EP0177676B1 - Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung - Google Patents

Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung Download PDF

Info

Publication number
EP0177676B1
EP0177676B1 EP85107962A EP85107962A EP0177676B1 EP 0177676 B1 EP0177676 B1 EP 0177676B1 EP 85107962 A EP85107962 A EP 85107962A EP 85107962 A EP85107962 A EP 85107962A EP 0177676 B1 EP0177676 B1 EP 0177676B1
Authority
EP
European Patent Office
Prior art keywords
hydrogenation
gas phase
phase
temperature
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85107962A
Other languages
English (en)
French (fr)
Other versions
EP0177676A3 (en
EP0177676A2 (de
Inventor
Eckard Dr. Wolowski
Frank Dr. Mirtsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0177676A2 publication Critical patent/EP0177676A2/de
Publication of EP0177676A3 publication Critical patent/EP0177676A3/de
Application granted granted Critical
Publication of EP0177676B1 publication Critical patent/EP0177676B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes

Definitions

  • a process is also known in which hydrocarbon mixtures which are foreign to the process are advantageously used as grinding oils for mashing the coal instead of oils of process origin (EP-A-123161).
  • a defined phase equilibrium temperature is set in the intermediate separator in order to achieve the predetermined quantity splitting by partial condensation of the hydrogenation products from the bottom phase.
  • This temperature in the intermediate separator is set by cooling the hot bottom phase hydrogenation products in heat exchangers, coal mash and hydrogenation gas being heated by indirect heat exchange.
  • bypass lines are often used in technology on the heat exchanger in order to keep the heat transfer capacity of the system almost constant by means of controlled bypass valves despite incrusting heat exchangers.
  • the large overdimensioning of the heat exchangers for the clean state and the risk of a flange fan in hot high-pressure lines which have bypasses with a large control range are disadvantageous.
  • the temperature of the gas phase feedstocks has to be increased as the operating time increases due to the deactivation of the gas phase catalyst (e.g. 390 degrees Celsius to 430 degrees Celsius).
  • the invention has for its object to achieve a defined setting of the phase equilibrium temperature in the intermediate separator and a defined increase in the inlet temperature of the gas phase feedstocks with increasing runtime with economic heat recovery despite increasing unavoidable incrustation of the heat exchanger - especially at high mash temperatures.
  • This object is achieved in that in order to set the defined phase equilibrium temperature in the intermediate separator, the gaseous hydrogenation products from the bottom phase are cooled in a mash heat exchanger, a head cooler and a final cooler in front of the intermediate separator and the heating of the cold mash-hydrogenation gas mixture in Heat exchangers are carried out by indirect heat exchange with the hot hydrogenation products from the gas phase hydrogenation.
  • the temperature of the gas phase feedstocks must be raised gradually. This takes place - without an additional heating furnace - according to the invention in that the temperature level of the head cooler upstream of the intermediate separator is also increased as the mash heat exchanger progresses. At the same time, with increasing reduction in the heat transfer capacity of the mash heat exchanger, the waste heat generated from the bottom phase hydrogenation is transferred to the upstream mash preheating of the bottom phase hydrogenation via the path of gas phase hydrogenation and thus used economically.
  • the desired temperature in the intermediate separator is set by means of a final cooler, in which steam is expediently generated or hydrogenation gas is preheated.
  • the temperature level of the bottom phase gases / vapors entering the mash heat exchanger can also be reduced. This reduces the usual fast incrustation of clean pipes of the mash heat exchanger, since the max. occurring mash temperature (at the same averaged mash outlet temperature) is reduced.
  • the desired temperature of the starting materials for the gas phase hydrogenation can be set by means of a head cooler (incl. Bypass) after the bottom phase hydrogenation.
  • the bypass around the mash heat exchanger serves to limit the max. Mash outlet temperature of the mash heat exchanger (especially when the heat exchanger tubes are clean).
  • the start-up process is carried out quickly by heating the gas phase feedstocks using a head cooler behind the bottom phase hydrogenation.
  • the process is explained in more detail using two examples:
  • the gaseous and vaporous products from the bottom phase reactor 4 are partially cooled by means of mash heat exchanger 2 by indirect heat exchange, the mash-hydrogenation gas mixture being heated to the starting temperature of the bottom phase hydrogenation of approximately 440 ° C. on the heating side.
  • the bottom phase products are further cooled by indirect heat exchange in the head cooler 7 and in the final cooler 8.
  • the products from the bottom phase hydrogenation are divided into the solvent fraction (liquid) and the feed stream for the gas phase hydrogenation (gases / vapors). The latter is heated in the head cooler 7 and then in the indirect heat exchanger 10 to the gas phase reaction temperature of approximately 390 ° C.
  • the gas phase products are partially cooled by indirect heat exchange in the mash heat exchanger 1, whereby the mash-hydrogenation gas mixture is preheated.
  • the hydrogenation gas is preheated by further cooling of the gas phase products.
  • the entire process is self-sufficient in stationary operation.
  • the mash heating furnace 3 serves only as a start-up furnace.
  • the waste heat from the heat exchanger 8 is preferably used to generate MD steam or to preheat the hydrogenation gas.
  • head cooler 6 the gaseous and vaporous products can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Description

  • Das Verfahren zur mehrstufigen Hydrierung von Kohle, wobei feingemahlene Kohle mit Öl bei Drücken von 250 bis 350 bar und Temperaturen von 440 bis 500 Grad Celsius in der Sumpfphase mit Wasserstoff hydriert wird und nach Abtrennung der bei der Reaktionstemperatur flüssige Feststoffe enthaltenden Phase die gasförmigen Hydrierprodukte bei gleichem Prozeßdruck in Gegenwart eines Festbettkatalysators weiterhydriert werden, ist durch die Deutschen Offenlegungsschriften 3209143 und 3222730 bekannt. Hierbei werden mittels Teilkondensation der gasförmigen Hydrierprodukte aus der Sumpfphase die schwer siedenden Ölkomponenten als flüssige Phase in einem Zwischen-Abscheider abgezogen und zur Kohleanmaischung zurückgeführt, so daß nur die gasförmigen Ölfraktionen mit leichter bzw. mittlerer Siedelage in die Gasphasehydrierung geleitet werden.
  • Weiterhin ist ein Verfahren bekannt, bei welchem als Anreiböle für die Kohleanmaischung statt prozeßstämmiger Öle mit Vorteil prozeßfremde Kohlenwasserstoffgemische eingesetzt werden (EP-A-123161).
  • Bei diesem bekannten Verfahren ist es erforderlich, daß eine definierte Phasengleichgewichtstemperatur im Zwischen-Abscheider eingestellt wird, um die vorgegebene Mengeaufsplittung durch Teilkondensation der Hydrierprodukte aus der Sumpfphase zu erreichen. Diese Temperatur im Zwischen-Abscheider wird durch eine Abkühlung der heißen Sumpfphase-Hydrierprodukte in Wärmeaustauschern eingestellt, wobei durch indirekten Wärmeaustausch Kohlemaische und Hydriergas aufgeheizt werden.
  • Infolge zunehmender Inkrustierung auf der Maischeseite der Wärmeaustauscher fällt bei den bekannten Verfahren die Wärmeübertragungsleistung stark ab und somit die Phasengleichgewichtstemperatur im Zwischen-Abscheider mit zunehmender Laufzeit ansteigt. Aus Versuchsanlagen der Kohlehydrierung ist die Erkenntnis gekommen, daß die Wärmeaustauscher inbesondere bei hohen Maischetemperaturen stark inkrustieren, wobei der Wärmedurchgangskoeffizient auf unter 50 % - im Extremfall auf 25 % - bezogen auf den sauberen Zustand abfällt. Hierdurch resultiert ein Anstieg der Phasengleichgewichtstemperatur im Zwischen-Abscheider, so daß die vorgegebene Mengenaufteilung durch Teilkondensation nicht aufrechterhalten werden kann. Es ist weiterhin aus Versuchsanlagen die Erkenntnis gekommen, daß Wärmeaustauscher bei niedrigen Maischetemperaturen nahezu frei von Inkrustierungen bleiben.
  • In der Technik werden in anderen Prozessen häufig Bypaßleitungen am Wärmeaustauscher eingesetzt, um mittels geregelter Bypaßventile trotz inkrustierender Wärmeaustauscher die Wärmeübertragungsleistung des Systems nahezu konstant zu halten. Nachteilig sind jedoch die starke Überdimensionierung der Wärmeaustauscher für den sauberen Zustand sowie die Gefahr eines Flanschbläsers in heißgehenden Hochdruckleitungen, welche Bypässe mit großem Regelbereich haben.
  • Für die Sumpfphasehydrierung mit integriertem Gasphasereaktor ist weiterhin zu berücksichtigen, daß mit zunehmender Laufzeit infolge der Desaktivierung des Gasphase-Katalysators die Temperatur der Gasphase-Einsatzstoffe angehoben werden muß (z. B. 390 Grad Celsius auf 430 Grad Celsius).
  • Bei den bekannten Verfahren wird keine Aussage darüber gemacht, wie bei zunehmender Inkrustierung der Wärmeaustauscher definierte Werte der Phasengleichgewichtstemperatur im Zwischenabscheider und der Eintrittstemperatur in die Gasphasehydrierung eingestellt werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, trotz zunehmender unvermeidbarer Inkrustierung der Wärmeaustauscher - insbesondere bei hohen Maischetemperaturen - eine definierte Einstellung der Phasengleichgewichtstemperatur im Zwischen-Abscheider und einen definierten Anstieg der Eintrittstemperatur der Gasphase-Einsatzstoffe mit zunehmender Laufzeit bei einer wirtschaftlichen Wärmerückgewinnung zu erreichen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zur Einstellung der definierten Phasengleichgewichtstemperatur im Zwischen-Abscheider die gasförmigen Hydrierprodukte aus der Sumpfphase in einem Maische-Wärmeaustauscher, einem Kopfkühler und einem Schlußkühler vor dem Zwischen-Abscheider gekühlt werden und die Aufheizung des kalten Maische-Hydriergasgemisches in Wärmeaustauschern durch indirekten Wärmeaustausch mit den heißen Hydrierprodukten aus der Gasphasehydrierung erfolgt.
  • Mit zunehmender Laufzeit muß die Temperatur der Gasphase-Einsatzstoffe allmählich angehoben werden. Dies erfolgt - ohne zusätzlichen Aufheizofen - erfindungsgemäß dadurch, daß mit fortschreitender Inkrustierung des Maische-Wärmeaustauschers auch das Temperaturniveau des Kopfkühlers vor dem Zwischenabscheider angehoben wird. Gleichzeitig wird hierdurch - bei zunehmender Verringerung der Wärmeübertragungsleistung des Maische-Wärmeaustauschers - die anfallende Abwärme aus der Sumpfphasehydrierung über den Weg der Gasphasehydrierung auf die vorgeschaltete Maischevorwärmung der Sumpfphasehydrierung übertragen und damit wirtschaftlich genutzt.
  • Die Einstellung der gewünschten Temperatur im Zwischenabscheider erfolgt mittels Schlußkühler, in welchem zweckmäßig Dampf erzeugt oder Hydriergas vorgewärmt wird.
  • Mit dem Kopfkühler hinter der Sumpfphasehydrierung kann zusätzlich das Temperaturniveau der in den Maische-Wärmeaustauscher eintretenden Sumpfphase-Gase/Dämpfe reduziert werden. Hierdurch verringert sich die sonst übliche schnelle Inkrustierung von sauberen Rohren des Maische-Wärmeaustauschers, da die max. auftretende Maischetemperatur (bei gleicher gemittelter Maischeaustrittstemperatur) gesenkt wird.
  • Mittels Kopfkühler (incl. Bypass) hinter der Sumpfphasehydrierung kann die gew+ünschte Temperatur der Einsatzstoffe der Gasphasehydrierung eingestellt werden.
  • Der Bypass um den Maische-Wärmeaustauscher dient zur Begrenzung der max. Maischeaustrittstemperatur des Maische-Wärmeaustauschers (speziell im sauberen Zustand der Wärmeaustauscher-Rohre).
  • Mit dem o.g. Verfahren können somit alle prozeßrelevanten Temperaturen - auch bei zeitlich unabhängig fortschreitender Verschmutzung der Maische-Wärmeaustauscher sowie Desaktivierung des Gasphase-Katalysators - eingestellt werden.
  • Der Anfahrvorgang erfolgt zügig durch Aufheizung der Gasphase-Einsatzstoffe mittels Kopfkühler hinter der Sumpfphasehydrierung. An zwei Beispielen wird das Verfahren näher erläutert:
  • In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung dargestellt.
  • Anhand von Fig. 1 wird ein Betriebsfall nach kurzer Laufzeit - d. h. nur geringe Inkrustierung der Maische-Wärmeaustauscher 1 und 2 sowie frischer Katalysator des Gasphase-Reaktors 11 - beschrieben.
  • Die gas- und dampfförmigen Produkte aus dem Sumpfphase-Reaktor 4 werden mittels Maische-Wärmeaustauscher 2 durch indirekten Wärmeaustausch teilweise abgekühlt, wobei auf der Aufheizseite das Maische-Hydriergasgemisch auf Anspringtemperatur der Sumpfphasehydrierung von ca. 440 °C aufgeheizt wird. Zwecks Einstellung der prozeßtechnisch vorgegebenen Temperatur von ca. 300 °C im Zwischenabscheider 9 werden die Sumpfphaseprodukte durch indirekten Wärmeaustausch in dem Kopfkühler 7 und in dem Schlußkühler 8 weiter abgekühlt. Im Zwischenabscheider 9 werden die Produkte aus der Sumpfphasehydrierung in den Lösungsmittelanteil (flüssig) und in den Feedstrom für die Gasphasehydrierung (Gase/Dämpfe) aufgeteilt. Letzterer wird im Kopfkühler 7 und dann im indirekten Wärmeaustauscher 10 auf Gasphase-Reaktionstemperatur von ca. 390 °C aufgeheizt.
  • Die gasphase-Produkte werden durch indirekten Wärmeaustausch im Maische-Wärmeaustauscher 1 teilweise abgekühlt,
    wodurch das Maische-Hydriergasgemisch vorgewärmt wird. Im indirekten Wärmeaustauscher 12 wird durch weitere Abkühlung der Gasphase-Produkte das Hydriergas vorgewärmt.
    Im stationären Betriebsfall ist der Gesamtprozeß wärmeautark. Der Maische-Aufheizofen 3 dient nur als Anfahrofen.
  • Die Abwärme des Wärmeaustauschers 8 wird vorzugsweise zur Erzeugung von MD-Dampf oder zur Hydriergasvorwärmung verwendet. Mittels Kopfkühler 6 können die gas- und dampfförmigen Produkte
  • aus dem Heißabscheider 5 vor Eintritt in den Maischevorwärmer 2 etwas abgekühlt werden. Auf diese Weise wird die Inkrustierung im Maische-Wärmeaustauscher reduziert.
  • Anhand von Fig. 2 wird ein Betriebsfall nach langer Laufzeit - d. h. starke Inkrustierung der Maische-Wärmeaustauscher 1 und 2 und desaktivierter Katalysator des Gasphase-Reaktors 11 - beschrieben. Infolge verminderter Wärmeübertragungsleistung des Maische-Wärmeaustauschers 2 wird die Feedtemperatur hinter dem Kopfkühler 7 gegenüber Beispiel 1 um ca. 20 °C angehoben. Die Gasphase-Eintrittstemperatur steigt auf ca. 425 °C an.

Claims (5)

  1. Verfahren zur Sumpfphasehydrierung mit indirekter Gasphasehydrierung, mit definierter Temperatureinstellung im Zwischen-Abscheider und im Gasphasereaktor bei wirtschaftlicher Wärmerückgewinnung, dadurch gekennzeichnet, daß zur Einstellung der definierten Phasengleichgewichtstemperatur im Zwischen-Abscheider die gasförmigen Hydrierprodukte aus der Sumpfphase in einem Maische-Wärmetauscher, einem Kopfkühler und einem Schlußkühler vor dem Zwischen-Abscheider gekühlt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwecks definierter Temperatureinstellung (Zwischenabscheider) in einem dem Maische-Wärmeaustauscher nachgeschalteten Kopfkühler die Abwärme der Sumpfphaseprodukte teilweise zum Aufheizen der Einsatzstoffe der Gasphasehydrierung genutzt wird, so daß die Abwärme der Gasphaseprodukte mit hohem Temperaturniveau für die Maischevorwärmung der Sumpfphasehydrierung wirtschaftlich genutzt werden kann.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mittels Kopfkühler hinter der Sumpfphasehydrierung Abwärme der Sumpfphaseprodukte zur Aufheizung von Einsatzstoffen der Gasphasehydierung verwendet wird, um einerseits die Gasphasehydrierung anzufahren und andererseits die gewünschte Eintrittstemperatur der Gasphase-Einsatzstoffe einzustellen.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Einstellung der Maischeaustrittstemperatur des Maische-Wärmeaustauschers ein Kopfkühler hinter der Sumpfphasehydrierung sowie ein Bypass um den Maische-Vorwärmer verwendet werden.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwecks Einstellung der definierten Zwischenabscheidertemperatur ein Schlußkühler verwendet wird, in welchem Dampf erzeugt oder Hydriergas vorgewärmt wird.
EP85107962A 1984-09-13 1985-06-27 Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung Expired - Lifetime EP0177676B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3433625 1984-09-13
DE3433625 1984-09-13

Publications (3)

Publication Number Publication Date
EP0177676A2 EP0177676A2 (de) 1986-04-16
EP0177676A3 EP0177676A3 (en) 1988-03-02
EP0177676B1 true EP0177676B1 (de) 1992-03-04

Family

ID=6245308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107962A Expired - Lifetime EP0177676B1 (de) 1984-09-13 1985-06-27 Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung

Country Status (8)

Country Link
US (1) US4636300A (de)
EP (1) EP0177676B1 (de)
JP (1) JPS6172097A (de)
AU (1) AU586430B2 (de)
CA (1) CA1251753A (de)
DE (1) DE3585485D1 (de)
PL (1) PL255319A1 (de)
ZA (1) ZA856989B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741105A1 (de) * 1987-12-04 1989-06-15 Veba Oel Entwicklungs Gmbh Verfahren zur hydrierung fluessiger kohlenstoffhaltiger einsatzstoffe
DE3741104A1 (de) * 1987-12-04 1989-06-15 Ruhrkohle Ag Verfahren zur hydrierung fester kohlenstoffhaltiger einsatzstoffe
DE102018108989A1 (de) 2018-04-16 2019-10-17 Thyssenkrupp Ag Industrieanlage mit Anfahrofen und Verfahren zum Initiieren chemischer Reaktionen

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823084A (en) * 1972-06-30 1974-07-09 W Schroeder Hydrogenation of coal
US3862108A (en) * 1973-01-02 1975-01-21 Hydrocarbon Research Inc Hydrogenation of residuum
US4099933A (en) * 1973-06-01 1978-07-11 Hydrocarbon Research, Inc. Process for the multiple zone gasification of coal
US3884649A (en) * 1973-10-29 1975-05-20 Inst Gas Technology Coal pretreater and ash agglomerating coal gasifier
US3926775A (en) * 1973-11-01 1975-12-16 Wilburn C Schroeder Hydrogenation of coal
US3950244A (en) * 1974-02-11 1976-04-13 Gulf Research & Development Company Process for treating a solid-containing liquid hydrocarbon oil
US3953180A (en) * 1974-07-11 1976-04-27 Hydrocarbon Research, Inc. Production of low BTU sulfur-free gas from residual oil
GB1482690A (en) * 1974-12-19 1977-08-10 Coal Ind Hydrogenation of coal
US4123502A (en) * 1975-02-06 1978-10-31 Heinz Holter Process for the purification of gas generated in the pressure gasification of coal
US4191539A (en) * 1976-06-07 1980-03-04 Institute Of Gas Technology Method for feeding caking coal particles to a gasifier
US4057402A (en) * 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
DE2651253C2 (de) * 1976-11-10 1984-03-08 Saarbergwerke AG, 6600 Saarbrücken Verfahren zum Hydrieren von Kohle
DE2654635B2 (de) * 1976-12-02 1979-07-12 Ludwig Dr. 6703 Limburgerhof Raichle Verfahren zur kontinuierlichen Herstellung von Kohlenwasserstoffölen aus Kohle durch spaltende Druckhydrierung
CA1101349A (en) * 1977-03-12 1981-05-19 Yukio Nakako Method for thermal dehydration of brown coal
GB1604230A (en) * 1978-05-31 1981-12-02 Mobil Oil Corp Hydroprocessing coal liquids
US4331530A (en) * 1978-02-27 1982-05-25 Occidental Research Corporation Process for the conversion of coal
US4222844A (en) * 1978-05-08 1980-09-16 Exxon Research & Engineering Co. Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes
DE2839461A1 (de) * 1978-09-11 1980-03-27 Bergwerksverband Gmbh Formmassen aus thermoplastischen kunststoffen und rueckstaenden der kohlehydrierung
US4189374A (en) * 1978-12-13 1980-02-19 Gulf Oil Corporation Coal liquefaction process employing internal heat transfer
US4189375A (en) * 1978-12-13 1980-02-19 Gulf Oil Corporation Coal liquefaction process utilizing selective heat addition
US4350582A (en) * 1979-10-18 1982-09-21 Chevron Research Company Two-stage coal liquefaction process with process-derived solvent
DE2945352A1 (de) * 1979-11-09 1981-05-27 Linde Ag, 6200 Wiesbaden Verfahren zur kohlehydrierung
US4421632A (en) * 1980-09-04 1983-12-20 Wuerfel Helmut Process for hydrogenation of coal
DE3042984C2 (de) * 1980-11-14 1986-06-26 Saarbergwerke AG, 6600 Saarbrücken Verfahren zum Hydrieren von Kohle
DE3101598A1 (de) * 1981-01-20 1982-08-26 Basf Ag, 6700 Ludwigshafen Verfahren zum hydrieren von kohle
US4400263A (en) * 1981-02-09 1983-08-23 Hri, Inc. H-Coal process and plant design
DE3105030A1 (de) * 1981-02-12 1982-09-02 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von kohlenwasserstoffoelen aus kohle durch druckhydrierung in zwei stufen
DE3133562A1 (de) * 1981-08-25 1983-03-10 Fried. Krupp Gmbh, 4300 Essen "verfahren zur herstellung fluessiger kohlenwasserstoffe"
DE3141380A1 (de) * 1981-10-17 1983-05-05 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Verfahren zum hydrieren von kohle
US4406744A (en) * 1981-11-16 1983-09-27 Clyde Berg Process for the production of hydrogenated tar and distillates and low sulfur coke from coal
US4411765A (en) * 1982-02-10 1983-10-25 Electric Power Development Co. Method for liquefying low rank coal
US4387015A (en) * 1982-09-30 1983-06-07 International Coal Refining Company Coal liquefaction quenching process
DE3300365A1 (de) * 1983-01-07 1984-07-12 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer Verfahren zum schwelen von hydrierrueckstaenden
DE3311552A1 (de) * 1983-03-30 1984-10-04 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer Verfahren zur hydrierung von kohle

Also Published As

Publication number Publication date
JPH0569157B2 (de) 1993-09-30
PL255319A1 (en) 1986-08-12
AU4485485A (en) 1986-03-20
DE3585485D1 (de) 1992-04-09
ZA856989B (en) 1986-04-30
CA1251753A (en) 1989-03-28
AU586430B2 (en) 1989-07-13
JPS6172097A (ja) 1986-04-14
EP0177676A3 (en) 1988-03-02
EP0177676A2 (de) 1986-04-16
US4636300A (en) 1987-01-13

Similar Documents

Publication Publication Date Title
EP0138213A2 (de) Verfahren zur Schwelung von Rückständen der Kohlehydrierung
EP0177676B1 (de) Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung
WO1996034929A1 (de) Verfahren zur verarbeitung von alt- oder abfallkunststoffen
DD147678A5 (de) Kohleverfluessigungsverfahren mit innerer waermeuebertragung
DE2651253C2 (de) Verfahren zum Hydrieren von Kohle
DE60226156T2 (de) Verfahren zur hydrodesulfurierung mit einer strippung und einer fraktionierung
DE60124489T2 (de) Verfahren zur endothermischen Umsetzung von Kohlenwasserstoffen, ihre Anwendung und Vorrichtung zur Anwendung dieses Verfahren
DE2711105C2 (de) Verfahren zur Umwandlung von Kohle in unter Normalbedingungen flüssige Kohlenwasserstoffe
DE3042984C2 (de) Verfahren zum Hydrieren von Kohle
EP0123161B1 (de) Verfahren zur Hydrierung von Kohle
DE2803985C2 (de) Verfahren zum Verflüssigen von Kohle
DE2936008A1 (de) Verfahren zum hydrieren von kohle
EP0207502B1 (de) Verfahren zur Vorbehandlung der Einsatzprodukte für die Schwerölhydrierung
DE937723C (de) Verfahren und Vorrichtung zur Umwandlung von Kohlenwasserstoffen in leichtere Produkte
DE2830824A1 (de) Verfahren zum spalten von kohlenwasserstoffen
DE3741105C2 (de)
US1921478A (en) Production of valuable liquid hydrocarbons
DD227722A5 (de) Verfahren zur synthesegaserzeugung
EP0142043B1 (de) Verfahren zur Gewinnung von verdampfbaren Ölen aus dem Rückstand der Hydrierung von Schwerölen, Bitumen, Teer und dergl.
DE2945353A1 (de) Verfahren und vorrichtung zur durchfuehrung stark exothermer reaktionen
EP0318694A2 (de) Verfahren zur Hydrierung fester kohlenstoffhaltiger Einsatzstoffe
DE3532480A1 (de) Verfahren zur prozesseinstellung und waermerueckgewinnung fuer die sumpfphasehydrierung von kohlen mit integrierter gasphasehydrierung
EP0138215A2 (de) Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung
DE3834385C2 (de)
DE1916301C3 (de) Verfahren zum Regenerieren ruBhaltiger Öle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19880120

17Q First examination report despatched

Effective date: 19890608

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920304

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3585485

Country of ref document: DE

Date of ref document: 19920409

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950518

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950524

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950629

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970228

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST