EP0138215A2 - Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung - Google Patents

Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung Download PDF

Info

Publication number
EP0138215A2
EP0138215A2 EP84112308A EP84112308A EP0138215A2 EP 0138215 A2 EP0138215 A2 EP 0138215A2 EP 84112308 A EP84112308 A EP 84112308A EP 84112308 A EP84112308 A EP 84112308A EP 0138215 A2 EP0138215 A2 EP 0138215A2
Authority
EP
European Patent Office
Prior art keywords
hydrogenation
screw machine
residue
bar
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP84112308A
Other languages
English (en)
French (fr)
Other versions
EP0138215A3 (de
Inventor
Lothar Ing. Grad. Winckler
Klaus Dr. Dipl.-Chem. Fuhrmann
Ulrich Dr. Dipl.-Ing. Graeser
Peter Dipl.-Ing. Wenning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Publication of EP0138215A2 publication Critical patent/EP0138215A2/de
Publication of EP0138215A3 publication Critical patent/EP0138215A3/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation

Definitions

  • coal is hydrogenated by reaction with hydrogen at temperatures of 250-500 ° C., preferably 350-490 ° C. and pressures of 50-700 bar, preferably 100-350 bar, in particular in the presence of catalysts becomes.
  • the products produced are solid or viscous hydrogenation residues at room temperature.
  • Both hard coal and lignite can be used in the hydrogenation (see W. Krönig, "The catalytic hydrogenation of coal, tars and mineral oils", Springer Verlag, Berlin, Göttingen, Heidelberg 1950).
  • the corresponding technologies were developed and used for technical maturity in the years 1920 to 1945.
  • the hydrogenation technologies according to BERGIUS-PIER and POTT-BROCHE are to be mentioned as basic processes.
  • oils obtained can be used as grinding oils or grinding oil components for the coal.
  • the amounts of oil separated by filtration or spinning contain e.g. T. considerable admixtures of non-evaporable, difficult to hydrogenate, oil-soluble intermediates such.
  • the object of the present invention is to overcome these difficulties. According to the invention, this is done in that the residue of the carbon hydrogenation is subjected to distillation under reduced pressure in a single- or multi-shaft screw machine, the evaporable components are drawn off and the remaining material is introduced into a cooling or granulating device.
  • the hydrogenation residue which constantly increases its viscosity during the distillation, is continuously circulated by screws and thereby passed through the distillation zone of the screw machine, the evaporable constituents being removed from it.
  • Single- or multi-shaft screw machines with gas or steam discharge are known, for. B. from US Pat. Nos. 1,156,096 and 2,615,199. They are used especially in plastics production, and are used there, inter alia, for gas or monomer removal from polymerization mixtures (see M. Herrmann, "Snail machines in process engineering", Springer Verlag, Berlin, Heidelberg, New York 1972). Although the difficulties associated with oil separation have been known since the beginning of the coal hydrogenation on an industrial scale, vacuum screw machines have not been used for processing carbohydrate residues.
  • the processing of hydrogenation residues has different objectives than in the production of plastics:
  • the screw machine is part of the polymerization reactor, whereby the polymerization reaction is terminated by removing the monomers in the vacuum zone, whereas in the case of coal hydrogenation, the enrichment of solids in the hydrogenation residue is effective is.
  • pressures of 0.01 to 0.06 bar preferably 0.02 to 0.1 bar
  • the pressure drops from 0.6, preferably 0.1 bar to 0.01, preferably 0.02 bar over the length of the screw machine from the entry of the hydrogenation sludge to its exit. This measure reduces the risk of disturbances in the distillation process in the screw machine.
  • the distillation of the hydrogenation residue in the screw machine is carried out in particular at temperatures of 200-400 ° C., preferably 250-350 ° C.
  • the temperature rises from 200, preferably 250 ° C. to 400, preferably 350 ° C., under constant pressure or falling over the length of the screw machine. This shortens the time during which the hydrogenation residue assumes high temperatures which favor changes and facilitates further processing of the residue freed from the volatile constituents.
  • Residues up to a final viscosity of approximately 2000 mPas (250 ° C.) can be handled in the distillate removal by the process according to the invention.
  • the gaseous oils withdrawn from the screw machine are expediently used as grating oils or with the other hydrogenating oils, e.g. B. combines the hot separator leaving gaseous hydrogenation products and together with these further treatment, for. B. subjected to a hydrogenation.
  • the rest is introduced from the screw machine directly into a cooling and granulating device.
  • the z. B. can consist of a cooled, circulating belt or a similar device, solidifies the introduced as a viscous mass and can be stored or transported, if necessary after comminution, without the risk of caking, running apart or the like. It is Z. B. usable as fuel or as a feed product of a gasification plant.
  • the present method is suitable for processing all hydrogenation residues which occur in high-pressure coal hydrogenation processes in which coal is mashed with grinding oil and reacted together with hydrogen hydrogen and, if appropriate, in the presence of a catalyst at elevated pressure and elevated temperature, for example by the so-called Bergius-Pier process .
  • a typical gas flame coal of the Ruhr area is mashed with a grinding oil returned from the process and fed together with the hydrogenation hydrogen and with the addition of an iron catalyst at 300 bar and 470 ° C after preheating via line 1 under process pressure hydrogenation reactor 2.
  • the reaction product leaves the reactor 2 via line 3 and is fed to the hot separator 4, in which, under process pressure and at 460 ° C., the products volatile under the prevailing conditions are separated from the solid or liquid reaction products.
  • a positive-conveying pump system 6 which also serves as a metering unit, is used as the conveying element for the feed stream.
  • a vacuum of 0.1 bar is generated in the screw machine 7, which is equipped with a twin screw, via a vacuum line 14.
  • the hydrogenation residue used, which is fed via nozzle 8 to the screw machine 7, contained 0.5 t of oil with a boiling point of 325 ° C. or above, 0.15 t of higher molecular components, which were about 0.1 t as asphaltenes and about 0 , 05 t were determined as pre-asphaltenes, and 0.35 t of inorganic components composed of 0.24 t of ash and 0.11 t of unreacted coal.
  • the ash content was determined to be 32% by weight of SiO 2 , 26% by weight of A1 2 0 3 , 25% by weight of Fe 2 0 3 and 17% by weight of other components.
  • the distillate was separated off at the pressure of 0.1 bar, the hydrogenation residue in the vacuum twin-screw machine 7 being heated from 350 to 450 ° C. during the distillate separation. It evaporated 0.40 t of distillable components of the oil portion, which were withdrawn via connection 9 from the evaporation zone 18 and after cooling, not shown, via line 10 and via condensate container 11 by means of line 13. The uncondensed portions were drawn off via condensate container 11 by means of line 12.
  • the softening point of the residue after passing through the evaporation zone was 180 ° C.
  • the viscosity of the same residue at 250 ° C was determined to be 1500 mPas.
  • the distillable constituents drawn off via line 13 can be returned to the hydrogenation as valuable grinding oil components.
  • the evaporation zone is separated from the discharge zone by a mechanical compression stage 19, which is realized in a known manner by suitable design of the screw and the arrangement of suitable screw elements in this area. This results in a compression of the residue, which contains only 0.1 t of residual oil, in addition to inorganic constituents and higher molecular weight intermediate products, before this residue is fed via connecting piece 14 and line 15 to a cooling belt 16 with subsequent granulating device 17.
  • the screw machine was heated by means of jacket heating of the screw machine using superheated steam.
  • the heating can also be carried out by means of electrically heated heating jaws or by induction heating or, in the case of jacket heating, by flue gas or heat transfer oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Bei diesem Verfahren zur Aufarbeitung von Rückständen der Kohlehydrierung durch Vakuumdestillation erfolgt die Destillation bei Drücken von 0,01 bis 0.6 bar.
Zwecks verbesserter Handhabung derartiger Rückstände. insbesondere das Austragen aus der Vakuumkolonne betreffend wird der Hydrierrückstand in einer ein- oder mehrwelligen Schneckenmaschine einer Destillation unter vermindertem Druck unterworfen, wobei die entstehenden Gase und Dämpfe abgezogen werden und der nicht verdampfte Rest in eine Kühl- und Granuliervorrichtung gebracht wird.

Description

  • Zur Hydrierung von Kohle sind Verfahren bekannt, bei denen Kohle durch Reaktion mit Wasserstoff bei Temperaturen von 250 - 500 °C, vorzugsweise 350 bis 490 °C und Drücken von 50 - 700 bar, vorzugsweise 100 - 350 bar, insbesondere in Gegenwart von Katalysatoren hydriert wird. Als Produkte entstehen neben flüssigen und gasförmigen Kohlenwasserstoffen bei Raumtemperatur feste bzw. zähflüssige Hydrierrückstände. Sowohl Steinkohlen als auch Braunkohlen können dabei in die Hydrierung eingesetzt werden (s. W. Krönig, "Die katalytische Hydrierung von Kohlen, Teeren und Mineralölen", Springer Verlag, Berlin, Göttingen, Heidelberg 1950). Die entsprechenden Technologien wurden in den Jahren 1920 bis 1945 zur technischen Reife entwickelt und eingesetzt. Als Basisverfahren sind die Hydriertechnologien nach BERGIUS-PIER und POTT-BROCHE anzuführen.
  • Aufbauend auf diesen Verfahren wurden in neuerer Zeit spezielle Technologien entwickelt und im Klein- bzw. Pilotanlagenmaßstab erprobt. Dazu sind insbesondere die EDS-Technologie, SRC, das H-COAL-Verfahren sowie die Neue Deutsche Technologie zu nennen. Letzteres wird seit 1981 in der Großversuchsanlage Bottrop erprobt (s. H. G. Frank u. A. Knop, "Kohleveredlung", Springer Verlag, Berlin, Heidelberg, New York 1979, S. 228 - 251).
  • Allen diesen Verfahren ist gemeinsam, daß die Abtrennung der Hydrierrückstände von den gasförmigen bzw. flüssigen Produkten in Heißabscheidern erfolgt, wobei die Phasenseparierung unter Reaktionsdruck bei Reaktionstemperatur bzw. wenig darunter liegenden Temperaturen erfolgt. Von besonderem Interesse ist dabei die Aufarbeitung der Hydrierrückstände, da diese neben Feststoffen wie nicht umgesetzter Kohle, Asche, Katalysatoren und nicht verdampfbaren flüssigen oder pastösen Zwischenprodukten wie Asphaltenen und Präasphaltenen wertvolle verdampfbare Produktöle enthalten, die zur Steigerung der Flüssigproduktausbeute abzutrennen sind.
  • Zur Abtrennung dieser verdampfbaren Ölbeimengungen wurden verschiedene Verfahren wie Filtration, Schleudern, Vakuumdestillation usw. angewandt. Die gewonnenen Öle können als Anreibeöle bzw. Anreibeölkomponenten für die Einsatzkohle verwendet werden. Allerdings enthalten die durch Filtration bzw. Schleudern abgetrennten Ölmengen z. T. erhebliche Beimengungen an nicht verdampfbaren, schwer hydrierbaren, öllöslichen Zwischenprodukten wie z. B. Asphaltenen und Präasphaltenen, die den Hydrierprozeß ungünstig beeinflussen bzw. deren Abbau verschärfte Hydrierbedingungen erfordert.
  • Die vorgenannten Schwierigkeiten werden durch Einsatz der Vakuumdestillation überwunden. Die durch Vakuumdestillation des Hydrierrückstandes gewonnenen Öle stellen hochwertige Anreiböle dar bzw. können unter verhältnismäßig milden Bedingungen weiter aufhydriert werden. Allerdings wirft die Handhabung des Vakuumrückstandes erhebliche Probleme auf. Insbesondere gestaltet sich das Austragen aus der Vakuumkolonne sowie der Transport zur Weiterverarbeitung aufgrund der hohen Zähigkeit des stark feststoffangereicherten Materials äußerst schwierig.
  • Die vorliegende Erfindung hat sich die Aufgabe gestellt, diese Schwierigkeiten zu überwinden. Erfindungsgemäß geschieht dies dadurch, daß der Rückstand der Kohlehydrierung in einer ein- oder mehrwelligen Schneckenmaschine einer Destillation unter vermindertem Druck unterworfen wird, hierbei die verdampfbaren Anteile abgezogen werden und das verbleibende Gut in eine Kühl- oder Granuliervorrichtung eingebracht wird. Der während der Destillation ständig seine Viskosität erhöhende Hydrierrückstand wird durch Schnecken laufend umgewälzt und dabei durch die Destillationszone der Schneckenmaschine geführt, wobei ihm die verdampfbaren Bestandteile entzogen werden.
  • Ein- oder mehrwellige Schneckenmaschinen mit Gas-oder Dampfabführung sind bekannt, z. B. aus den US-PSen 1 156 096 und 2 615 199. Sie werden speziell in der Kunststoffherstellung eingesetzt, und dienen dort u. a. zur Gas- bzw. Monomerenentfernung aus Polymerisationsgemischen (s. M. Herrmann, "Schnekkenmaschinen in der Verfahrenstechnik", Springer Verlag, Berlin, Heidelberg, New York 1972). Obwohl seit Beginn der im technischen Maßstab durchgeführten Kohlehydrierung die mit der Ölabtrennung verbundenen Schwierigkeiten bekannt waren, wurden Vakuumschneckenmaschinen bislang nicht für die Aufarbeitung von Kohlehydrierrückständen eingesetzt. Bei der Aufarbeitung von Hydrierrückständen liegen andere Zielsetzungen als bei der Kunststoffherstellung vor: In der Kunststoffindustrie stellt die Schneckenmaschine einen Teil des Polymerisationsreaktors dar, wobei über die Monomerenentfernung in der Vakuumzone ein Abbruch der Polymerisationsreaktion herbeigeführt wird, wohingegen im Fall der Kohlehydrierung die Feststoffanreicherung im Hydrierrückstand zielführend ist.
  • Bei der Destillation des Hydrierrückstandes in der ein- oder mehrwelligen Schneckenmaschine werden insbesondere Drücke von 0,01 bis 0,06 bar, vorzugsweise 0,02 bis 0,1 bar angewandt. Nach einer Weiterbildung der Erfindung fällt über die Länge der Schneckenmaschine vom Eintritt des Hydrierabschlammes zu dessen Austritt der Druck von 0,6, vorzugsweise 0,1 bar auf 0,01, vorzugsweise 0,02 bar ab. Diese Maßnahme verringert die Gefahr von Störungen des Destillationsvorganges in der Schneckenmaschine.
  • Die Destillation des Hydrierrückstandes in der Schneckenmaschine erfolgt insbesondere bei Temperaturen von 200 - 400 °C, vorzugsweise 250 - 350 °C. Nach einer weiteren Ausbildung der Erfindung steigt über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes die Temperatur von 200, vorzugsweise 250 °C auf 400, vorzugsweise 350 °C unter konstantem bzw. über die Länge der Schneckenmaschine fallendem Druck an. Hierdurch wird die Zeit während der der Hydrierrückstand hohe, Veränderungen begünstigende Temperaturen annimmt, verkürzt und die weitere Verarbeitung des von den flüchtigen Bestandteilen befreiten Rückstandes erleichtert. Nach dem erfindungsgemäßen Verfahren können Rückstände bis zu einer Endviskosität von etwa 2000 mPas (250 °C) bei der Destillatabtrennung gehandhabt werden. Die gasförmig aus der Schneckenmaschine abgezogenen Öle werden zweckmäßigerweise als Anreibeöle eingesetzt oder mit den übrigen Hydrierölen, z. B. den die Heißabscheider gasförmig verlassenden Hydrierprodukten vereinigt und zusammen mit diesen der Weiterbehandlung, z. B. einer Hydrierung unterworfen.
  • Erfindungsgemäß wird der Rest, das nicht verdampfte Gut, aus der Schneckenmaschine direkt in eine Kühl-und Granuliervorrichtung eingebracht. In dieser Vorrichtung, die z. B. aus einem gekühlten, umlaufenden Band oder einer ähnlichen Einrichtung bestehen kann, erstarrt das als zähflüssige Masse eingebrachte Gut und kann, ggf. nach einer Zerkleinerung, ohne die Gefahr des Zusammenbackens, Auseinanderlaufens oder dergl. gelagert oder transportiert werden. Es ist z. B. als Brennmaterial oder als Einsatzprodukt einer Vergasungsanlage verwendbar.
  • Das vorliegende Verfahren ist geeignet zur Verarbeitung sämtlicher Hydrierrückstände, die bei Hochdruckkohlehydrierprozessen anfallen, bei denen Kohle mit Anreibeöl angemaischt wird und gemeinsam mit Hydrierwasserstoff und gegebenenfalls in Gegenwart eines Katalysators bei erhöhtem Druck und erhöhter Temperatur umgesetzt wird, beispielsweise nach dem sogenannten Bergius-Pier-Verfahren.
  • Die Erfindung wird anhand des nachfolgenden Ausführungsbeispiels und der Zeichnung weiter erläutert.
  • Eine typische Gasflammkohle des Ruhrgebiets wird nach Zerkleinerung mit einem aus dem Verfahren zurückgeführten Anreibeöl angemaischt und gemeinsam mit dem Hydrierwasserstoff und unter Zugabe eines Eisenkatalysators bei 300 bar und 470 °C nach Vorheizung über Leitung 1 unter Prozeßdruck Hydrierreaktor 2 zugeführt.
  • Das Umsetzungsprodukt verläßt den Reaktor 2 über Leitung 3 und wird Heißabscheider 4 zugeführt, in welchem unter Prozeßdruck und bei 460 °C die Abtrennung der unter den herrschenden Bedingungen flüchtigen Produkte von den festen bzw. flüssigen Umsetzungsprodukten erfolgt.
  • Diese flüchtigen Produkte werden über Leitung 4a über Kopf abgezogen und in bekannter Weise weiter aufgearbeitet. Die festen und flüssigen Reaktionsprodukte werden nach Entspannung auf Atmosphärendruck über Leitung 5 in den Vakuumschneckenverdampfer 7 mit integrierter Verdichtungszone 19 eingespeist.
  • Hierbei erfolgt der Eintritt in den Vakuumschneckenverdampfer von unten her in den Flüssigraum, um damit einen Abschluß des Zulaufstromes der Produkte aus dem Heißabscheider zu der Vakuumverdampfungszone zu bekommen. Als Förderorgan für den Zulaufstrom wird ein zwangsförderndes Pumpensystem 6, welches gleichzeitig als Dosiereinheit dient, eingesetzt.
  • Über Vakuumleitung 14 wird in der Schneckenmaschine 7, die mit einer Doppelschnecke ausgerüstet ist, ein Unterdruck von 0,1 bar erzeugt. Der eingesetzte Hydrierrückstand, der über Stutzen 8 der Schneckenmaschine 7 zugeführt wird, enthielt 0,5 t Öl mit einem Siedebeginn von 325 °C oder darüber, 0,15 t höhermolekulare Komponenten, die zu etwa 0,1 t als Asphaltene und zu etwa 0,05 t als Präasphaltene bestimmt wurden sowie 0,35 t anorganische Komponenten, die sich aus 0,24 t Asche und 0,11 t unumgesetzter Kohle zusammensetzen. Der Ascheanteil wurde zu 32 Gew.-% aus Si02, zu 26 Gew.-% aus A1203, zu 25 Gew.-% aus Fe203 und zu 17 Gew.-% aus sonstigen Komponenten bestehend bestimmt.
  • Die Destillatabtrennung erfolgte bei dem Druck von 0,1 bar, wobei der Hydrierrückstand in der Vakuumdoppelschneckenmaschine 7 während der Destillatabtrennung von 350 auf 450 °C aufgeheizt wurde. Es verdampften 0,40 t an destillierfähigen Komponenten des Ölanteils, die über Stutzen 9 aus der Verdampfungszone 18 und nach nicht dargestellter Abkühlung über Leitung 10 und über Kondensatbehälter 11 mittels Leitung 13 abgezogen wurden. Die nichtkondensierten Anteile wurden über Kondensatbehälter 11 mittels Leitung 12 abgezogen.
  • Der Erweichungspunkt des Rückstandes nach Durchlaufen der Verdampfungszone betrug 180 °C. Die Viskosität desselben Rückstandes bei 250 °C wurde zu 1500 mPas bestimmt.
  • Die über Leitung 13 abgezogenen destillierbaren Bestandteile können als wertvolle Anreibeölkomponenten in die Hydrierung zurückgeführt werden.
  • Die Verdampfungszone ist von der Austragszone durch eine maschinentechnische Kompressionsstufe 19 getrennt, die durch eine geeignete Auslegung der Schnecke und die Anordnung geeigneter Schneckenelemente in diesem Bereich in bekannter Weise realisiert wird. Hierdurch erfolgt eine Verdichtung des neben anorganischen Bestandteilen und höhermolekularen Zwischenprodukten nur noch 0,1 t Restöl enthaltenden Rückstandes, bevor dieser über Stutzen 14 und Leitung 15 auf ein Kühlband 16 mit anschließender Granuliervorrichtung 17 gegeben wird.
  • Die befürchteten Koksansätze am Schneckenvortrieb in der Ausdampfzone wurden nicht beobachtet. Auftretende Verkrustungen im Bereich des Abzugsstutzens 14 wurden mittels einer Kratzvorrichtung entfernt.
  • Die Beheizung der Schneckenmaschine erfolgte über eine Mantelbeheizung der Schneckenmaschine mittels überhitztem Dampf.
  • In technisch äquivalenter Weise kann die Beheizung aber auch mittels elektrisch beheizter Heizbacken oder durch Induktionsheizung oder bei Mantelbeheizung durch Rauchgas oder Wärmeträgeröle erfolgen.

Claims (7)

1. Verfahren zur Aufarbeitung von Rückständen der Kohlehydrierung durch Vakuumdestillation, dadurch gekennzeichnet, daß der Hydrierrückstand in einer ein- oder mehrwelligen Schneckenmaschine einer Destillation unter vermindertem Druck unterworfen wird, die entstehenden Gase und Dämpfe abgezogen werden und der nicht verdampfte Rest in eine Kühl- oder Granuliervorrichtung eingebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Destillation bei Drücken von 0,01 bis 0,6 bar, vorzugsweise 0,02 - 0,1 bar erfolgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes der Druck von 0,6, vorzugsweise 0,1 bar auf 0,01, vorzugsweise auf 0,02 bar abfällt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Destillation bei Temperaturen von 200 - 400 °C, vorzugsweise 250 bis 350 °C erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß über die Länge der Schneckenmaschine vom Eintritt zum Austritt des Hydrierrückstandes die Temperatur von 200, vorzugsweise 250 °C auf 400, vorzugsweise 350 °C ansteigt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Eintritt des flüssigen Hydrierrückstandes in die Schneckenmaschine (7) über ein zwangsförderndes Pumpensystem (6) von unten in den Flüssigraum erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Schneckenmaschine (7) eine Verdampfungszone (18) aufweist, an die sich eine maschinentechnische Kompressionsstufe (19) anschließt.
EP84112308A 1983-10-15 1984-10-12 Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung Ceased EP0138215A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3337624 1983-10-15
DE19833337624 DE3337624A1 (de) 1983-10-15 1983-10-15 Verfahren zur aufarbeitung von rueckstaenden bei der kohlehydrierung

Publications (2)

Publication Number Publication Date
EP0138215A2 true EP0138215A2 (de) 1985-04-24
EP0138215A3 EP0138215A3 (de) 1986-12-03

Family

ID=6211991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112308A Ceased EP0138215A3 (de) 1983-10-15 1984-10-12 Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung

Country Status (4)

Country Link
EP (1) EP0138215A3 (de)
CA (1) CA1236418A (de)
DD (1) DD224609A5 (de)
DE (1) DE3337624A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2277527A (en) * 1993-03-27 1994-11-02 C G E James Birks Limited Organic waste treatment method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829986A1 (de) * 1988-09-03 1990-03-15 Enka Ag Verfahren zur erhoehung des mesophasenanteils in pech

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR550217A (fr) * 1921-05-17 1923-03-01 Plauson S Parent Company Ltd Perfectionnements dans la distillation du bois, du schiste ou matières analogues
US2615199A (en) * 1945-05-15 1952-10-28 Welding Engineers Material treating apparatus
DE2327353A1 (de) * 1973-05-29 1975-01-02 Otto & Co Gmbh Dr C Verfahren zur umwandlung fester in fluessige und gasfoermige schwefelarme brennstoffe
DE2407217A1 (de) * 1974-02-15 1975-09-04 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur thermischen behandlung von koernigen feststoffen
DE3227896A1 (de) * 1982-07-26 1984-01-26 Peter 7869 Holzinshaus Voelskow Verfahren zur thermischen behandlung, insbesondere verschwelung, organischer abfaelle und anlage zur ausuebung des verfahrens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE737780C (de) * 1940-09-01 1943-07-23 Dr Edwin M F Guignard Kessel zur fraktionierten Destillation von Fluessigkeiten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR550217A (fr) * 1921-05-17 1923-03-01 Plauson S Parent Company Ltd Perfectionnements dans la distillation du bois, du schiste ou matières analogues
US2615199A (en) * 1945-05-15 1952-10-28 Welding Engineers Material treating apparatus
DE2327353A1 (de) * 1973-05-29 1975-01-02 Otto & Co Gmbh Dr C Verfahren zur umwandlung fester in fluessige und gasfoermige schwefelarme brennstoffe
DE2407217A1 (de) * 1974-02-15 1975-09-04 Kloeckner Humboldt Deutz Ag Verfahren und vorrichtung zur thermischen behandlung von koernigen feststoffen
DE3227896A1 (de) * 1982-07-26 1984-01-26 Peter 7869 Holzinshaus Voelskow Verfahren zur thermischen behandlung, insbesondere verschwelung, organischer abfaelle und anlage zur ausuebung des verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2277527A (en) * 1993-03-27 1994-11-02 C G E James Birks Limited Organic waste treatment method and apparatus

Also Published As

Publication number Publication date
DE3337624A1 (de) 1985-04-25
DD224609A5 (de) 1985-07-10
EP0138215A3 (de) 1986-12-03
CA1236418A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
EP0138213B1 (de) Verfahren zur Schwelung von Rückständen der Kohlehydrierung
DE3246134A1 (de) Verfahren zur entfernung von polymere bildenden verunreinigungen aus einer naphthafraktion
EP0600203B1 (de) Verfahren zum Weiterverarbeiten des Vakuumrückstandes in einer Rohölraffinerie
WO1996034929A1 (de) Verfahren zur verarbeitung von alt- oder abfallkunststoffen
DE4344311A1 (de) Verfahren und Vorrichtung zur thermischen Depolymerisation von Kunststoffen
EP0138214A2 (de) Verfahren zur Synthesegaserzeugung
EP0138215A2 (de) Verfahren zur Aufarbeitung von Rückständen bei der Kohlehydrierung
CA1103183A (en) Process of hydrogenation of coal
DE2711105C2 (de) Verfahren zur Umwandlung von Kohle in unter Normalbedingungen flüssige Kohlenwasserstoffe
EP0142043B1 (de) Verfahren zur Gewinnung von verdampfbaren Ölen aus dem Rückstand der Hydrierung von Schwerölen, Bitumen, Teer und dergl.
EP0123161B1 (de) Verfahren zur Hydrierung von Kohle
DE2803985C2 (de) Verfahren zum Verflüssigen von Kohle
DE2803916A1 (de) Verfahren zum verfluessigen von kohle
EP2268767B1 (de) Kreisgasbehandlung zur direkten thermochemischen umwandlung von hochmolekularen organischen substanzen in niederviskose flüssige roh-, brenn- und kraftstoffe
EP0177676B1 (de) Verfahren zur Prozesseinstellung mit Wärmerückgewinnung für die Sumpfphasehydrierung mit integrierter Gasphasehydrierung
DE2830824A1 (de) Verfahren zum spalten von kohlenwasserstoffen
DE69211138T2 (de) Pyrolyse von natürlich vorkommenden kresylsäuregemischen
EP0209665A1 (de) Verfahren zur Kohlehydrierung mittels Sumpfphase- und katalysator-Festbetthydrierung
EP0582723A1 (de) Verfahren zur Aufbereitung von Rohbenzol
DE1000025B (de) Verfahren zur Gewinnung von Kumaron bei der hydrierenden Raffination von Rohbenzol
DE102021105810A1 (de) Verfahren und Anlage zur Depolymerisation von Kunststoffmaterial
DE3124934C2 (de) Verfahren zur Aufarbeitung von bei der Kohlehydrierung anfallenden Rückständen
DE1916301C3 (de) Verfahren zum Regenerieren ruBhaltiger Öle
DE2134154A1 (de) Verfahren zur fraktionierten Destillation
DD286604A5 (de) Verfahren zur hydrierung von kohle und/oder schweroel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB

RTI1 Title (correction)
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19861220

17Q First examination report despatched

Effective date: 19880218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19910525

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRAESER, ULRICH, DR. DIPL.-ING.

Inventor name: FUHRMANN, KLAUS, DR. DIPL.-CHEM.

Inventor name: WENNING, PETER, DIPL.-ING.

Inventor name: WINCKLER, LOTHAR, ING. GRAD.