DE2220147C3 (de) Verfahren zur Herstellung von vernetzten, stabilisierten Äthylenpolymerisaten
EP0071862B1 (fr) Polystyrène à conductibilité électrique élevée
DE69026692T2 (de) Verfahren zur Herstellung von thermoplastischen elastomeren Zusammensetzungen
DE1285175B (de) Verwendung von Polycarbonaten zur Folienherstellung
DE3780635T2 (de) Harzzusammensetzung auf der basis von polystyrol.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861203

17Q First examination report despatched

Effective date: 19870826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 43745

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3570796

Country of ref document: DE

Date of ref document: 19890706

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921021

Year of fee payment: 8

Ref country code: LU

Payment date: 19921021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921119

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931104

Ref country code: AT

Effective date: 19931104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85114008.7

Effective date: 19940610

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041102

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050124

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051104

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

BE20 Be: patent expired

Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO)

Effective date: 20051104

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20051104

BE20 Be: patent expired

Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO)

Effective date: 20051104