EP0181587B1 - Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use - Google Patents

Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use Download PDF

Info

Publication number
EP0181587B1
EP0181587B1 EP85114008A EP85114008A EP0181587B1 EP 0181587 B1 EP0181587 B1 EP 0181587B1 EP 85114008 A EP85114008 A EP 85114008A EP 85114008 A EP85114008 A EP 85114008A EP 0181587 B1 EP0181587 B1 EP 0181587B1
Authority
EP
European Patent Office
Prior art keywords
polymer
copolymer
polymers
ethylene
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85114008A
Other languages
German (de)
French (fr)
Other versions
EP0181587A2 (en
EP0181587A3 (en
Inventor
Bernhard Dr. Wessling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zipperling Kessler GmbH and Co
Original Assignee
Zipperling Kessler GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zipperling Kessler GmbH and Co filed Critical Zipperling Kessler GmbH and Co
Priority to AT85114008T priority Critical patent/ATE43745T1/en
Publication of EP0181587A2 publication Critical patent/EP0181587A2/en
Publication of EP0181587A3 publication Critical patent/EP0181587A3/en
Application granted granted Critical
Publication of EP0181587B1 publication Critical patent/EP0181587B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • thermoplastic polymers which are electrical insulators per se.
  • Mainly non-polymeric additives such as in particular antistatic agents, can be used to provide statically easily chargeable polymers with antistatic properties.
  • the surface resistance can be reduced from 10 12 to 10 16 Q to approximately 10 8 to 10 10 Q (cf. DE-PS-3 347 704.3).
  • a further reduction in the specific resistance to approx. 10 1 to 10 7 Qcm semiconductor to antistatic finish
  • conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)).
  • These additives are used in amounts of approximately 10 to 30% by weight. They not only lead to a superficial antistatic finish, but also to a reduction in volume resistance.
  • the increase in the electrical conductivity from the initial value of the non-conductive polymer to a value characteristic of the conductive substance is not linearly dependent on the concentration of the substance added. Rather, a more or less steep increase in conductivity is observed at the breakthrough point (percolation point), which is due to the fact that the particles of the conductive substance are now sufficiently close or touching, thereby forming continuous current paths or conductor tracks.
  • the breakthrough point is extremely dependent on the geometry, in particular the ratio of length to diameter, and the surface of the added particles, on the type of polymer and on the dispersion method used.
  • the percolation point is the turning point of the curve when the logarithm of the conductivity is plotted against the concentration of the conductive additive.
  • DE-OS-2 901 758 and 2 901 776 describe the production of a network of conductive carbon black (through which the current flows) in a molding compound made of polyethylene as a matrix.
  • the molding compound described is only suitable for the discontinuous production of plates in the pressing process, but not for continuous processing by extrusion or other conventional processing methods for thermoplastics, since the network and thus the conductivity are destroyed.
  • DE-OS-3 208 841 and 3 208 842 disclose the two- to three-stage production of conductive black-containing polyvinyl chloride blends with other polymers, in particular ethylene-vinyl acetate copolymers.
  • the thermoplastic composition should contain 15% by weight of carbon black, the polymer components and the process serve to improve the processability.
  • DE-OS 25 17 358 mentions the addition of rubber to increase the impact strength without reducing the proportion of soot.
  • the carbon black is added to a previously produced homogeneous polymer / rubber mixture.
  • DE-AS-2 808 675 describes a process in which polyethylene with conductive carbon black is added to the polyoxymethylene resin. In this way, however, only surface resistances of more than 10 6 Q can be achieved.
  • the additional quantities required to achieve percolation are approximately 10 to 20% by weight of carbon black or approximately 30 to 50% by weight of metal powder, depending on the geometry and surface of the particles, the interfacial tension of the polymer and the temperature (cf. also Miyasaka, loc. cit., whereby the theoretical values have so far not been achievable).
  • the invention relates to antistatic or electrically semiconducting thermoplastic polymer blends based on organic polymers and electrically conductive substances, which are characterized in that they contain two partially compatible thermoplastic polymers A and B, of which the polymer A at a given temperature compared to the polymer B. has a lower melt viscosity and solubility parameter between which a difference of about 0.3 to 1.5 (cal / cm 3) 1/2 exists, wherein the polymer a forming the continuous phase substantially contains the electrically conductive substances.
  • polymer A and / or polymer B can be mixtures of thermoplastic polymers which are fully compatible with one another.
  • examples of such mixtures are styrene-acrylonitrile Copolymer (SAN) with chlorinated polyethylene (PEC) and polyvinyl butyral (PVB) with polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA).
  • the conductive additive is essentially in polymer A, which forms the continuous phase of the blend.
  • polymer A is normally in a deficit, i.e. a weight ratio of polymer A: polymer B ⁇ 1: 1 is used.
  • the proportion of polymer A in the mixture of polymers A and B is preferably about 20 to 40% by weight.
  • the amount of polymer A depends on the amount of conductive additives present, since, based on the total blend, the amount of polymer A and conductive additives is preferably less than 50% by weight, for example 10 to 49% by weight should.
  • the electrically conductive auxiliary is preferably conductive carbon black with a BET surface area> 250 m 2 / g and with a dibutylphthalate absorption> 140 cm 3/100 g use.
  • carbon fibers, metal powder or fibers, electrically conductive organic polymers or non-polymeric organic conductors are also suitable.
  • Conductive polymers are understood to mean polyconjugated systems as used in polyacetylene (PAc), poly-1,3,5, ... n-substituted polyacetylenes, acetylene copolymers, and 1,3-tetramethylene-bridged polymers, e.g. B.
  • polymers and similar derivatives of polyacetylene resulting from the polymerization of 1,6-heptadiin also include the different modifications of polyparaphenylenes (PPP), the different modifications of polypyrroles (PPy), the different modifications of polyphthalocyanines (PPhc) and other polymeric organic conductors.
  • PPP polyparaphenylenes
  • PPy polypyrroles
  • PPhc polyphthalocyanines
  • organic conductors are understood to mean conductive non-polymeric organic substances, in particular complex salts or charge transfer complexes, e.g. B. the different modifications of tetracyanoquinodimethane (TCNQ) salts.
  • Carbon black is preferably added to the polymer blends according to the invention in an amount of 0.5 to 10, in particular 4 to 10% by weight, based on the polymer blend.
  • the required content may be higher and up to 30 wt .-%; however, it is regularly lower than in the previously known products, in which the conductive additive is present in the polymer in a uniformly dispersed manner.
  • Surface resistance values of 10 to 10 6 S2 are achieved.
  • polycaprolactone can be incorporated into almost all polymers, with single-phase microstructures (with styrene / acrylonitrile copolymer, polyvinyl chloride or polycarbonate as polymer B), drop structures (with polyethylene or ethylene-vinyl acetate as polymer B) or the particularly preferred ones in the light microscope Can form conductor tracks (with polyether polyurethane or acrylonitrile / methacrylate / butadiene copolymer as polymer B). Even with an addition of the order of 1 to 3% by weight, a surface resistance of approximately 10 5 to 10 8 2 is obtained.
  • the polymer blends according to the invention can also contain conventional additives such as stabilizers, pigments, lubricants, etc.
  • conventional additives such as stabilizers, pigments, lubricants, etc.
  • chemical crosslinkers e.g. B. a preferably liquid peroxide, and thereby to achieve a crosslinking of the polymers in the subsequent processing of the blends with heating, which brings about a mechanical stabilization of the conductor tracks achieved according to the invention.
  • the crosslinking agent is particularly preferably added to polymer A or to the conductivity concentrate consisting of polymer A and the conductive substances, in order to stabilize the conductor tracks in the matrix made of polymer B.
  • the procedure can be followed in a first step by dispersing the conductive substances in a solution or melt of polymer A or a prepolymer for polymer A, if appropriate removing the solvent, and then in a second step prepared conductivity melt with the polymer B and polymerized when using a prepolymer.
  • suitable polymer combinations it is also possible to disperse the conductive substances directly into a melt of polymers A and B.
  • the first-mentioned method of operation is particularly suitable, for example, for the combination of ethylene-vinyl acetate (polymer A) and polyvinyl chloride (polymer B), since the preparation of a conductivity concentrate from this polymer A and carbon black and subsequent melt mixing with the polymer B gives substantially better results, in particular one even lower soot content with the same electrical conductivity, obtained than with the one-step process.
  • polymer A ethylene-vinyl acetate
  • polymer B polyvinyl chloride
  • the mechanical properties of the polymer blends according to the invention are excellent. In particular, they show very good impact strength values ("without break").
  • Conductivity concentrates which contain polymer A and a conductive substance are used for the production process described above.
  • conductive carbon black in an amount of more than 15% by weight, preferably about 20% by weight
  • metal powder in an amount of more than 50% by weight
  • organic conductive polymer or a non-polymeric organic conductor be present in an amount of more than 10, preferably about 15% by weight.
  • crosslinking it may be desirable to crosslink the polymers to stabilize the structure. If chemical crosslinking agents are added to the polymer blend, this can be done by heating during the manufacture of the blend or during its processing. On the other hand, it is also possible to achieve crosslinking in a manner known per se by irradiation.
  • conductive substances such as conductive carbon black and mix this with caprolactam (as polymer B) and a catalyst in a manner known per se.
  • caprolactam as polymer B
  • a catalyst in a manner known per se.
  • a conductive, thermoplastically processable block copolymer is obtained in which the blocks derived from the prepolymer form a continuous conductor track in the matrix.
  • specific conductivity values of around 10 2 to 10 4 Qcm are achieved with a prepolymer content of 10 to 20% by weight and a carbon black content in the prepolymer of approximately 20%, corresponding to a carbon black content in the blend of 2 to 4% by weight.
  • the desired coupling reaction may need to be catalyzed, e.g. B. transesterification or transamidation reactions with p-toluenesulfonic acid.
  • EP-A-168 620 describes the crystallization of N-methylquinoline-TCNQ dissolved in polycaprolactone.
  • TCNQ salt crystallizes out, however, some of the phases separate again, since the mixture must be kept thermoplastic for long periods without shearing and the compatibility is not sufficient to maintain the microscopic network structure under these conditions.
  • the addition of p-toluenesulfonic acid stabilizes the interfaces by catalytic transesterification.
  • the polymer blends according to the invention can, if appropriate, first be granulated and supplied as granules to further processors. On the other hand, they can also be processed directly into finished products.
  • the blends are particularly suitable for the production of antistatic, electrically conductive coatings, foils, molded parts or moldings.
  • the films or molded parts produced from the polymer blends are mechanically stretched, this leads to an alignment of the conductor tracks, with the result that the stretched materials show a preferred flow direction, which can be particularly advantageous for various applications.
  • the granulate By extrusion, the granulate could be used to produce thermoformed sheets with a surface resistance of 0.5 to 5.10 4 ⁇ .
  • the plates had an impact strength (DIN 53453) "without break” and a notched impact strength of 14 mJ / mm 2 .
  • Example 1 As described in Example 1, 79% by weight of ethylene-vinyl acetate copolymer (with a vinyl acetate content of 7%), in addition to conventional stabilizers and processing aids, were admixed with 20% by weight of carbon black and mixed with one another at 170.degree.
  • the conductivity concentrate obtained in this way (specific resistance according to the four-point method approx. 5 Qcm) was granulated in a second operation with stabilized polyvinyl chloride granules (K value 67 or 70) or immediately to a finished product (e.g. a plate). extruded, the melt temperature was about 185 to 190 ° C.
  • the semiconducting polymer blend obtained or the finished plate showed an impact strength "without break" and the electrical properties listed in Table 1 below.
  • the conductivity carbon black is largely in the polystyrene phase, while the SBS radial block copolymer is dispersed in the matrix without interrupting the conductivity bridges.
  • the correct dispersion was checked by mixing three parts of the polyacetylene-polycaprolactone concentrate with 100 parts of polycaprolactone on a roller mill and squeezing them thinly in a laboratory press. A deep blue color appeared and no black dots (polyacetylene agglomerates) were visible.
  • the polyacetylene concentrate was extruded on a single-screw extruder with the polymers B listed in the table below to form a polymer blend, with either a granulate or a finished product being produced.
  • the product obtained can, for example, be made more conductive ("doped") by treatment with iodine. The results shown in the following table were obtained.
  • a mixture of 1.2% TCNQ complex in PCL is mixed in an internal mixer with the same amount of EVA (30% VA) at 130 - 160 °.
  • the mass obtained is pressed out into a film. This is pressed at 190 ° C. for 30 seconds, the TCNQ complex dissolving.
  • the film is then immediately annealed in hot water at 95 ° C. for 10 minutes and then quenched in water at 15 ° C. Tempering at 95 ° produces tuft-shaped, very long TCNQ complex crystal needles.
  • the film has a surface resistance of 3 x 10 8 ⁇ (without TCNQ: ca.1012Q).

Abstract

1. Antistatic or electrically semi-conductive thermoplastic polymer blends based on organic polymers, electrically conductive substances and the usual additives, characterized in that, they contain two partially compatible thermoplastic polymers A and B, of which polymer A at a given temperature has a lower melting viscosity in comparison to polymer B and between which there is a solubility-parameter difference of approximately 0.3 to 1.5 (cal/cm**3 )**1/2 , in which the polymer A, which forms the continuous phase, essentially contains the electrically conductive substances.

Description

Es ist bekannt, thermoplastischen Polymeren, die an sich elektrische Isolatoren sind, verschiedenartige elektrisch leitfähige Stoffe zuzusetzen. Mit vorwiegend nicht polymeren Zusatzstoffen, wie insbesondere Antistatika lassen sich statisch leicht aufladbare Polymere antistatisch ausrüsten. Man kann auf diese Weise eine Erniedrigung des Oberflächenwiderstandes von 1012 bis 1016 Q bis auf ca. 108 bis 1010 Q erreichen (vergl. DE-PS-3 347 704.3). Eine weitere Erniedrigung des spezifischen Widerstandes auf ca. 101 bis 107 Qcm (halbleitende bis antistatische Ausrüstung) gelingt mit Hilfe von leitfähigen Zusätzen wie Metallfasern oder -partikeln, Kohlefasern, Leitruß (vergl. A. Sternfield, Modern Plastics International, Nr. 7, 48ff (1982)). Diese Zusätze finden in Mengen von etwa 10 bis 30 Gew.-% Anwendung. Sie führen nicht nur zu einer oberflächlichen antistatischen Ausrüstung, sondern auch zu einer Erniedrigung des Durchgangswiderstandes.It is known to add various types of electrically conductive substances to thermoplastic polymers, which are electrical insulators per se. Mainly non-polymeric additives, such as in particular antistatic agents, can be used to provide statically easily chargeable polymers with antistatic properties. In this way, the surface resistance can be reduced from 10 12 to 10 16 Q to approximately 10 8 to 10 10 Q (cf. DE-PS-3 347 704.3). A further reduction in the specific resistance to approx. 10 1 to 10 7 Qcm (semiconducting to antistatic finish) can be achieved with the aid of conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)). These additives are used in amounts of approximately 10 to 30% by weight. They not only lead to a superficial antistatic finish, but also to a reduction in volume resistance.

Neuerdings ist es darüber hinaus gelungen, elektrisch nicht leitfähigen Polymeren elektrisch leitfähige Polymere oder nicht polymere organische Leiter zuzusetzen und auf diese Weise antistatische bis halbleitende Polymerblends herzustellen (vergl. EP-A-168 620).Recently, it has also been possible to add electrically non-conductive polymers to electrically conductive polymers or non-polymeric organic conductors and to produce antistatic to semiconducting polymer blends in this way (see EP-A-168 620).

In allen diesen Fällen ist die Erhöhung der elektrischen Leitfähigkeit vom Ausgangswert des nicht leitenden Polymers auf einen für den leitfähigen Stoff charakteristischen Wert von der Konzentration des zugesetzten Stoffes nicht linear abhängig. Vielmehr wird am Durchbruchspunkt (Perkolationspunkt) ein mehr oder weniger steiler Anstieg der Leitfähigkeit beobachtet, der darauf beruht, daß sich die Teilchen des leitfähigen Stoffes nun ausreichend nahekommen bzw. berühren und dadurch kontinuierliche Strompfade oder Leiterbahnen ausbilden. Der Durchbruchspunkt ist von der Geometrie, insbesondere dem Verhältnis von Länge zu Durchmesser, und der Oberfläche der zugesetzten Teilchen, von der Art des Polymeren, und von der angewendeten Dispergiermethode äußerst stark abhängig. Der Perkolationspunkt ist der Wendepunkt der Kurve, wenn man den Logarithmus der Leitfähigkeit gegen die Konzentration des leitfähigen Zusatzes aufträgt.In all of these cases, the increase in the electrical conductivity from the initial value of the non-conductive polymer to a value characteristic of the conductive substance is not linearly dependent on the concentration of the substance added. Rather, a more or less steep increase in conductivity is observed at the breakthrough point (percolation point), which is due to the fact that the particles of the conductive substance are now sufficiently close or touching, thereby forming continuous current paths or conductor tracks. The breakthrough point is extremely dependent on the geometry, in particular the ratio of length to diameter, and the surface of the added particles, on the type of polymer and on the dispersion method used. The percolation point is the turning point of the curve when the logarithm of the conductivity is plotted against the concentration of the conductive additive.

Es ist bislang nicht möglich, den Leitfähigkeitsdurchbruch (die Perkolation) theoretisch genau zu beschreiben und insbesondere vorherzusagen. K. Miyasaka et al. (J. Mat. Sci. 17, 1610 - 1616 (1982)) haben eine Theorie auf der Basis der Grenzflächenspannung ausgearbeitet, die für qualitative Betrachtungen hilfreich ist. In der Praxis benötigt man jedoch wesentlich höhere Anteile an leitfähigen Zusätzen als von Miyasaka theoretisch ermittelt. Vermutlich beruht dies darauf, daß bei der Einarbeitung der Zusätze in Polymere und der Weiterverarbeitung der Polymerblends zu Endprodukten Leitfähigkeitsbrücken unterbrochen werden. Im Prinzip kann der leitfähige Zusatz drei Phasen durchlaufen: Vom undispergierten Agglomerat (max. Kohäsionskontakte) über eine Kettenstruktur (Gleichgewicht zwischen Kohäsion und Adhäsion) zur voll dispergierten Phase (max. Adhäsion).Up to now it has not been possible to describe the conductivity breakthrough (percolation) exactly and to predict it. K. Miyasaka et al. (J. Mat. Sci. 17, 1610-1616 (1982)) have developed a theory based on the interfacial tension that is helpful for qualitative considerations. In practice, however, much higher proportions of conductive additives are required than theoretically determined by Miyasaka. This is presumably due to the fact that conductivity bridges are interrupted when the additives are incorporated into polymers and the polymer blends are further processed into end products. In principle, the conductive additive can go through three phases: from the undispersed agglomerate (max. Cohesion contacts) to a chain structure (balance between cohesion and adhesion) to the fully dispersed phase (max. Adhesion).

Die Einarbeitung von hohen Anteilen von beispielsweise 10 bis 30 Gew.-% Leitruß mit sehr großer Oberfläche erfordert viel Energie und beeinträchtigt die Verarbeitungseigenschaften (sehr starke Schmelzviskositätserhöhung), die Hitze-, Oxidations- und Langzeitstabilität sowie die mechanischen Eigenschaften der Polymeren in erheblichem Ausmaß. Darüber hinaus steigen mit dem Gehalt an leitfähigen Zusätzen die Materialkosten ganz beträchtlich, nämlich um etwa 10 % je Steigerung des Anteils an leitfähigen Zusätzen um 1 %. Es wurden daher immer wieder Versuche unternommen, den erforderlichen Zusatzgehalt durch Änderung der Oberfläche bzw. des Länge : Durchmesser-Verhältnisses oder durch Optimierung der Verarbeitungsverfahren zu senken. Andererseits wurde versucht, durch polymere Zusätze eine Erhöhung der Stabilität und eine Verbesserung der Verarbeitbarkeit der mechanischen Eigenschaften zu erreichen.The incorporation of high proportions of, for example, 10 to 30% by weight of conductive carbon black with a very large surface requires a great deal of energy and has a considerable adverse effect on the processing properties (very high increase in melt viscosity), the heat, oxidation and long-term stability and the mechanical properties of the polymers. In addition, the content of conductive additives increases material costs considerably, namely by about 10% for each increase in the proportion of conductive additives by 1%. Attempts have therefore repeatedly been made to lower the required additional content by changing the surface or length: diameter ratio or by optimizing the processing methods. On the other hand, attempts have been made to increase the stability and improve the processability of the mechanical properties by means of polymeric additives.

So beschreiben die DE-OS-2 901 758 und 2 901 776 die Herstellung eines Netzwerkes aus Leitruß (durch das der Strom fließt) in einer Preßmasse aus Polyethylen als Matrix. Die beschriebene Preßmasse eignet sich nur zur diskontinuierlichen Herstellung von Platten im Preßverfahren, nicht aber zur kontinuierlichen Verarbeitung durch Extrudieren oder andere übliche Verarbeitungsverfahren für Thermoplaste, da dabei das Netzwerk und damit die Leitfähigkeit zerstört werden.DE-OS-2 901 758 and 2 901 776 describe the production of a network of conductive carbon black (through which the current flows) in a molding compound made of polyethylene as a matrix. The molding compound described is only suitable for the discontinuous production of plates in the pressing process, but not for continuous processing by extrusion or other conventional processing methods for thermoplastics, since the network and thus the conductivity are destroyed.

Die US-PS-4 265 789 (und die dort zum Stand der Technik genannten weiteren Veröffentlichungen) beschreiben Polymerblends mit einem sehr hohen Gehalt an Leitruß. Die DE-OS-3 208 841 und 3 208 842 offenbaren die zwei- bis dreistufige Herstellung von Leitruß enthaltenden Polyvinylchloridblends mit anderen Polymeren, insbesondere Ethylen-Vinylacetat-Copolymeren. Die thermoplastische Masse soll homogen verteilt 15 Gew.-% Ruß enthalten, die Polymerbestandteile und das Verfahren dienen dabei der Verbesserung der Verarbeitbarkeit. Die DE-OS 25 17 358 erwähnt den Zusatz von Kautschuk zur Erhöhung der Schlagzugzähigkeit, ohne daß eine Verminderung des Rußanteils erreicht wird. Der Ruß wird dabei einer vorher hergestellten homogenen Polymer/Kautschukmischung zugesetzt.US Pat. No. 4,265,789 (and the other publications mentioned there relating to the prior art) describe polymer blends with a very high content of conductive carbon black. DE-OS-3 208 841 and 3 208 842 disclose the two- to three-stage production of conductive black-containing polyvinyl chloride blends with other polymers, in particular ethylene-vinyl acetate copolymers. The thermoplastic composition should contain 15% by weight of carbon black, the polymer components and the process serve to improve the processability. DE-OS 25 17 358 mentions the addition of rubber to increase the impact strength without reducing the proportion of soot. The carbon black is added to a previously produced homogeneous polymer / rubber mixture.

Die Autoren der DE-AS-2 435 418 beobachteten bei der Herstellung von rußhaltigen Polyethylen/Polyamidblends, daß der Ruß sich in der Polyethylenphase konzentriert und nicht in den Polyamidinseln aufhält. Dies läßt sich durch die große Differenz der Erweichungs- bzw. Schmelzbereiche sowie die Unverträglichkeit der beiden Polymeren leicht erklären. Im Prinzip verhält sich dabei das Polyamid wie ein nicht schmelzender Füllstoff, so daß kein verträglicher Blend mit guten Anwendungseigenschaften erhalten wird. Die für eine ausreichende Leitfähigkeit erforderlichen Rußgehalte sind sehr hoch und übertreffen noch die in der heutigen industriellen Praxis üblichen Gehalte in homogenen Zubereitungen auf Basis eines Polymeren oder mehrerer voll verträglicher Polymerer.The authors of DE-AS-2 435 418 observed in the production of soot-containing polyethylene / polyamide blends that the soot is concentrated in the polyethylene phase and not in the polyamide islands. This can easily be explained by the large difference in the softening or melting ranges and the incompatibility of the two polymers. In principle, the polyamide behaves like a non-melting filler, so that no compatible blend with good application properties is obtained. The soot contents required for sufficient conductivity are very high and even exceed the contents in homogeneous preparations based on one polymer or several fully compatible polymers which are common in industrial practice today.

Zur Verbesserung der Wärmestabilität von Polyoxymethylen beschreibt die DE-AS-2 808 675 ein Verfahren, bei dem mit Leitruß versetztes Polyethylen dem Polyoxymethylenharz zugesetzt wird. Auf diese Weise erreicht man allerdings nur Oberflächenwiderstände von mehr als 106 Q.To improve the thermal stability of polyoxymethylene, DE-AS-2 808 675 describes a process in which polyethylene with conductive carbon black is added to the polyoxymethylene resin. In this way, however, only surface resistances of more than 10 6 Q can be achieved.

Es sind bislang keine Formulierung und kein Verfahren zur Herstellung von Polymercompounds bekannt, bei denen die Anteile an leitfähigen Stoffen zum Erreichen definierter Oberflächen- und/oder spezifischer Widerstände gegenüber den in der Praxis bislang üblichen Zusatzmengen deutlich, ggf. sogar bis in die Nähe oder unterhalb der für die jeweiligen Compounds geltenden Perkolationspunkte erniedrigt werden können.To date, no formulation and no process for the production of polymer compounds are known in which the proportions of conductive substances to achieve defined surface and / or specific resistances compared to the amounts customarily used in practice are significant, possibly even up to or near the percolation points applicable to the respective compounds can be reduced.

Aufgabe der Erfindung ist es daher, antistatische bzw. elektrisch halbleitende thermoplastisch verarbeitbare Polymerblends bereitzustellen, welche einen deutlich niedrigeren Gehalt an elektrisch leitfähigen Zusätzen als bislang üblich enthalten, sich aber thermoplastisch unter (zumindest weitgehendem) Erhalt der Leitfähigkeit verarbeiten lassen und gute mechanische Eigenschaften aufweisen. Die bislang zur Erreichung der Perkolation erforderlichen Zusatzmengen liegen bei etwa 10 bis 20 Gew.-% Ruß bzw. etwa 30 bis 50 Gew.-% Metallpulver, abhängig von der Geometrie und Oberfläche der Teilchen, der Grenzflächenspannung des Polymeren und der Temperatur (vergl. hierzu auch Miyasaka, a.a.O., wobei die theoretischen Werte praktisch bisher nicht erreichbar sind). Gegenstand der Erfindung sind antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends auf Basis von organischen Polymeren und elektrisch leitfähigen Stoffen, welche dadurch gekennzeichnet sind, daß sie zwei teilverträgliche thermoplastische Polymere A und B enthalten, von denen das Polymer A bei gegebener Temperatur im Vergleich zum Polymer B eine niedrigere Schmelzviskosität aufweist und zwischen denen eine Löslichkeitsparameter-Differenz von etwa 0,3 bis 1,5 (cal/cm3)1/2 besteht, wobei das die kontinuierliche Phase bildende Polymer A im wesentlichen die elektrisch leitfähigen Stoffe enthält.It is therefore an object of the invention to provide antistatic or electrically semiconductive, thermoplastically processable polymer blends which contain a significantly lower content of electrically conductive additives than was customary hitherto, but can be processed thermoplastically with (at least largely) maintaining conductivity and have good mechanical properties. The additional quantities required to achieve percolation are approximately 10 to 20% by weight of carbon black or approximately 30 to 50% by weight of metal powder, depending on the geometry and surface of the particles, the interfacial tension of the polymer and the temperature (cf. also Miyasaka, loc. cit., whereby the theoretical values have so far not been achievable). The invention relates to antistatic or electrically semiconducting thermoplastic polymer blends based on organic polymers and electrically conductive substances, which are characterized in that they contain two partially compatible thermoplastic polymers A and B, of which the polymer A at a given temperature compared to the polymer B. has a lower melt viscosity and solubility parameter between which a difference of about 0.3 to 1.5 (cal / cm 3) 1/2 exists, wherein the polymer a forming the continuous phase substantially contains the electrically conductive substances.

Grundlagen der Löslichkeitsparameter-Theorie sowie Werte dazu findet man in

  • a) O. Olabisi u.a., Polymer-Polymer Miscibility, N.Y. 1979
  • b) D. Paul, S. Newman, Polymer Blends, N.Y. 1978
  • c) K. Solc, Polymer Compatibility, Chur/Schweiz 1980
  • d) J. Brandrup u.a., Polymer Handbook, N.Y. 1975
  • e) A. Barton, Handbook of Solubility Parameters, Boca Raton, 1985
Fundamentals of solubility parameter theory and values can be found in
  • a) O. Olabisi et al., Polymer-Polymer Miscibility, NY 1979
  • b) D. Paul, S. Newman, Polymer Blends, NY 1978
  • c) K. Solc, Polymer Compatibility, Chur / Switzerland 1980
  • d) J. Brandrup et al., Polymer Handbook, NY 1975
  • e) A. Barton, Handbook of Solubility Parameters, Boca Raton, 1985

Überraschenderweise gelingt es auf diese Weise, Polymerblends mit hervorragenden Verarbeitungseigenschaften und mechanischen Eigenschaften herzustellen, die bereits bei Zusatz von weniger als 10, vorzugsweise etwa 4 bis 8 Gew.-% Leitruß eine Leitfähigkeit zeigen, welche bislang nur mit einem Rußanteil von mindestens 10 bis 15 Gew.-% erreichbar war. Offenbar gelingt es, die leitfähigen Zusätze auf schmale, aber durchgehende Leiterbahnen zu konzentrieren und so eine zu starke Dispergierung des leitfähigen Zusatzstoffes zu vermeiden, wie sie bei der herkömmlichen Arbeitsweise auftritt. Gegenüber dem Stand der Technik ist eine erheblich genauere Einstellung der gewünschten Leitfähigkeit insbesondere in der Nähe des Perkolationspunktes möglich.Surprisingly, it is possible in this way to produce polymer blends with excellent processing properties and mechanical properties which, even when less than 10, preferably about 4 to 8% by weight of conductive carbon black are added, show a conductivity which has hitherto only been achieved with a carbon black content of at least 10 to 15 % By weight was achievable. Apparently, it is possible to concentrate the conductive additives on narrow but continuous conductor tracks and thus avoid excessive dispersion of the conductive additive, as occurs in the conventional way of working. Compared to the prior art, it is possible to set the desired conductivity considerably more precisely, particularly in the vicinity of the percolation point.

Der Erfolg der Erfindung beruht anscheinend darauf, daß mindestens zwei Polymere verwendet werden, deren Löslichkeitsparameter sich um mindestens etwa 0,3, höchstens aber etwa 1,5 (cal/cm3)1/2 unterscheiden und deren Schmelzviskosität ebenfalls unterschiedlich ist (dabei soll die Schmelzviskosität des Polymeren A ohne Zusatz der leitfähigen Stoffe niedriger sein als die des Polymeren B, jeweils gemessen bei derselben Temperatur). Dabei bilden sich offenbar zwei kontinuierliche Phasen, die sich gegenseitig durchdringen (interpenetrierende Netzwerke) und deren Phasengrenzen aufgrund der Teilverträglichkeit der Polymeren eine gute Adhäsion aufweisen. Besonders geeignete Kombinationen, welche den erfindungsgemäßen Bedingungen entsprechen, sind beispielsweise die folgenden:

  • Ethylen-Vinylacetat-Copolymer(EVA)/Polyvinylchlorid(PVC),
  • Ethylen-Vinylacetat-Copolymer(EVA)/Polyethylen(PE),
  • chloriertes Polyethylen(PEC)/Acrylnitril-Butadien-Styrol-Copolymer(ABS),
  • Styrol-Butadien-Styroi-Blockcopolymer(SBS)/Polyethylen(PE),
  • Polystyrof(PS)/Styrol-Butadien-Styrol-Blockcopolymer(SBS),
  • Polyamid-Copolymer(PA)/Polyamid(PA),
  • Polyamid(PA)/Polyoxymethylen(POM),
  • Ethylen-Vinylacetat-Copolymer(EVA)/Acrylnitrii-Butadien-Styroi-Copolymer(ABS), Poly-a-Methylstyrol/Polyvinylchlorid(PVC),
  • Ethylen-Vinylacetat-Kohlenmonoxid-Copolymer(EVA-CO))/Polyvinylchlorid(PVC), Ethylen-Vinylacetat-Kohlenmonoxid-Copolymer(EVA-CO))/Polyurethan(PUR),
  • Polyurethan(PUR)/Polyamid(PA),
  • Polyurethan(PUR)/Polycarbonat(PC),
  • Polycaprolacton(PCL)/Polyetherpolyurethan(PUR-ether),
  • Polyesterpolyurethan(PUR-ester)/Polyvinylchlorid(PVC),
  • Polyurethan(PUR)/Acrylnitril-Butadien-Styrol-Copolymer(ABS),
  • Polycaprolacton(PCL)/Acrylnitrii-Methacrylat-Butadien-Copolymer,
  • Polycaprolacton(PCL)/Polyurethan(PUR) oder
  • Polycaprolacton(PCL)/Ethylen-Vinylacetat-Copolymer(EVA).
The success of the invention appears to be due to the fact that at least two polymers are used whose solubility parameters differ by at least about 0.3, but no more than about 1.5 (cal / cm 3) 1/2 and its melt viscosity also varies (is intended to the melt viscosity of polymer A without the addition of the conductive substances may be lower than that of polymer B, measured in each case at the same temperature). Apparently two continuous phases are formed, which penetrate each other (interpenetrating networks) and whose phase boundaries show good adhesion due to the partial compatibility of the polymers. Particularly suitable combinations which correspond to the conditions according to the invention are, for example, the following:
  • Ethylene-vinyl acetate copolymer (EVA) / polyvinyl chloride (PVC),
  • Ethylene-vinyl acetate copolymer (EVA) / polyethylene (PE),
  • chlorinated polyethylene (PEC) / acrylonitrile-butadiene-styrene copolymer (ABS),
  • Styrene-butadiene-styrofoam block copolymer (SBS) / polyethylene (PE),
  • Polystyrene (PS) / styrene-butadiene-styrene block copolymer (SBS),
  • Polyamide copolymer (PA) / polyamide (PA),
  • Polyamide (PA) / polyoxymethylene (POM),
  • Ethylene vinyl acetate copolymer (EVA) / acrylonitrile butadiene styrene copolymer (ABS), poly-a-methylstyrene / polyvinyl chloride (PVC),
  • Ethylene-vinyl acetate-carbon monoxide copolymer (EVA-CO)) / polyvinyl chloride (PVC), ethylene-vinyl acetate-carbon monoxide copolymer (EVA-CO)) / polyurethane (PUR),
  • Polyurethane (PUR) / polyamide (PA),
  • Polyurethane (PUR) / polycarbonate (PC),
  • Polycaprolactone (PCL) / polyether polyurethane (PUR ether),
  • Polyester polyurethane (PUR ester) / polyvinyl chloride (PVC),
  • Polyurethane (PUR) / acrylonitrile-butadiene-styrene copolymer (ABS),
  • Polycaprolactone (PCL) / acrylonitrile methacrylate butadiene copolymer,
  • Polycaprolactone (PCL) / polyurethane (PUR) or
  • Polycaprolactone (PCL) / ethylene vinyl acetate copolymer (EVA).

Darüber hinaus ist es auch möglich, daß Polymer A und/oder Polymer B Mischungen von untereinander voll verträglichen thermoplastischen Polymeren sind. Beispiele für solche Mischungen sind Styrol-Acrylnitril-Copolymer(SAN) mit chloriertem Polyethylen(PEC) und Polyvinylbutyral (PVB) mit Polyvinylpyrrolidon-Vinylacetat-Copolymer(PVP-VA).In addition, it is also possible for polymer A and / or polymer B to be mixtures of thermoplastic polymers which are fully compatible with one another. Examples of such mixtures are styrene-acrylonitrile Copolymer (SAN) with chlorinated polyethylene (PEC) and polyvinyl butyral (PVB) with polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA).

Der leitfähige Zusatz befindet sich im wesentlichen in dem die kontinuierliche Phase des Blends bildenden Polymer A. Bezogen auf das Polymer B liegt Polymer A normalerweise im Unterschuß vor, d.h. es findet ein Gewichtsverhältnis Polymer A : Polymer B < 1 : 1 Anwendung. Vorzugsweise liegt der Anteil an Polymer A in dem Gemisch der Polymeren A und B bei etwa 20 bis 40 Gew.-%. In gewissem Umfang richtet sich die Menge an Polymer A nach der Menge der vorhandenen leitfähigen Zusatzstoffe, da bezogen auf den gesamten Blend die Menge an Polymer A und leitfähigen Zusatzstoffen vorzugsweise unter 50 Gew.-%, beispielsweise bei 10 bis 49 Gew.-% liegen sollte.The conductive additive is essentially in polymer A, which forms the continuous phase of the blend. Relative to polymer B, polymer A is normally in a deficit, i.e. a weight ratio of polymer A: polymer B <1: 1 is used. The proportion of polymer A in the mixture of polymers A and B is preferably about 20 to 40% by weight. To a certain extent, the amount of polymer A depends on the amount of conductive additives present, since, based on the total blend, the amount of polymer A and conductive additives is preferably less than 50% by weight, for example 10 to 49% by weight should.

Als elektrisch leitfähiger Zusatzstoff findet vorzugsweise Leitruß mit einer BET-Oberfläche > 250 m2/g und mit einer Dibutylphthalat-Absorption > 140 cm3/100 g Verwendung. Geeignet sind ferner Kohlenstoff-Fasern, Metallpulver oder -fasern, elektrisch leitfähige organische Polymere oder nicht polymere organische Leiter. Unter "leitfähigen Polymeren" werden polykonjugierte Systeme verstanden, wie sie in Polyacetylen (PAc), Poly-1,3,5,...n-substituierten Polyacetylenen, Acetlyencopolymeren, sowie 1,3-tetramethylen-überbrückten Polymeren, z. B. in aus der Polymerisation von 1,6-Heptadiin resultierenden Polymeren und ähnlichen Derivaten von Polyacetylen vorliegen; ferner gehören hierzu die unterschiedlichen Modifikationen von Polyparaphenylenen (PPP), die unterschiedlichen Modifikationen von Polypyrrolen (PPy), die unterschiedlichen Modifikationen von Polyphthalocyaninen (PPhc) und andere polymere organische Leiter. Diese können als solche oder als mit oxidierenden oder reduzierenden Stoffen komplexierte ("dotierte") Polymere vorliegen; die Komplexierung führt in der Regel zu einer Erhöhung der elektrischen Leitfähigkeit um mehrere Zehnerpotenzen bis in den Bereich metallischer Leiter hinein. Unter "organischen Leitern" werden leitende nicht-polymere organische Stoffe verstanden, insbesondere Komplexsalze bzw. Charge-Transfer-Komplexe, z. B. die unterschiedlichen Modifikationen von Tetracyanochinodimethan (TCNQ)-Salzen.As the electrically conductive auxiliary is preferably conductive carbon black with a BET surface area> 250 m 2 / g and with a dibutylphthalate absorption> 140 cm 3/100 g use. Also suitable are carbon fibers, metal powder or fibers, electrically conductive organic polymers or non-polymeric organic conductors. "Conductive polymers" are understood to mean polyconjugated systems as used in polyacetylene (PAc), poly-1,3,5, ... n-substituted polyacetylenes, acetylene copolymers, and 1,3-tetramethylene-bridged polymers, e.g. B. in polymers and similar derivatives of polyacetylene resulting from the polymerization of 1,6-heptadiin; these also include the different modifications of polyparaphenylenes (PPP), the different modifications of polypyrroles (PPy), the different modifications of polyphthalocyanines (PPhc) and other polymeric organic conductors. These can be present as such or as polymers ("doped") complexed with oxidizing or reducing substances; the complexation generally leads to an increase in the electrical conductivity by several orders of magnitude down to the area of metallic conductors. "Organic conductors" are understood to mean conductive non-polymeric organic substances, in particular complex salts or charge transfer complexes, e.g. B. the different modifications of tetracyanoquinodimethane (TCNQ) salts.

Auch Gemische von mehreren der vorstehend aufgeführten leitfähigen Zusatzstoffe können Verwendung finden. Leitruß wird den erfindungsgemäßen Polymerblends vorzugsweise in einer Menge von 0,5 bis 10, insbesondere 4 bis 10 Gew.-%, bezogen auf den Polymerblend, zugesetzt. Für andere Stoffe, z. B. Metallpulver kann der erforderliche Gehalt u.U. höher liegen und bis zu 30 Gew.-% betragen; er ist jedoch regelmäßig niedriger als bei den bislang bekannten Erzeugnissen, bei denen der leitfähige Zusatzstoff in dem Polymer gleichmäßig dispergiert vorliegt. Man erreicht Obeflächenwiderstandswerte von 10 bis 106 S2.Mixtures of several of the conductive additives listed above can also be used. Carbon black is preferably added to the polymer blends according to the invention in an amount of 0.5 to 10, in particular 4 to 10% by weight, based on the polymer blend. For other substances, e.g. B. metal powder, the required content may be higher and up to 30 wt .-%; however, it is regularly lower than in the previously known products, in which the conductive additive is present in the polymer in a uniformly dispersed manner. Surface resistance values of 10 to 10 6 S2 are achieved.

Besondere Vorteile werden bei Verwendung der oben erwähnten intrinsisch leitfähigen Polymeren oder nicht polymeren organischen Leiter erreicht, da sich hierbei im Vergleich zu allen anderen Zusätzen die Anteile nochmals erheblich senken lassen. Besonders überraschend ist dabei die Feststellung, daß sich leitfähige Polymere wie z. B. Polyacetylen bei Verwendung eines geeigneten Polymers A, z. B. Polycaprolacton, in nahezu alle Polymeren einarbeiten lassen, wobei sich im Lichtmikroskop einphasige Mikrostrukturen (mit Styrol/Acrylnitril-Copolymer, Polyvinylchlorid oder Polycarbonat als Polymer B), Tropfenstrukturen (mit Polyethylen oder Ethylen-Vinylacetat als Polymer B) oder auch die besonders bevorzugten Leiterbahnen (mit Polyetherpolyurethan oder Acrylnitril/Methacrylat/Butadien-Copolymer als Polymer B) ausbilden können. Schon mit einem Zusatz in der Größenordnung von 1 bis 3 Gew.-% wird ein Oberflächenwiderstand von etwa 105 bis 108 2 erhalten.Particular advantages are achieved when using the above-mentioned intrinsically conductive polymers or non-polymeric organic conductors, since the proportions can be significantly reduced compared to all other additives. It is particularly surprising to find that conductive polymers such. B. polyacetylene when using a suitable polymer A, z. As polycaprolactone, can be incorporated into almost all polymers, with single-phase microstructures (with styrene / acrylonitrile copolymer, polyvinyl chloride or polycarbonate as polymer B), drop structures (with polyethylene or ethylene-vinyl acetate as polymer B) or the particularly preferred ones in the light microscope Can form conductor tracks (with polyether polyurethane or acrylonitrile / methacrylate / butadiene copolymer as polymer B). Even with an addition of the order of 1 to 3% by weight, a surface resistance of approximately 10 5 to 10 8 2 is obtained.

Die erfindungsgemäßen Polymerblends können darüber hinaus übliche Zusatzstoffe wie Stabilisierungsmittel, Pigmente, Gleitmittel usw. enthalten. Gemäß einer besonderen Ausführungsform der Erfindung ist es möglich, chemische Vernetzer, z. B. ein vorzugsweise flüssiges Peroxid, zuzusetzen und dadurch bei der späteren Verarbeitung der Blends unter Erhitzen eine Vernetzung der Polymeren zu erreichen, welche eine mechanische Stabilisierung der erfindungsgemäß erzielten Leiterbahnen bewirkt.The polymer blends according to the invention can also contain conventional additives such as stabilizers, pigments, lubricants, etc. According to a particular embodiment of the invention, it is possible to use chemical crosslinkers, e.g. B. a preferably liquid peroxide, and thereby to achieve a crosslinking of the polymers in the subsequent processing of the blends with heating, which brings about a mechanical stabilization of the conductor tracks achieved according to the invention.

Besonders bevorzugt wird der Vernetzer dem Polymeren A bzw. dem aus Polymer A und den leitfähigen Stoffen bestehenden Leitfähigkeitskonzentrat zugesetzt, um die Leiterbahnen in der Matrix aus Polymer B zu stabilisieren. Es ist jedoch auch möglich, den Vernetzer in das Polymer B oder den Polymerblend einzuarbeiten und auf diese Weise eine Fixierung der sich ausbildenden Strukturen zu erreichen.The crosslinking agent is particularly preferably added to polymer A or to the conductivity concentrate consisting of polymer A and the conductive substances, in order to stabilize the conductor tracks in the matrix made of polymer B. However, it is also possible to incorporate the crosslinker into the polymer B or the polymer blend and in this way to achieve a fixation of the structures which form.

Zur Herstellung der erfindungsgemäßen Polymerblends kann man so vorgehen, daß man in einem ersten Schritt die leitfähigen Stoffe in einer Lösung oder Schmelze des Polymers A oder eines Präpolymers für das Polymer A dispergiert, ggf. das Lösungsmittel entfernt, und anschließend in einem zweiten Schritt das so hergestellte Leitfähigkeitskonzentrat mit dem Polymer B aufschmilzt und bei Verwendung eines Präpolymers polymerisiert. Andererseits ist es bei Verwendung geeigneter Polymer-Kombinationen auch möglich, die leitfähigen Stoffe direkt in eine Schmelze aus den Polymeren A und B einzudispergieren. Die erstgenannte Arbeitsweise eignet sich beispielsweise besonders für die Kombination aus Ethylen-Vinylacetat (Polymer A) und Polyvinylchlorid (Polymer B), da man bei Herstellung eines Leitfähigkeitskonzentrats aus diesem Polymer A und Ruß und anschließender Schmelzvermischung mit dem Polymer B wesentlich bessere Ergebnisse, insbesondere einen noch niedrigeren Rußgehalt bei gleicher elektrischer Leitfähigkeit, erhält als beim Einschrittverfahren. Andererseits ist es z. B. bei Verwendung von Styrol-Butadien-Styrol-Copolymer als Polymer B und Polystyrol als Polymer A möglich, beide Polymere gemeinsam zu schmelzen und in einem Schritt, z. B. in einem Banbury-Kneter oder einem Doppelschnecken-Knetextruder die leitfähigen Stoffe einzuarbeiten. Es ist auch möglich, daß 1-Schritt- und das 2-Schritt-Verfahren miteinander zu kombinieren, d.h. zunächst die Mischung aus Polymer A und dem Leitfähigkeitszusatz herzustellen und anschließend die Polymeren A und B miteinander zu mischen, wobei ein weiterer Teil des Leitfähigkeitszusatzes zugegeben wird.To produce the polymer blends according to the invention, the procedure can be followed in a first step by dispersing the conductive substances in a solution or melt of polymer A or a prepolymer for polymer A, if appropriate removing the solvent, and then in a second step prepared conductivity melt with the polymer B and polymerized when using a prepolymer. On the other hand, if suitable polymer combinations are used, it is also possible to disperse the conductive substances directly into a melt of polymers A and B. The first-mentioned method of operation is particularly suitable, for example, for the combination of ethylene-vinyl acetate (polymer A) and polyvinyl chloride (polymer B), since the preparation of a conductivity concentrate from this polymer A and carbon black and subsequent melt mixing with the polymer B gives substantially better results, in particular one even lower soot content with the same electrical conductivity, obtained than with the one-step process. On the other hand, it is e.g. B. when using styrene-butadiene-styrene copolymer as polymer B and polystyrene as polymer A possible to melt both polymers together and in one step, for. B. incorporate the conductive substances in a Banbury kneader or a twin-screw kneading extruder. It is also possible to combine the 1-step and the 2-step processes with each other, i.e. first to produce the mixture of polymer A and the conductivity additive and then to mix the polymers A and B with one another, a further part of the conductivity additive being added.

Die mechanischen Eigenschaften der erfindungsgemäßen Polymerblends sind hervorragend. Sie zeigen insbesondere sehr gute Schlagzähigkeitswerte ("ohne Bruch").The mechanical properties of the polymer blends according to the invention are excellent. In particular, they show very good impact strength values ("without break").

Zur Verwendung in dem vorstehend beschriebenen Herstellungsverfahren dienen Leitfähigkeitskonzentrate, welche das Polymer A und einen leitfähigen Stoff enthalten. In dem Leitfähigkeitskonzentrat kann Leitruß in einer Menge von mehr als 15 Gew.-%, vorzugsweise etwa 20 Gew.-%, Metallpulver in einer Menge von mehr als 50 Gew.-%, oder ein organisches leitfähiges Polymer bzw. ein nicht polymerer organischer Leiter in einer Menge von mehr als 10, vorzugsweise etwa 15 Gew.-% vorhanden sein. Vorzugsweise werden diese Leitfähigkeitskonzentrate bei der Herstellung von Endprodukten direkt dem Polymer B zugesetzt.Conductivity concentrates which contain polymer A and a conductive substance are used for the production process described above. In the conductivity concentrate, conductive carbon black in an amount of more than 15% by weight, preferably about 20% by weight, metal powder in an amount of more than 50% by weight, or an organic conductive polymer or a non-polymeric organic conductor be present in an amount of more than 10, preferably about 15% by weight. These conductivity concentrates are preferably added directly to polymer B in the production of end products.

Wie oben bereits erwähnt, kann es u.U. erwünscht sein, zur Stabilisierung der Struktur eine Vernetzung der Polymeren durchzuführen. Bei Zusatz chemischer Vernetzer zu dem Polymerblend kann dies durch Erhitzen bei der Herstellung des Blends oder bei dessen Verarbeitung erfolgen. Andererseits ist es auch möglich, die Vernetzung in an sich bekannter Weise durch Bestrahlung zu erreichen.As mentioned above, it may be desirable to crosslink the polymers to stabilize the structure. If chemical crosslinking agents are added to the polymer blend, this can be done by heating during the manufacture of the blend or during its processing. On the other hand, it is also possible to achieve crosslinking in a manner known per se by irradiation.

In bestimmten Fällen kann es von Vorteil sein, während oder unmittelbar nach der Einarbeitung der leitfähigen Stoffe chemische Reaktionen stattfinden zu lassen, um die Gebrauchseigenschaften der leitfähigen Blends bzw. der daraus hergestellten Fertigteile weiter zu verbessern. Beispielsweise kann man in an sich bekannter Weise (J. Gabbert, Preprints of 3. Int. Conf. on Reactive Processing of Polymers in Straßburg vom 5. bis 7.9. 1984, Seite 137; J. van der Loos, a.a.O. Seite 149) ein bei Raumtemperatur flüssiges Präpolymer der folgenden FormelIn certain cases, it can be advantageous to allow chemical reactions to take place during or immediately after the incorporation of the conductive substances in order to further improve the performance properties of the conductive blends or of the finished parts produced therefrom. For example, in a manner known per se (J. Gabbert, Preprints of 3rd Int. Conf. On Reactive Processing of Polymers in Strasbourg from 5 to 7 September 1984, page 137; J. van der Loos, loc. Cit. Page 149) prepolymer of the following formula which is liquid at room temperature

FIGOO/25FIGOO / 25

in der R ein zweiwertiger Kohlenwasserstoffrest und n = 50 bis 5000 ist, leitfähige Stoffe wie Leitruß einarbeiten und dieses in an sich bekannter Weise mit Caprolactam (als Polymer B) und einem Katalysator vermischen. Beim Extrudieren der Mischung erhält man ein leitfähiges, thermoplastisch verarbeitbares Blockcopolymer, in dem die von dem Präpolymer abgeleiteten Blöcke eine kontinuierliche Leiterbahn in der Matrix bilden. Man erreicht so spezifische Leitfähigkeitswerte um 102 bis 104 Qcm bei einem Gehalt an Präpolymer von 10 bis 20 Gew.-% und einem Rußgehalt in dem Präpolymer von etwa 20 % entsprechend einem Rußgehalt in dem Blend von 2 bis 4 Gew.-%.in which R is a divalent hydrocarbon radical and n = 50 to 5000, incorporate conductive substances such as conductive carbon black and mix this with caprolactam (as polymer B) and a catalyst in a manner known per se. When the mixture is extruded, a conductive, thermoplastically processable block copolymer is obtained in which the blocks derived from the prepolymer form a continuous conductor track in the matrix. In this way specific conductivity values of around 10 2 to 10 4 Qcm are achieved with a prepolymer content of 10 to 20% by weight and a carbon black content in the prepolymer of approximately 20%, corresponding to a carbon black content in the blend of 2 to 4% by weight.

Es ist vorteilhaft, die Polypropylenoxidkette durch Polycaprolacton zu ersetzen und daraus ein anderes Präpolymer zu erzeugen, wenn statt Leitruß z. B. Polyacetylen als leitfähiger Stoff eingearbeitet werden soll.It is advantageous to replace the polypropylene oxide chain with polycaprolactone and to produce another prepolymer from it if, instead of carbon black, e.g. B. polyacetylene to be incorporated as a conductive substance.

In bestimmten Fällen kann zur Erzeugung der erfindungsgemäß notwendigen Teilverträglichkeit zwischen den Polymeren A und B eine chemische Reaktion stattfinden. Dabei entstehen an den Grenzflächen zwischen den Phasen A und B Copolymere aus A und B. Dies kann beispielsweise durch katalysierte oder unkatalysierte Additions-, Veresterungs-, Umesterungs-, Verseifungs-, Umamidierungs- oder Eliminierungsreaktionen und ähnliche geschehen. Voraussetzung ist, daß nicht-reaktive Polymere (wie Polyolefine oder Polystyrol) vorher (z. B. mit Maleinsäureanhydrid) in an sich bekannter Weise funktionalisiert werden bzw. daß reaktive Gruppen (z. B. Ester oder Hydroxylgruppen enthaltende Polymere) verwendet werden. Geeignete Polymerblends sind beispielsweise

  • Maleinsäureanhydrid-modifiziertes Ethylen-Propylen-Dien-Terpolymer/Polyamid,
  • Maleinsäureanhydrid-modifiziertes Polyethylen/Polyamid,
  • Maleinsäureanhydrid-modifiziertes Polyethylen/Polystyrol,
  • Maleinsäureanhydrid-modifiziertes Polystyrol/Polyethylen,
  • Polycaprolacton/Maleinsäureanhydrid-modifiziertes Polyethylen,
  • Polycaprolacton/Maleinsäureanhydridmodifiziertes Ethylen-Propylen-Dien-Terpolymer,
  • Polycaprolacton/Maleinsäureanhydrid-modifiziertes Polystyrol,
  • Polyvinylalkohol/Ethylen-Vinylacetat-Copolymer,
  • Cellulosepropionat/Ethylen-Vinylacetat-Copolymer,
  • Cellulosepropionat/Polyethylenterephthalat,
  • Cellulosepropionat/Polycarbonat,
  • Ethylen-Vinylacetat-Copolymer/Polyethylenterephthalat,
  • Ethylen-Vinylacetat-Copolymer/Polycarbonat.
In certain cases, a chemical reaction can take place between polymers A and B to produce the partial compatibility required according to the invention. Copolymers of A and B are formed at the interfaces between phases A and B. This can be done, for example, by catalyzed or uncatalyzed addition, esterification, transesterification, saponification, transamidation or elimination reactions and the like. The prerequisite is that non-reactive polymers (such as polyolefins or polystyrene) are functionalized beforehand (for example with maleic anhydride) in a manner known per se or that reactive groups (for example polymers containing esters or hydroxyl groups) are used. Suitable polymer blends are, for example
  • Maleic anhydride-modified ethylene-propylene-diene terpolymer / polyamide,
  • Maleic anhydride modified polyethylene / polyamide,
  • Maleic anhydride modified polyethylene / polystyrene,
  • Maleic anhydride modified polystyrene / polyethylene,
  • Polycaprolactone / maleic anhydride-modified polyethylene,
  • Polycaprolactone / maleic anhydride-modified ethylene-propylene-diene terpolymer,
  • Polycaprolactone / maleic anhydride-modified polystyrene,
  • Polyvinyl alcohol / ethylene-vinyl acetate copolymer,
  • Cellulose propionate / ethylene-vinyl acetate copolymer,
  • Cellulose propionate / polyethylene terephthalate,
  • Cellulose propionate / polycarbonate,
  • Ethylene-vinyl acetate copolymer / polyethylene terephthalate,
  • Ethylene vinyl acetate copolymer / polycarbonate.

Die erwünschte Kopplungsreakation muß ggf. katalysiert werden, z. B. Umesterungs- oder Umamidierungsreaktionen mit p-Toluolsulfonsäure.The desired coupling reaction may need to be catalyzed, e.g. B. transesterification or transamidation reactions with p-toluenesulfonic acid.

Auf die vorstehende Weise ist es möglich, eigentlich unverträgliche Polymerpaare, die nach dem erfindungsgemäßen Verfahren an sich keine Leiterbahnen ausbilden würden, teilverträglich zu machen. Besonders augenfällig ist dies bei den Polymerpaaren Polyethylen/Polyamid oder Ethylen-Propylen-Dien-Terpolymer/Polyamid. Ohne Kompatibilisierungsreaktionen bilden sich je nach den Viskositätsverhältnissen rußhaltige oder rußfreie tropfenförmige eingeschlossene Phasen, nach der vorstehend beschriebenen Kompatibilisierung jedoch Leiterbahnen. Hierzu gibt man zum EPDM oder zum Polyethylen Maleinsäureanhydrid und ein Peroxid, läßt dies in der Schmelze reagieren und gibt dann den Ruß hinzu. Die gegebenenfalls granulierte Mischung verarbeitet man dann gemeinsam mit einem Polyamid.In the above manner, it is possible to make partially incompatible polymer pairs which are actually incompatible and which would not form conductor tracks per se by the method according to the invention. This is particularly striking with the polymer pairs polyethylene / polyamide or ethylene-propylene-diene terpolymer / polyamide. Without compatibilization reactions, depending on the viscosity ratios, soot-containing or soot-free, droplet-shaped enclosed phases are formed, but after the compatibilization described above, conductor tracks are formed. To do this, add to EPDM or polyethylene Maleic anhydride and a peroxide cause this to react in the melt and then add the soot. The optionally granulated mixture is then processed together with a polyamide.

Auch bei bereits teilverträglichen erfindungsgemäßen Polymerpaaren kann die in-situ-Erzeugung von Copolymeren zur Stabilisierung der Grenzflächen vorteilhaft sein. In der EP-A-168 620 wurde die Kristallisation von in Polycaprolacton gelöstem N-Methylchinolin-TCNQ beschrieben. Mit der vorliegenden Erfindung ist es möglich, eine z. B. 1 bis 3 Gew.-% TCNQ in Polycaprolacton enthaltende Mischung in Ethylen-VinylacetatCopolymere einzuarbeiten, wobei sich Netzwerke ausbilden. Bei der Auskristallisation des TCNQ-Salzes separieren die Phasen jedoch teilweise wieder, da die Mischung längere Zeit ohne Scherung thermoplastisch gehalten werden muß und die Verträglichkeit zur Aufrechterhaltung der mikroskopisch feinen Netzwerkstruktur unter diesen Bedingungen nicht ausreicht. Die Zugabe von p-Toluolsulfonsäure stabilisiert durch katalytische Umesterung die Grenzflächen.Even with polymer pairs according to the invention that are already partially compatible, the in-situ production of copolymers can be advantageous for stabilizing the interfaces. EP-A-168 620 describes the crystallization of N-methylquinoline-TCNQ dissolved in polycaprolactone. With the present invention, it is possible to use e.g. B. 1 to 3 wt .-% TCNQ in polycaprolactone-containing mixture in ethylene-vinyl acetate copolymers, forming networks. When the TCNQ salt crystallizes out, however, some of the phases separate again, since the mixture must be kept thermoplastic for long periods without shearing and the compatibility is not sufficient to maintain the microscopic network structure under these conditions. The addition of p-toluenesulfonic acid stabilizes the interfaces by catalytic transesterification.

Die erfindungsgemäßen Polymerblends können ggf. zunächst granuliert und als Granulate an Weiterverarbeiter geliefert werden. Andererseits können sie auch direkt zu Fertigprodukten verarbeitet werden. Die Blends eignen sich insbesondere zur Herstellung von antistatischen, elektrisch leitfähigen Beschichtungen, Folien, Formteilen oder Formkörpern.The polymer blends according to the invention can, if appropriate, first be granulated and supplied as granules to further processors. On the other hand, they can also be processed directly into finished products. The blends are particularly suitable for the production of antistatic, electrically conductive coatings, foils, molded parts or moldings.

Wenn man die aus den Polymerblends hergestellten Folien oder Formteile mechanisch verstreckt, führt dies zu einer Ausrichtung der Leiterbahnen mit der Folge, daß die verstreckten Materialien eine Vorzugsstromrichtung zeigen, was für verschiedene Anwendungen besonders vorteilhaft sein kann.If the films or molded parts produced from the polymer blends are mechanically stretched, this leads to an alignment of the conductor tracks, with the result that the stretched materials show a preferred flow direction, which can be particularly advantageous for various applications.

Zur Erläuterung der Erfindung sollen die nachfolgenden Beispiele dienen, auf welche die Erfindung jedoch nicht beschränkt ist.The following examples are intended to explain the invention, but the invention is not restricted to these.

Beispiel 1example 1

In einen Innenmischer wurden nacheinander 75 Gew.-% Polystyrol, 15 Gew.-% eines Styrol-Butadien-Styrol-Radialblockcopolymeren, 3,5 Gew.-% übliche Stabilisatoren und Verarbeitungshilfsmittel sowie 6,5 Gew.-% Leitruß (Ketjenblack EC® der Firma Akzo) gegeben und 4 bis 5 Min. lang bei ca. 180°C vermischt (das Füllvolumen des Mischers betrug 25 I). Anschließend wurde der gebildete Polymerblend granuliert. Nach Verpressen zu einer Platte wies das Material einen Oberflächenwiderstand (gemessen mit einer Ringelektrode nach DIN 53482) von 0,1 bis 2.103 Q auf. Durch Extrudieren konnten aus dem Granulat tiefziehfähige Platten hergestellt werden, die einen Oberflächenwiderstand von 0,5 bis 5.104 Ω aufwiesen. Die Platten besaßen eine Schlagzähigkeit (DIN 53453) "ohne Bruch" und eine Kerbschlagzähigkeit von 14 mJ/mm2.75% by weight of polystyrene, 15% by weight of a styrene-butadiene-styrene radial block copolymer, 3.5% by weight of conventional stabilizers and processing aids and 6.5% by weight of conductive carbon black (Ketjenblack EC® from Akzo) and mixed for 4 to 5 minutes at approx. 180 ° C. (the filling volume of the mixer was 25 l). The polymer blend formed was then granulated. After being pressed into a plate, the material had a surface resistance (measured with a ring electrode according to DIN 53482) of 0.1 to 2.10 3 Q. By extrusion, the granulate could be used to produce thermoformed sheets with a surface resistance of 0.5 to 5.10 4 Ω. The plates had an impact strength (DIN 53453) "without break" and a notched impact strength of 14 mJ / mm 2 .

Beispiel 2Example 2

Wie in Beispiel 1 beschrieben wurden zu 79 Gew.-% Ethylen-Vinylacetat-Copolymer (mit einem Vinylacetatgehalt von 7 %) neben üblichen Stabilisatoren und Verarbeitungshilfsmitteln 20 Gew.-% Leitruß gegeben und bei 170°C miteinander vermischt. Das so erhaltene Leitfähigkeitskonzentrat (spezifischer Widerstand nach der Vierpunktmethode ca. 5 Qcm) wurde in einem zweiten Arbeitsgang mit stabilisiertem Polyvinylchlorid-Granulat (K-Wert 67 bzw. 70) granuliert oder gleich zu einem Fertigprodukt (z. B. einer Platte). extrudiert, wobei die Massetemperatur bei ca. 185 bis 190°C lag. Der erhaltene halbleitende Polymerblend bzw die fertige Platte zeigte eine Schlagzähigkeit "ohne Bruch" sowie die in der unten folgenden Tabelle 1 aufgeführten elektrischen Eigenschaften.As described in Example 1, 79% by weight of ethylene-vinyl acetate copolymer (with a vinyl acetate content of 7%), in addition to conventional stabilizers and processing aids, were admixed with 20% by weight of carbon black and mixed with one another at 170.degree. The conductivity concentrate obtained in this way (specific resistance according to the four-point method approx. 5 Qcm) was granulated in a second operation with stabilized polyvinyl chloride granules (K value 67 or 70) or immediately to a finished product (e.g. a plate). extruded, the melt temperature was about 185 to 190 ° C. The semiconducting polymer blend obtained or the finished plate showed an impact strength "without break" and the electrical properties listed in Table 1 below.

Beispiel 3Example 3

In analoger Weise wurden Leitfähigkeitskonzentrate unter Verwendung von Styrol-Butadien-Styrol-Copolymer, chloriertem Polyethylen, Styrol-Acrylnitril-Copolymer. Polyamid-6,12 und Polycaprolacton hergestellt. Nach Extrudieren mit Polymer B wurden die in der nachfolgenden Tabelle enthaltenen Ergebnisse erhalten.

Figure imgb0001
Figure imgb0002
Analogously, conductivity concentrates were used using styrene-butadiene-styrene copolymer, chlorinated polyethylene, styrene-acrylonitrile copolymer. Polyamide-6.12 and polycaprolactone are produced. After extrusion with polymer B, the results contained in the table below were obtained.
Figure imgb0001
Figure imgb0002

Die Ergebnisse zeigen, daß hier der angestrebte Oberflächenwiderstand von < 106 Q mit verschiedenen Polymerkombinationen bereits bei einem Rußgehalt von 4 Gew.-% erreicht wird, und andererseits kommt man mit Rußgehalten zwischen 6 und 10 Gew.-% zu Oberflächenwiderstandswerten, welche bislang überhaupt nicht oder nur mit wesentlich höheren Rußgehalten erzielt werden konnten.The results show that the desired surface resistance of <10 6 Q with various polymer combinations is already achieved with a carbon black content of 4% by weight, and on the other hand, with carbon black contents between 6 and 10% by weight, surface resistance values are achieved which have so far been achieved could not be achieved or could only be achieved with significantly higher soot contents.

Beispiel 4Example 4

Von den nach Beispiel 1 bis 3 erhaltenen Polymerblends wurden mit Hilfe eines Mikrotoms für die lichtmikroskopische Untersuchung Schnitte angefertigt und bei tausendfacher Vergrößerung näher untersucht.

  • Figur 1 zeigt das Bild, welches ein Polymerblend aus PEC/SAN und ABS im Verhältnis 3 : 7 lieferte. Man erkennt deutlich die Leiterbahnen aus rußhaltigem Polymer A in der Matrix aus Polymer B.
  • Figur 2 zeigt den Polymerblend des Beispiels 1, während
  • Figur 3 einen Ausschnitt aus der Figur 2 darstellt.
Sections of the polymer blends obtained according to Examples 1 to 3 were made with the aid of a microtome for the light microscopic examination and examined in more detail at a magnification of a thousand times.
  • Figure 1 shows the image that a polymer blend of PEC / SAN and ABS in the ratio 3: 7. The conductor tracks made of soot-containing polymer A can clearly be seen in the matrix made of polymer B.
  • Figure 2 shows the polymer blend of Example 1, while
  • Figure 3 shows a section of Figure 2.

Man erkennt deutlich, daß sich der Leitfähigkeitsruß weitgehend in der Polystyrolphase befindet, während das SBS-Radialblock-Copolymer in der Matrix dispergiert ist, ohne die Leitfähigkeitsbrücken zu unterbrechen.It can clearly be seen that the conductivity carbon black is largely in the polystyrene phase, while the SBS radial block copolymer is dispersed in the matrix without interrupting the conductivity bridges.

Beispiel 5Example 5

In an sich bekannter Weise wurde Polyacetylen mit Polycaprolacton (Molekulargewicht = 20.000) vermengt, wobei im Unterschied zur oben genannten Patentanmeldung ein Konzentrat mit einem Polyacetylengehalt von 15 Gew.-% hergestellt wurde. Die fehlerfreie Dispergierung wurde überprüft, indem drei Teile des Polyacetylen-Polycaprolactonkonzentrats mit 100 Teilen Polycaprolacton auf einem Walzenstuhl vermischt und in einer Laborpresse dünn ausgepreßt wurden. Es zeigte sich eine tiefblaue Farbe und es waren keine schwarzen Punkte (Polyacetylenagglomerate) zu erkennen. Das Polyacetylenkonzentrat wurde auf einem Einschnecken-Extruder mit den in der folgenden Tabelle genannten Polymeren B zu einem Polymerblend extrudiert, wobei entweder ein Granulat oder ein Fertigprodukt hergestellt wurde. Das erhaltene Produkt kann beispielsweise durch Behandlung mit Jod leitfähiger gemacht ("dotiert") werden. Es wurden die in der folgenden Tabelle zusammengestellten Ergebnisse erhalten.

Figure imgb0003
In a manner known per se, polyacetylene was mixed with polycaprolactone (molecular weight = 20,000), in contrast to the above-mentioned patent application a concentrate with a polyacetylene content of 15% by weight was produced. The correct dispersion was checked by mixing three parts of the polyacetylene-polycaprolactone concentrate with 100 parts of polycaprolactone on a roller mill and squeezing them thinly in a laboratory press. A deep blue color appeared and no black dots (polyacetylene agglomerates) were visible. The polyacetylene concentrate was extruded on a single-screw extruder with the polymers B listed in the table below to form a polymer blend, with either a granulate or a finished product being produced. The product obtained can, for example, be made more conductive ("doped") by treatment with iodine. The results shown in the following table were obtained.
Figure imgb0003

Aus den vorstehenden Polymerblends wurden wiederum Mikrotomschnitte angefertigt und lichtmikroskopisch bei tausendfacher Vergrößerung untersucht.

  • Figur 4 zeigt das erhaltene Bild für die Leiterbahnen aus Polyacetylen/Polycaprolacton in Polyetherpolyurethan als Matrix (Polymer B).
  • Figur 5 zeigt einen Schnitt durch einen Polymerblend derselben Art, jedoch mit Acrylnitril-Methacrylat-Butadien-Copolymer als Matrix bzw. Polymer B.
  • Figuren zeigen vergrößerte Ausschnitte der Figur 4 in denen man die Leiterbahnen deutlich erkennt. Diese
  • 6 und 7 iegen jedoch nicht in einer Ebene, sondern bilden ein dreidimensionales Netzwerk, von dem aufgrund der geringen Tiefenschärfe des Mikroskops jeweils nicht alle Teilchen des Leitfähigkeitskonzentrats scharf abgebildet werden; die nicht ausgefüllten Kreise stellen solche nicht scharf abgebildeten Teilchen dar.
Microtome sections were again made from the above polymer blends and examined by light microscopy at a thousandfold magnification.
  • FIG. 4 shows the image obtained for the conductor tracks made of polyacetylene / polycaprolactone in polyether polyurethane as a matrix (polymer B).
  • FIG. 5 shows a section through a polymer blend of the same type, but with acrylonitrile-methacrylate-butadiene copolymer as the matrix or polymer B.
  • Figures show enlarged sections of FIG. 4 in which the conductor tracks can be clearly recognized. These
  • However, 6 and 7 do not lie in one plane, but form a three-dimensional network, of which not all particles of the conductivity concentrate are sharply imaged due to the shallow depth of focus of the microscope; the open circles represent such non-sharply represented particles.

Beispiel 6Example 6

Eine Mischung von 1,2 % TCNQ-Komplex in PCL wird in einem Innenmischer mit der gleichen Menge EVA (30 % VA) bei 130 - 160° vermischt. Die erhaltene Masse wird zu einer Folie ausgepreßt. Diese wird 30 sec. lang bei 190°C gepreßt, wobei sich der TCNQ-Komplex auflöst. Die Folie wird danach sofort 10 Min. lang in 95'C heißem Wasser getempert und danach in 15° kaltem Wasser abgeschreckt. Bei der Temperung bei 95° enstehen büschelförmige, sehr lange TCNQ-Komplex-Kristallnadeln.A mixture of 1.2% TCNQ complex in PCL is mixed in an internal mixer with the same amount of EVA (30% VA) at 130 - 160 °. The mass obtained is pressed out into a film. This is pressed at 190 ° C. for 30 seconds, the TCNQ complex dissolving. The film is then immediately annealed in hot water at 95 ° C. for 10 minutes and then quenched in water at 15 ° C. Tempering at 95 ° produces tuft-shaped, very long TCNQ complex crystal needles.

Die Folie hat einen Oberflächenwiderstand von 3 x 108 Ω (ohne TCNQ: ca.1012Q).The film has a surface resistance of 3 x 10 8 Ω (without TCNQ: ca.1012Q).

Claims (15)

1. Antistatic or electrically semi-conductive thermoplastic polymer blends based on organic polymers, electrically conductive substances and the usual additives, characterized in that, they contain two partially compatible thermoplastic polymers A and B, of which polymer A at a given temperature has a lower melting viscosity in comparison to polymer B and between which there is a solubility-parameter difference of approximately 0.3 to 1.5 (cal/cm3)1/2, in which the polymer A, which forms the continuous phase, essentially contains the electrically conductive substances.
2. Polymer blends according to claim 1, characterized in that they contain one of the following combinations as polymers A and B: ethylene-vinylacetate-copolymer/polyvinyl chloride,
ethylene-vinylacetate-copolymer/polyethylene,
chlorinated polyethylene/acrylnitrile-butadiene-styrene-copolymer,
styrene-butadiene-styrene-block-copolymer/polyethylene,
polystyrene/styrene-butadiene-styrene-block-copolymer, r,
polyamide-copolymer/polyamide,
polyamide/polyoxymethylene,
ethylene-vinyl-acetate-copolymer/acrylnitrile-butadiene-styrene-copolymer,
poly-alphamethylstyrene/polyvinyl chloride,
ethylene-vinylacetate-carbon-monoxide-copolymer/polyvinyl chloride,
ethylene-vinylacetate-carbon-monoxide-copolymer-polyurethane,
polyurethane/polyamide, polyurethane/polycarbonate,
polycaprolactone/polyetherpolyurethane,
polyesterpolyurethane/polyvinyl chloride,
polyurethane/acryinitrile-butadiene-styrene-copolymer,
polycaprolactone/acryinitrile-methacrylate-butadiene-copolymer,
polycaprolactone/polyurethane or polycaprolactone/ethylene-vinylacetate-copolymer.
3. Polymer blends according to claims 1 or 2, characterized in that the polymers A and B are each mixtures of thermoplastic polymers which are compatible with one another.
4. Polymer blends according to one of the claims 1 to 3, characterized in that the weight ratio of polymer A Polymer B is < 1 : 1.
5. Polymer blends according to one of the claims 1 to 4, characterized in that they contain as conductive substances metal powder or metal fibres, carbon fibres, carbon black with a BET-surface > 250 mZ/g and with a dibutylphthalate absorption > 140 cm3/100 g, electrically conductive organic polymers or non-polymer organic conductors or their mixtures.
6. Polymer blends according to one of the claims 1 to 5, characterized in that they contain the conductive substances in a quantity of 0.5 to 10 % by weight, referred to the polymer blend.
7. Polymers blends according to one of the claims 1 to 6, characterized in that they contain chemical crosslinking agents for one or more of the polymers.
8. Process for preparation of the polymer blends according to claims 1 to 7, characterized in that
a) in step one the conductive substances are dispersed in a solution or melt of polymer A or a prepolymer for polymer A, if necessary the solvent is removed, and finally in the second step the conductive concentrate thus prepared is melted down with polymer B or is polymerized using a prepolymer, or
b) the conductive substances are directly dispersed into a melt of the polymers A and B and, if necessary, the polymer blend thus obtained is granulated.
9. Process according to claim 8, characterized in that process b) is used for the polymer combination polystyrene (polymer A) and styrene-butadiene-styrene-copolymer (polymer B).
10. Process according to claim 8 or 9, characterized in that to crosslink the polymers the polymer blend containing the chemical crosslinking agent is heated or the polymer blend is irradiated.
11. Process according to claims 8 to 10, characterized in that the necessary partial compatibility of the polymers is produced by a chemical reaction during the thermoplastic preparation of the blend or during its thermoplastic deformation.
12. Process according to claim 11, characterized in that the following catalysed or non-catalysed reactions are carried out on or between the reactive polymers A and B: addition, esterification, interchange of ester radicals, saponification, interchange of amides and/or elimination.
13. Process according to claim 11 or 12, characterized in that one of the following combinations is used as polymer A and B:
maleic-acid-anhydride modified ethylene-propylene-dien-terpolymer/polyamide,
maleic-acid-anhydride-modified polyethylene/polyamide,
maleic-acid-anhydride-modified polyethylene/polystyrol,
maleic-acid-anhydride-modified-polystyrene/polyethylene,
polycaprolactone/maleic-acid-anhydride-modified polyethylene,
poly-caprolactone/maleic-acid-anhydride-modified ethylene-propylene-dien-terpolymer,
polycaprolactone/maleic-acid-anhydrid-modified polystyrene,
polyvinylalcohol/ethylene-vinylacetate-copolymer,
cellulose-propionate/ethylene-vinylacetate-copolymer,
cellulose-propionate/polyethyleneterephthalate cellulose-propionate/polycarbonate,
ethylene-vinylacetate-copolymer/polyethylene-terephthalate or ethylene-vinylacetate-
copolymer/polycarbonate.
14. Use of polymer blends according to claims 1 to 7 for the production of coating, films, moulded parts or moulded bodies which are permanently volume anti-static or electrically semi-conductive.
15. Use according to claim 13, characterized in that the films, moulded parts or moulded bodies are stretched to attain the preferred current direction.
EP85114008A 1984-11-07 1985-11-04 Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use Expired EP0181587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85114008T ATE43745T1 (en) 1984-11-07 1985-11-04 ANTISTATIC OR. ELECTRICAL SEMI-CONDUCTING THERMOPLASTIC POLYMER BLENDS, PROCESS FOR THEIR PRODUCTION AND THEIR USE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3440617 1984-11-07
DE3440617A DE3440617C1 (en) 1984-11-07 1984-11-07 Antistatic or electrically semiconducting thermoplastic polymer blends, processes for their production and their use

Publications (3)

Publication Number Publication Date
EP0181587A2 EP0181587A2 (en) 1986-05-21
EP0181587A3 EP0181587A3 (en) 1986-12-30
EP0181587B1 true EP0181587B1 (en) 1989-05-31

Family

ID=6249690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114008A Expired EP0181587B1 (en) 1984-11-07 1985-11-04 Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use

Country Status (4)

Country Link
US (1) US4929388A (en)
EP (1) EP0181587B1 (en)
AT (1) ATE43745T1 (en)
DE (2) DE3440617C1 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296263A1 (en) * 1987-06-23 1988-12-28 The Dow Chemical Company Electroconductive polymer-latex composites
ATE103095T1 (en) * 1986-01-14 1994-04-15 Raychem Corp CONDUCTIVE POLYMER COMPOSITION.
EP0371059A1 (en) * 1986-01-14 1990-06-06 Raychem Corporation Conductive polymer composition
JP2578881B2 (en) * 1987-02-25 1997-02-05 昭和電工株式会社 Radical polymerizable composition
US5106538A (en) * 1987-07-21 1992-04-21 Raychem Corporation Conductive polymer composition
GB2214511A (en) * 1988-01-29 1989-09-06 Zipperling Kessler & Co A method of preparing compositions with optimized conductivity behaviour
US5213736A (en) * 1988-04-15 1993-05-25 Showa Denko K.K. Process for making an electroconductive polymer composition
JP2603511B2 (en) * 1988-04-15 1997-04-23 昭和電工株式会社 Conductive plastic
US5045141A (en) * 1988-07-01 1991-09-03 Amoco Corporation Method of making solderable printed circuits formed without plating
US5498761A (en) * 1988-10-11 1996-03-12 Wessling; Bernhard Process for producing thin layers of conductive polymers
CA2004760C (en) * 1988-12-09 1998-12-01 Norio Mori Composite temperature-sensitive element and face heat generator comprising the same
US5130371A (en) * 1989-10-24 1992-07-14 Exxon Chemical Patents Inc. Crystalline polyolefin graft copolymers
WO1991006592A1 (en) * 1989-10-24 1991-05-16 Exxon Chemical Patents Inc. Graft copolymer of polylactone on a polymer backbone
JP2883128B2 (en) * 1989-11-13 1999-04-19 三菱化学株式会社 Conductive thermoplastic resin composition
US5209872A (en) * 1989-12-25 1993-05-11 Shin-Etsu Chemical Co., Ltd. Rubber composition and method for making
US5476612A (en) * 1989-12-30 1995-12-19 Zipperling Kessler & Co., (Gmbh & Co.). Process for making antistatic or electrically conductive polymer compositions
DE3943420A1 (en) * 1989-12-30 1991-07-04 Zipperling Kessler & Co METHOD FOR PRODUCING ANTISTATIC OR ELECTRICALLY CONDUCTED POLYMER COMPOSITIONS
US5217649A (en) * 1991-01-31 1993-06-08 Americhem, Inc. Electrically conductive blends of intrinsically conductive polymers and thermoplastic polymers containing sulfonamide plasticizer and acidic surfactant
JPH0826231B2 (en) * 1991-08-16 1996-03-13 インターナショナル・ビジネス・マシーンズ・コーポレイション Conductive polymer material and its use
DE69229253T2 (en) * 1991-10-08 1999-11-04 Americhem Inc Process for producing an intrinsically conductive polymer and articles containing it from a thermoplastic polymer mixture
US5494609A (en) * 1992-04-15 1996-02-27 Kulkarni; Vaman G. Electrically conductive coating compositions and method for the preparation thereof
EP0578245A3 (en) * 1992-07-10 1994-07-27 Mitsubishi Petrochemical Co Process for producing a resin compound
CN1086929A (en) * 1992-09-04 1994-05-18 单一检索有限公司 Flexible, conducting plastic electrode and manufacture method thereof
DE4317010A1 (en) * 1993-05-17 1994-11-24 Zipperling Kessler & Co Dispersible intrinsically conductive polymer and process for its manufacture
US5597864A (en) * 1993-06-02 1997-01-28 Benecke-Kaliko Ag Single-layer or multiple-layer surface foil for laminating on substrates
DE9308242U1 (en) * 1993-06-02 1993-08-05 J.H. Benecke Ag, 30419 Hannover, De
US5472639A (en) * 1993-08-13 1995-12-05 The Dow Chemical Company Electroconductive foams
US5464570A (en) * 1993-10-25 1995-11-07 Delco Electronics Corporation THFA/PDP thermoset thick films for printed circuits
EP0685527B1 (en) * 1994-06-01 1997-03-05 General Electric Company Thermoplastic composition comprising a compatibilized polyphenylene ether- polyamide base resin and electroconductive carbon black
FR2721324B1 (en) * 1994-06-16 1996-08-23 Tiag Ind Antistatic polymer material.
US5595689A (en) * 1994-07-21 1997-01-21 Americhem, Inc. Highly conductive polymer blends with intrinsically conductive polymers
US5484837A (en) * 1994-10-25 1996-01-16 Far Eastern Textile, Ltd. Black masterbatch
US5606983A (en) * 1994-12-02 1997-03-04 Monty; Lawrence P. Hair care appliance with thermochromic hair curlers and method of manufacturing same
US5700398A (en) * 1994-12-14 1997-12-23 International Business Machines Corporation Composition containing a polymer and conductive filler and use thereof
US5629050A (en) * 1995-08-30 1997-05-13 The Dow Chemical Company Process for preparing coated articles
US5844037A (en) * 1996-07-24 1998-12-01 The Dow Chemical Company Thermoplastic polymer compositions with modified electrical conductivity
US5733480A (en) * 1996-09-24 1998-03-31 Quantum Chemical Corporation Semiconductive extrudable polyolefin compositions and articles
US5902517A (en) * 1996-10-28 1999-05-11 Cabot Corporation Conductive polyacetal composition
US5843340A (en) 1997-03-17 1998-12-01 General Electric Company Method for the preparation of conductive polyphenylene ether-polyamide compositions
US5908898A (en) * 1998-02-12 1999-06-01 Monsanto Company Intrinsically conductive polymer blends having a low percolation threshold
DE19814263A1 (en) * 1998-03-31 1999-10-07 Basf Ag Moldings made of polyoxymethylenes
US6514608B1 (en) 1998-07-10 2003-02-04 Pirelli Cable Corporation Semiconductive jacket for cable and cable jacketed therewith
US6277303B1 (en) 1998-07-10 2001-08-21 Pirelli Cable Corporation Conductive polymer composite materials and methods of making same
AU763136B2 (en) * 1998-10-23 2003-07-17 Prysmian Power Cables And Systems Usa, Llc Crosslinked conducting polymer composite materials and method of making same
US6284832B1 (en) * 1998-10-23 2001-09-04 Pirelli Cables And Systems, Llc Crosslinked conducting polymer composite materials and method of making same
US6610773B1 (en) 1998-12-09 2003-08-26 General Electric Company Conductive, low warp polyetherimide resin compositions
US6315956B1 (en) 1999-03-16 2001-11-13 Pirelli Cables And Systems Llc Electrochemical sensors made from conductive polymer composite materials and methods of making same
US6331353B1 (en) * 1999-08-17 2001-12-18 Pirelli Cables And Systems Llc Stranded conductor filling compound and cables using same
US6441084B1 (en) 2000-04-11 2002-08-27 Equistar Chemicals, Lp Semi-conductive compositions for wire and cable
US6777496B2 (en) * 2000-11-28 2004-08-17 Honeywell International Inc. Polymeric additives and polymeric articles comprising said additive
JP2002173602A (en) * 2000-12-05 2002-06-21 Learonal Japan Inc Antistatic resin composite material and method for producing the same
US6455771B1 (en) * 2001-03-08 2002-09-24 Union Carbide Chemicals & Plastics Technology Corporation Semiconducting shield compositions
FI117511B (en) 2001-04-04 2006-11-15 Premix Oy Process for preparing an conductive polymer blend and conductive polymer blend
US6602974B1 (en) 2001-12-04 2003-08-05 Carnegie Mellon University Polythiophenes, block copolymers made therefrom, and methods of forming the same
DE10242955B4 (en) * 2002-09-17 2005-03-10 Schuetz Gmbh & Co Kgaa Kunststoffaß and method for producing the barrel
US7641973B2 (en) * 2002-11-27 2010-01-05 Sumitomo Rubber Industries, Ltd. Conductive member for image-forming apparatus
US7316791B2 (en) * 2003-12-30 2008-01-08 E.I. Du Pont De Nemours And Company Polyimide based substrate comprising doped polyaniline
DE102004003784B4 (en) * 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion of intrinsically conductive polyaniline and their use
JP2007529586A (en) * 2004-03-18 2007-10-25 オルメコン・ゲーエムベーハー Composition comprising a colloidal conductive polymer and carbon
DE102004030388A1 (en) * 2004-06-23 2006-01-26 Ormecon Gmbh An article with a coating of electrically conductive polymer and process for its preparation
KR100646412B1 (en) 2004-12-21 2006-11-14 (주)켐텍솔루션 Conductive polyolefin resins, and wrapping instruments and sheet employing thereof
CN101679714B (en) 2005-02-10 2013-03-06 普莱克斯托尼克斯公司 Hole injection/transport layer compositions and devices
DE102005010162B4 (en) * 2005-03-02 2007-06-14 Ormecon Gmbh Conductive polymers of particles with anisotropic morphology
US7413684B2 (en) * 2005-04-15 2008-08-19 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)/polyamide composition
EP1728822A1 (en) * 2005-05-30 2006-12-06 Nanocyl S.A. Nanocomposite and process for producing the same
DE102005039608A1 (en) * 2005-08-19 2007-03-01 Ormecon Gmbh Composition with intrinsically conductive polymer
CA2641266C (en) * 2006-02-06 2014-02-04 Dow Global Technologies Inc. Semiconductive compositions
EP2537874B1 (en) * 2006-07-21 2021-05-19 Nissan Chemical Corporation Sulfonation of conducting polymers and oled, photovoltaic, and esd devices
MY147793A (en) * 2006-09-13 2013-01-31 Enthone Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
WO2009029393A2 (en) * 2007-08-03 2009-03-05 Battelle Memorial Institute Thermoelectric device and thermoelectric material
US7874674B2 (en) 2007-12-12 2011-01-25 Allred Lloyd G Aberrometer having reduced noise
EP2250207B1 (en) 2008-02-29 2012-01-04 Plextronics, Inc. Planarizing agents and devices
KR20120106795A (en) 2009-12-18 2012-09-26 플렉스트로닉스, 인크 Copolymers of 3,4-dialkoxythiophenes and methods for making and devices
DE102010025938A1 (en) * 2010-07-02 2012-01-05 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Release film with permanent antistatic effect
WO2014039687A1 (en) 2012-09-06 2014-03-13 Plextronics, Inc. Electroluminescent devices comprising insulator-free metal grids
US9921526B2 (en) * 2015-01-09 2018-03-20 Ricoh Company, Ltd. Semiconductive resin composition, member for electrophotography and image forming apparatus
US10797314B2 (en) 2016-07-29 2020-10-06 Blue Current, Inc. Compliant solid-state ionically conductive composite materials and method for making same
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
WO2021127542A1 (en) 2019-12-20 2021-06-24 Blue Current, Inc. Composite electrolytes with binders
US11394054B2 (en) * 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3200056A (en) * 1959-02-13 1965-08-10 Minnesota Mining & Mfg Stabilized polyethylene
US3178384A (en) * 1962-02-19 1965-04-13 Du Pont Semi-conductive fabric comprising an ethylene-vinyl acetate copolymer, wax and carbon black
JPS533416B2 (en) * 1973-07-23 1978-02-06
US4265789A (en) * 1979-10-22 1981-05-05 Polymer Cencentrates, Inc. Conductive polymer processable as a thermoplastic
JPS59189142A (en) * 1983-04-12 1984-10-26 Ube Ind Ltd Electrically conductive thermoplastic resin composition
US4510076A (en) * 1983-11-23 1985-04-09 Gte Laboratories, Inc. Electrically conductive polymer blends of an acetylene polymer and a triblock thermoplastic elastomer
US4622355A (en) * 1984-07-16 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Radiation-hardened polymeric films
JPS6164739A (en) * 1984-09-05 1986-04-03 Nippon Yunikaa Kk Semiconductive resin composition having both bondability and strippability

Also Published As

Publication number Publication date
EP0181587A2 (en) 1986-05-21
US4929388A (en) 1990-05-29
DE3570796D1 (en) 1989-07-06
DE3440617C1 (en) 1986-06-26
ATE43745T1 (en) 1989-06-15
EP0181587A3 (en) 1986-12-30

Similar Documents

Publication Publication Date Title
EP0181587B1 (en) Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use
DE2948350C2 (en)
DE3729566A1 (en) INTRINSICALLY CONDUCTIVE POLYMER IN THE FORM OF A DISPERSIBLE SOLID, THE PRODUCTION THEREOF AND THE USE THEREOF
DE2652683C3 (en) Anisotropic, electrically conductive plate or film-shaped body and method for its production
EP0168620A2 (en) Method of producing mouldable polymer blends from electrically conductive organic polymers and use of said polymer blends
DE69321673T3 (en) Conductive plastic material and method for its production
DE3707503A1 (en) PTC COMPOSITION
DE2640059C2 (en)
DE3242657C2 (en)
DE2901776A1 (en) METHOD FOR PRODUCING SMALL-PIECE POLYOLEFIN MOLDING MATERIALS PROVIDED WITH CONDUCTIVE SOOT AND THE USE THEREOF FOR THE PRODUCTION OF MOLDED BODIES
DE2530810C3 (en) Polymer mixture of an ionically cross-linked polymer with a preferred plasticizer
DE2524640A1 (en) ELECTRICALLY CONDUCTIVE MATERIALS AND PROCESS FOR THEIR MANUFACTURING
DE2755076A1 (en) CONDUCTIVE POLYMER COMPOUNDS, METHODS OF MANUFACTURING IT, AND DEVICES CONTAINING THESE COMPOUNDS
DE3542231A1 (en) ORGANIC POLYMERS WITH ELECTRICAL PROPERTIES
DE2422914C2 (en) High or extra high voltage electrical cable
DE3625950A1 (en) GLASS FIBER REINFORCED RESIN COMPOSITION ON PROPYLENE / ETHYLENE COPOLYMER BASE
EP0186887A2 (en) Process for manufacturing an electrically conductive reticulated polyolefin foam and its use
EP0144600B1 (en) Manufacture of a plastic material
DE2364875A1 (en) PHOTOLYTICALLY DEGRADABLE RESIN COMPOSITES AND THEIR USE
DE3015271A1 (en) METHOD FOR PRODUCING POLYMERIC ELECTROLYTES
DE2220147C3 (en) Process for the production of crosslinked, stabilized ethylene polymers
EP0071862B1 (en) Polystyrene with high electrical conductivity
DE1285175B (en) Use of polycarbonates for film production
DE2937708A1 (en) CONDUCTING POLYMERS
DE2320114A1 (en) PROCESS FOR REDUCING THE LIFE OF SYNTHETIC POLYMERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861203

17Q First examination report despatched

Effective date: 19870826

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 43745

Country of ref document: AT

Date of ref document: 19890615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3570796

Country of ref document: DE

Date of ref document: 19890706

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921021

Year of fee payment: 8

Ref country code: LU

Payment date: 19921021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19921119

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931104

Ref country code: AT

Effective date: 19931104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931130

Ref country code: CH

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85114008.7

Effective date: 19940610

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041102

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050124

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20051104

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

BE20 Be: patent expired

Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO)

Effective date: 20051104

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20051104

BE20 Be: patent expired

Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO)

Effective date: 20051104