EP0167741B1 - Pompe à injection de combustible pour moteurs à combustion interne - Google Patents

Pompe à injection de combustible pour moteurs à combustion interne Download PDF

Info

Publication number
EP0167741B1
EP0167741B1 EP85105451A EP85105451A EP0167741B1 EP 0167741 B1 EP0167741 B1 EP 0167741B1 EP 85105451 A EP85105451 A EP 85105451A EP 85105451 A EP85105451 A EP 85105451A EP 0167741 B1 EP0167741 B1 EP 0167741B1
Authority
EP
European Patent Office
Prior art keywords
channel
inflow
partial
flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85105451A
Other languages
German (de)
English (en)
Other versions
EP0167741A1 (fr
Inventor
Walter Häfele
Manfred Dipl.-Ing. Krämer
Dietmar Dipl.-Ing. Schmieder (Fh)
Johann Ing. Grad. Warga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to AT85105451T priority Critical patent/ATE56790T1/de
Publication of EP0167741A1 publication Critical patent/EP0167741A1/fr
Application granted granted Critical
Publication of EP0167741B1 publication Critical patent/EP0167741B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/001Pumps with means for preventing erosion on fuel discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00

Definitions

  • the invention relates to a fuel injection pump for internal combustion engines according to the preamble of claims 1 and 3.
  • Injection pumps in which there is a separate pump element for each cylinder of the internal combustion engine and in which these pump elements are arranged in a row are referred to as inline injection pumps and have found widespread use, in particular for self-igniting internal combustion engines, so-called diesel engines.
  • diesel engines The technical development in diesel engines is that, because of stricter exhaust gas regulations, the combustion must leach optimally, along with a reduction in the specific power-to-weight ratio.
  • the metered amount of fuel must be very even and precise for each individual pump element. The metering of the fuel takes place in that the part of the fuel which does not reach the injection flows back under high pressure into the interior of a collecting space of the injection pump.
  • the overflow of the fuel under high pressure at the control edges of the pump pistons leads to its heating and thus physical properties such as density and compressibility change, so that the amount of fuel metered per pump stroke and its thermal energy content change, and this results in uneven cylinder outputs of the internal combustion engine .
  • a high-pressure injection pump designed for a peak pressure of 1,200 bar with a full-load injection quantity of 150 mm 3 / stroke results in a return flow quantity of 750 mm 3 / stroke, which is composed of the discharge quantity and the overflow quantity flowing back during the preliminary stroke.
  • This heated fuel mixes with the inflowing cold fuel, and this leads to the specified disadvantages in the case of conventional injection pumps which have a common suction space for all pump elements.
  • each partial suction chamber has a throttle connection between the outflow opening and the common outflow channel which forms a collector therewith and is fed by a common inflow channel provided with very large inflow openings to the partial suction chambers.
  • the fuel injection pump according to the invention with the characterizing features of patent claim 1 has the advantage that no heated outflow fuel mixes with the inflowing fuel because the flow divider divides the incoming fuel into partial flows by the appropriately dimensioned flow cross sections of its sections comprising the storage spaces, which divide each partial suction space with the Supply the required fuel flow. With the flushing achieved in this way, a precise and constant fuel metering for each combustion chamber of the internal combustion engine is possible at the same speed and load, and the thermal energy content of the fuel quantity metered per pump stroke is thus largely the same for all pump elements.
  • the flow divider and the collector are inserted into a longitudinal bore of the pump housing are set and have separate storage spaces upstream or downstream of the partial suction spaces for each partial suction space. These storage spaces serve as buffer spaces, so that heated outflow fuel from one of the pump elements cannot get into the inflowing fuel of one of the other pump elements due to the recoil effect that occurs during shutdown or is sucked in by one of the other pump elements during the suction stroke.
  • the generic fuel injection pump according to the characterizing features of this claim 3 is equipped with a pipe which contains both the flow divider and the collector and is inserted into a single longitudinal bore in the pump housing.
  • Such an injection pump has, in addition to the advantages already listed for claim 1, also advantageously the possibility of an easy-to-implement retrofit or reconstruction in large series of injection pumps equipped with only one longitudinal channel for the supply and discharge of the fuel.
  • the flow divider and the collector are each contained in a tube, both of which can be produced as components to be finished outside the pump.
  • a simplified assembly results if, according to the features of claim 4, the one containing the flow divider and collector pipe is divided in the longitudinal direction into chambers, with a separate, the storage space forming chamber for the inflow and outflow of the Fuel is connected.
  • the chambers in the interior of the tube, or when using two tubes configured in accordance with claim 5, the chambers in the interior of the tubes can be designed as multi-start helices and form large storage spaces with a uniform cross-section.
  • the coils inside the tubes can be made of fuel-resistant plastic, which makes production easier and good thermal insulation of the partial flows is achieved.
  • the advantages of an embodiment of the invention according to claim 8 consist in the fact that the inflowing and outflowing fuel is divided or brought together to form storage spaces by the pocket-like impressions in the two pipes containing the volume distributor and collector.
  • a precisely metered fuel partial flow which does not mix with other partial flows, thus runs through each partial suction chamber, which carries the heated outflow fuel with it and supplies fresh fuel for each pump stroke.
  • a preferred, particularly advantageous further development of the fuel injection pump according to the invention is achieved according to claim 9 by the production of the at least one tube assigned to the inflow channel from a non-metallic, poorly heat-conducting material, e.g. made of fuel-resistant plastic or ceramic.
  • this pipe has pocket-like recesses. Each of these recesses serves as the storage space upstream of the partial suction space for fuel flowing back from the overflow opening of the pump cylinder.
  • the longitudinal channel is formed as a stepped bore within the tube inserted into the inflow channel, the respective flow cross-section being reduced from channel section to channel section.
  • the throttling inflow openings opening into the storage spaces - as seen in the direction of flow - are always somewhat larger, so that the flow cross-section of each - from the inlet of the inflow channel, as seen in the flow direction — each subsequent inflow opening is larger by an amount that compensates for the flow losses compared to the flow cross section of the preceding inflow opening.
  • These inflow openings, which are equipped with different flow cross-sections, are, in and of themselves, already known from DE-A-33 26 045 cited at the beginning, but work here to achieve the desired uniform purging with the features of the stepped longitudinal channel.
  • the inner walls of the recesses forming the storage spaces can be reinforced according to the features of claim 13 in the case of highly loaded injection pumps.
  • the pipe inserted into the outflow channel according to claim 14 is made of a good heat-conducting material, preferably aluminum.
  • This tube like the tube located in the inflow channel, is also provided with recesses formed by impressions, each of which forms a storage space downstream of the associated partial suction chamber. So that the fuel does not heat up unevenly because of the different running times, the pipe inserted into the outflow channel can be arranged in the counterflow direction in a preferred manner.
  • GB-A-2 074 252 discloses a tube which is inserted into a longitudinal bore of the pump housing but only forms a collector.
  • the pipe shown there in FIG. 2, composed of individual segments, serves only as an impact protection pipe to prevent cavitation erosion on the outflow side, lies with the passage openings directly on the pump cylinder in the area of the overflow bores and, because of the lack of a partial suction chamber, only flows through during the shutdown. Because of the lack of a partial suction chamber and the non-existent volume division on the inflow side, a constant fuel temperature cannot be achieved in the area of the individual pump elements here because there is no continuous flow.
  • FIG. 1 shows a partial cross section through the first exemplary embodiment of a fuel injection pump with a first embodiment of the flow divider and collector
  • FIG. 2 shows a part of a longitudinal section along the section line FF in FIG. 1
  • FIGS. 3a and 3b each show a longitudinal and cross section of the flow divider according to the invention 1 and 2
  • FIG. 4 shows a partial cross section through an injection pump with a flow divider in a second embodiment
  • the partial figures 5a and 5b serve to explain the exemplary embodiment of the flow divider according to FIG. 4.
  • FIG 5a corresponding longitudinal Schmitt the third embodiment shown.
  • FIG. 1 there is a receiving bore 11 for a pump cylinder 12 within a pump housing 10, which bores upwards towards a fastening flange 13.
  • the fastening flange 13 is screwed to the pump housing 10 by means of fastening screws 14.
  • An intermediate disc 15, which is inserted between the mounting flange 13 and the pump housing 10, is used in a known manner to adjust the forward stroke.
  • a pump piston 16 operates within the pump cylinder 12, the control edge 17 of which cooperates with an overflow opening 18 around the pump cylinder 12 for fuel metering, the overflow opening 18 leading into a partial suction chamber 19 and at the same time serving as a suction opening.
  • the pump piston 16 carries out lifting and rotating movements and has a second control edge 20 which defines the start of the delivery of the fuel by covering the overflow opening 18.
  • a baffle ring 21 is provided so that the abraded outflow fuel, which is under high pressure and flows back into the partial suction spaces 19, does not cause any erosions on the wall of the receiving bore and surface of the pump cylinder 12 due to its high kinetic energy.
  • Fuel is supplied through an inflow channel 22 and excess fuel can flow away through an outflow channel 23.
  • Inflow channel 22 and outflow channel 23 each contain a tube 24 shown in FIG. 2 and in FIGS. 3a and b with pocket-like impressions 25 to form a flow divider 29 and a collector 30, respectively.
  • the pocket-like impressions 25 in the inflow channel 22 branch off a part of the fuel flow, guide them into the respective partial suction spaces 19 and form upstream additional storage spaces 26 for the fuel, so that a buffer effect occurs and no de-fueled fuel can be pushed back into the inflow channel 22 the partial suction chambers 19 is flushed through.
  • no heated fuel can be sucked back from the outlet channel 23, since the additional storage spaces 26 of the collector 30 in the outlet channel 23 are connected downstream of the partial suction chambers 19.
  • the amount of fuel flowing in and the flow cross-sections in the channels are to be dimensioned such that complete flushing of the partial suction spaces 19 is ensured and the entire overflow fuel is taken up by the drain channel 23.
  • FIG. 2 This purging effect is additionally illustrated in FIG. 2 by arrows for the fuel flow.
  • Figure 3a shows a longitudinal section of one of the tubes 24 with the pocket-like impressions 25
  • Figure 3b shows a cross section thereof.
  • the impressions 25 of the flow divider 29 in the inflow channel 22 and the collector 30 in the outflow channel 23, which are formed in the tubes 24, are constructed in the same way, but are used in opposite directions in accordance with the fuel flow.
  • the one tube 24 inserted into a longitudinal bore receiving the inflow channel 22 has an inflow opening 27 in the upstream end region 26a of the storage spaces 26, and in the other tube 24 receiving the outflow signal 23 the corresponding downstream, sheared edges also form there Impressions 25 comprising storage spaces 26 each have an outflow opening 28.
  • Figure 4 shows a half partial cross section through an injection pump with the features of the second embodiment.
  • Inflow channel 22 and outflow channel 23 (see also FIG. 5a) each contain, in the embodiment shown, a flow divider 129 or collector 130 formed by a tube 124, which in the flow direction of the fuel for each pump element has a separate chamber, forming a storage space 126 for each Have inflow and outflow of the fuel.
  • Figure 5a shows a partial longitudinal section corresponding to the section line E-E in Figure 4.
  • four separate flow areas are provided and designated by the numbers 1 to 4.
  • Each flow area belongs to a partial suction chamber 19 of a pump element of an in-line injection pump, the associated pump elements being shown in simplified form and also being designated by the numbers 1 to 4.
  • FIG. 5b shows the design of the cross sections of the tubes 124 to form the flow divider 129 or reservoir 130 according to FIG. 5a.
  • the sections A to D each show the cross sections through the one pipe 124 of the inflow channel 22 (see right row) and to the left the associated cross sections of the other pipe 124 of the outflow channel 23.
  • the flow arrows to the fuel flow to and from the partial suction chamber 19 are again indicated.
  • the partial cross section shown in FIG. 4 can also belong to another exemplary embodiment, not shown in more detail, in which e.g. only one tube 124 is used.
  • This tube 124 is divided in cross section into longitudinally extending chambers which are assigned to flow areas 1, 2, 3 and 4. These chambers are formed in the interior of the tube 124 as multi-start helices (helical channels), with each partial suction chamber 19 being assigned a helical path for the inflow and / or outflow of the fuel.
  • the multi-start coils inside the tube 124 or the tubes 124 can be made of fuel-resistant plastic and are used to create the sections forming the flow dividers 129 and collectors 130, e.g.
  • tube 124 if only one tube 124 is used, divided in the longitudinal direction into a first chamber separated by an intermediate wall and used for the inflow of the fuel, and a second chamber provided for the outflow of the fuel.
  • FIG. 6 shows a simplified longitudinal section, corresponding to Figure 5a, at the level of an inflow channel designated 222 and the outflow channel 23, but for a third embodiment of the fuel injection pump according to the invention.
  • This fuel injection pump is a six-cylinder injection pump, in which the pump cylinders 12 or partial suction spaces 19 assigned to the respective flow areas are continuously designated by the numbers 1 to 6.
  • the pump elements assigned to the flow areas 2 to 6 have been omitted in the sectional illustration.
  • a tube 224 receiving the inflow channel 222 consists of a non-metallic, poorly heat-conducting material, e.g. fuel-resistant plastic or ceramic, and the tube 24 containing the outflow channel 23 corresponds to the tube used in the first embodiment.
  • This tube 24 can also be made of plastic for thermal insulation, but for better heat dissipation it is made of a good heat-conducting material, preferably aluminum.
  • it has pocket-like impressions 25 which are tangentially adjacent to each partial suction space 19 and each form a storage space 26 connected downstream of the associated partial suction space 19. This space 26 opens into the interior of the tube 24 via the outflow opening 28 located in its downstream end region 26a.
  • this pipe 24 located in the outflow channel 23 is inserted in the counterflow direction to the flow direction of the pipe 224 inserted in the inflow channel 222 with its outflow openings 28 pointing to the housing section 10a receiving an inlet 222a of the inflow channel 222.
  • the tube 224 contains channel section 32 of the inflow channel 222 in the form of a longitudinal channel and recesses 31 which form storage spaces 226 and are connected to the longitudinal channel via inflow openings 227 1 , 227 2 , 227 z .
  • the longitudinal channel is in the form of a stepped bore with each inflow opening 227 1 , 227 2 to 227 z associated channel section 32 1 , 32 2 to 32 z formed.
  • the index numbers identify the assignment to the respective flow area, where Z stands for the last flow area as seen in the flow direction, that is to say for the flow area 6 in the exemplary embodiment according to FIG. 6.
  • Each of the channel sections preceding in the flow direction for example 32 1 , adjoining channel sections, eg 32 2 , has one compared to the flow cross-section of the preceding channel section reduced flow cross-section, and the flow cross-section of the last, most distant from the inlet 222a of the inflow channel 222 channel section 32 z is at least the same or slightly larger than the flow cross-section of the associated inflow opening 227 z .
  • the storage spaces 226 with the associated inflow openings 227 to 227 z form the flow divider 229 of the inflow channel 222.
  • a pipe 224 made of plastic and receiving the inflow channel 222 can cause erosion and flushing out on the inner walls of the recesses 31, designated 31a.
  • the inner walls 31a of the recesses 31 encompassing the storage spaces 226 on three sides can be reinforced by means of an erosion-resistant, preferably metallic lining 33.
  • Such a lining is shown for the storage space 226 assigned to the flow area 5.
  • the tube 224 is made of plastic by the injection molding process, the linings 33 can be inserted into the injection molding tool as sheet metal inserts and are then firmly connected to the tube 224. Such a method can also be used for ceramic materials.
  • the pocket-like recesses 31, which are tangentially adjacent to each partial suction chamber 19 and open to the partial suction chamber 19 and connected to the longitudinal channel 32 in the tube 224 via one of the throttling inflow openings 227, feed each partial suction chamber 19 to a partial flow derived from the inflowing fuel flow.
  • the recesses 31 each form one of the additional storage spaces 226 connected upstream of the associated partial suction space 19 for fuel flowing back from the overflow opening 18 of the pump cylinder 12.
  • An upstream end region 226a of each storage space 226 is connected to the longitudinal channel 32 by means of the inflow openings 227.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (15)

1. Pompe à injection de carburant pour moteurs à combustion interne, comprenant plusieurs cylindres de pompe (12) disposés en ligne dans des alésages de reception (11) du corps de pompe (10), chacun des cylindres recevant un piston de pompe (16) entraîné par un arbre à cames et muni d'arêtes de commande (17, 20) pour la mesure du débit à injecter en étant entouré de chambres d'aspiration partielles (19), qui sont reliées aux cylindres de pompe (12) au moyen d'ouvertures de passage (18) commandées par les arêtes de commande (17, 20), avec un canal d'alimentation (22) et un canal de retour (23) pour le carburant vers et à partir des chambres d'aspiration partielles (19), canaux s'étendant dans le sens longitudinal du corps de pompe (10), essentiellement parallèles à l'arbre à cames et perpendiculaire à l'axe longitudinal des cylindres de pompe (12), avec en sortant du canal d'alimentation (22) vers chacune des chambres d'aspiration partielles (19), une ouverture particulière d'alimentation (27), qui fait partie d'un répartiteur de débit (29), avec dans le canal de retour (23) à la sortie de chaque chambre d'aspiration partielle (19), une ouverture d'écoulement (28) qui appartient à un collecteur (30), pompe caractérisée en ce que le répartiteur de débit (29, 129, 229) est inséré dans un alésage longitudinal du corps de pompe (10), recevant le canal d'alimentation (22) et contient un nombre de chambres de stockage (26, 126, 226) correspondant au nombre des chambres d'aspiration partielles (19), munies chacune d'une ouverture d'amenée de flux (27, 227), séparées les unes des autres, branchées en amont des chambres d'aspiration partielles et en ce que le collecteur (30, 130) est inséré dans un deuxième alésage longitudinal du corps de pompe (10) recevant le canal de retour (23) contenant un nombre correspondant de chambres de stockage (26, 126) munies chacune d'une ouverture d'écoulement de flux (28), séparées les unes des autres et branchées en aval des chambres d'aspiration partielles (19), les sections de passage au moins les ouvertures d'alimentation de flux (27, 227) appartenant au répartiteur de débit (29, 129, 229) ou des chambres de stockages sont dimensionnées respectivement pour un flux partiel de carburant aux chambres d'aspiration partielles (19) provenant de l'alimentation de carburant et nécessaire pour un dosage constant de débit d'injection dérivé du flux de carburant qui arrive et un courant de retour de carburant étant interrompu dans le canal d'alimentation.
2. Pompe d'injection de carburant selon revendication 1, caractérisée en ce que le répartiteur de débit (29, 129, 229) et le collecteur (30, 130) sont compris chacun dans un tube (24, 124, 224), le tube comprenant le répartiteur de débit (29, 129, 229) est inséré dans l'alésage longitudinal recevant le canal d'alimentation de flux (22) ainsi que le tube (24,124) comprenant le collecteur (30,130) dans un deuxième alésage longitudinal du corps de pompe (10) recevant le canal de retour (23).
3. Pompe d'injection de carburant pour moteurs à combustion interne avec plusieurs cylindres de pompe (12) disposés en ligne dans de alésages de reception (11) du corps de pompe (10) parmi lesquels chacun reçoit un piston de pompe (16) commandé par un arbre à cames et muni d'arêtes de commande (17, 20) pour le dosage du débit à injecter et est entouré de chambres d'aspiration partielles (19) reliées aux cylindres de pompe (12) au moyen d'ouvertures de passage (18) commandés par les arêtes de commande (17, 20), avec un canal d'alimentation (22) et un canal de retour (23) pour le flux de carburant vers et à partir des chambres d'aspiration partielles (19), canaux s'étendant dans le sens longitudinal du corps de pompe (10), essentiellement parallèles à l'arbres à cames et perpendiculaires à l'axe longitudinal des cylindres de pompe (12), avec en sortant du canal d'alimentation (22) vers chacune des chambres d'alimentation partielles (19) une ouverture particulière d'alimentation de flux (27), qui fait partie d'un répartiteur de débit (29) et avec dans le canal de retour (23) à la sortie de chaque chambre d'aspiration partielle (19), une ouverture d'écoulement (28) qui appartient à un collecteur (30), caractérisée en ce qu'un tube (124) contenant le répartiteur de débit (129) et le collecteur (130) est inséré dans un alésage longitudinal du corps de pompe (10) recevant la canal d'alimentation de flux (22) et le canal de retour (23), tube qui comprend pour la constitution du répartiteur de débit un nombre de chambres de stockage (126) correspondant au nombre de chambres d'aspiration partielles (19), séparées les unes des autres, et branchées en amont des chambres d'aspiration partielle (19) et pour la constitution du collecteur (130) un nombre correspondant de chambres de stockage (26, 126) séparées les unes des autres et branchées en aval des chambres d'aspiration partielles (19), les sections de passage au moins des ouvertures d'alimentation appartenant au répartiteur de débit (129) ou des chambres de stockage étant dimensionnées respectivement pour un flux partiel de carburant aux chambres d'aspiration partielles, provenant de l'alimentation du carburant et nécessaire pour un dosage constant de débit d'injection et au courant de retour dans le canal d'alimentation étant interrompu.
4. Pompe d'injection de carburant selon la revendication 3, caractérisée en ce que le tube (124) contenant le répartiteur de débit (129) et en même temps aussi le collecteur, est subdivisé aussi bien en coupe que dans le sens longitudinal en compartiments formant les chambres de stockage (126), grâce auxquels à chaque chambre d'aspiration partielle (19) est affectée respectivement la chambre de stockage particulière (126) pour le flux d'alimentation et la chambre de stockage pour le flux de retour de combustible (figure 4).
5. Pompe d'injection de carburant selon la revendication 2, caractérisée en ce que les deux tubes (124) sont subdivisés en tronçons de même section avec des compartiments de longueuer différente, formant les chambres de stockage (126), de sorte que, à chaque chambre d'aspiration partielle (19) est joint respectivement, la chambre de stockage particulière, appliquée au répartiteur de débit (129) et reliée au canal d'alimentation (22), pour le flux d'alimentation et la chambre de stockage (126) appliquée au collecteur (130) et reliée au canal de retour (23) pour le flux de retour du carburant (figure 4, 5a et 5b).
6. Pompe d'injection de carburant selon une des revendications 4 ou 5, caractérisé en ce que les compartiments formant les chambres de stockage à l'intérieur du tube (124) ou des tubes sont constitués par des hélices à plusieurs pas, à chaque chambre d'aspiration partielle est attribué soit un unique pas d'hélice subdivisé en deux compartiments pour l'admission et de départ de flux ou bien un pas d'hélice pour l'admission du flux et un pas d'hélice pour le départ de flux de carburant.
7. Pompe à injection de carburant selon la revendication 6, caractérisé en ce que les hélices à plusiers pas sont réalisées à l'intérieurs des tubes (124) en matière synthétique résistant au carburant.
8. Pompe à injection de carburant selon la revendication 2, caractérisée en ce que les deux tubes (24) comprennent des empreintes (25) du type poche qui dosent ou collectent le flux de carburant arrivant et retournant, la grandeur des empreintes (25) de type poche étant dimensionnées de façon qu'elles forment respectivement la chambre de stockage (26) branchée en amont du répartiteur de débit (29) pour le carburant amené du côté alimentation ou la chambre de stockage (26) branchée en aval du collecteur (30) du côté retour de flux (figures 1, 2, 3a et 3b).
9. Pompe à injection de carburant selon la revendication 2, caractérisée en ce que au moins le tube (224) attribué au canal d'alimentation (222) est fabriqué en matériau non métallique, mauvais conducteur de la chaleur par exemple en matière synthétique résistant au carburant ou en céramique (figure 6).
10. Pompe à injection de carburant selon la revendication 2 ou 9, caractérisée en ce que le tube (224) attribué au canal d'alimentation (222) comprend des évidements (31) du type poche, adjacents tangentiellement à chaque chambre d'aspiration partielle (19), ouverts en direction de la chambre d'aspiration partielle (19) et chaque fois relié à un tronçon de canal (32) du canal d'alimentation (222) dans le tube (224) par une ouverture respective d'alimentation (227) formant étrangelement, évidements qui forment les chambres de stockage (226) attribuées au répartiteur de débit (229), branchées respectivement avant une des chambres d'aspiration partielles (19), pour le carburant refluant hors de l'ouverture de trop plein (18) du cylindre de pompe (12), une zone d'extrémité (226a) dans le volume de retenue (226), élargie, dirigée vers l'amont étant prévue dans laquelle débouche l'ouverture d'alimentation de flux respective.
11. Pompe à injection de carburant selon la revendication 10, caractérisée en ce que les tronçons de canal (32) à l'intérieur du tube (224) associé au canal d'alimentation (222) forment un alésage à gradins avec respectivement un tronçon de canal (311, 322, 32z) en liaison avec chaque ouverture d'alimentation de flux (2271, 2272, 227z) de sorte que chaque tronçon de canal (323) se raccordant dans le sens du courant à un tronçon de canal précédent (322), présente une section de passage de flux réduite par rapport à la section de passage de flux du tronçon de canal précédent et en ce que la section de passage de flux du dernier tronçon de canal (32z), la plus éloignée de l'entrée (222a) du canal d'alimentation (222) est au moins égale ou plus grande que la section de passage de flux de l'ouverture d'alimentation (227z) correspondante.
12. Pompe à injection de carburant selon la revendication 10, caractérisée en ce que les tronçons de canal (32) à l'intérieur du tube (224) inséré dans le canal d'alimentation (222) forment un alésage à gradins avec pour chacun des tronçons de canal (39i, 32z, 32z) une ouverture d'alimentation associée (2271, 2272, 227z), en ce que chacun des tronçons de canal (323) se raccordant dans le sens du courant à un tronçon de canal précédent (322) présente une section de passage de flux réduite par rapport à la section de passage de flux du tronçon de canal précédent, en ce que la section de passage de flux de l'ouverture d'alimentation respectivement suivante (2272), en regardant depuis l'entrée (222a) du canal d'alimentation (222) dans le sens du courant est lérèrement plus grand par rapport à la section de passage du flux de l'ouverture d'alimentation précédente (227,) et en ce que la section de passage du flux du dernier tronçon, de canal (32z) la plus éloignée de l'entrée (222a) du canal d'alimentation (222) est au moins égale ou plus grande que la section de passage de flux de l'ouverture d'alimentation (227z) correspondante.
13. Pompe à injection de combustible selon la revendication 10, caractérisée en ce que les parois intérieures (31a) des évidements (31) du tube (224) associé au canal d'alimentation (222), évidement (31) formant les chambres de stockage sont munies d'un revêtement (33) résistant à l'érosion, de préférence mètallique.
14. Pompe à injection de combustible selon une des revendications 9 à 13, caractérisée en ce que le tube (24) recevant le canal de retour (23) est fabriqué en matériau bon conducteur de la chaleur de préférence en aluminium et présente des empreintes (25) de type poche, adjacentes tangentiellement à chaque chambre d'aspiration partielle (19), empreintes qui constituent respectivement une des chambres de stockage (26) du collecteur (30), branchées en aval de la chambre d'aspiration partielle (19) correspondante et qui débouchent dans l'intérieur du tube (24) par l'ouverture de retour de flux (28) se trouvent dans une zone d'extrémité (26a) tournée vers l'aval.
15. Pompe d'injection de carburant selon la revendication 14, caractérisée en ce que le tube (24) renfermant le canal de retour de flux (23) est inséré à contre-courant par rapport au tube (224) recevant le canal d'alimentation (222) avec ses ouvertures de retour de flux (28) en direction du secteur de corps de pompe (10a) recevant l'entrée (222a) du canal d'alimentation (222).
EP85105451A 1984-05-09 1985-05-04 Pompe à injection de combustible pour moteurs à combustion interne Expired - Lifetime EP0167741B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85105451T ATE56790T1 (de) 1984-05-09 1985-05-04 Kraftstoffeinspritzpumpe fuer brennkraftmaschinen.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3417036 1984-05-09
DE3417036 1984-05-09
DE19853509536 DE3509536A1 (de) 1984-05-09 1985-03-16 Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3509536 1985-03-16

Publications (2)

Publication Number Publication Date
EP0167741A1 EP0167741A1 (fr) 1986-01-15
EP0167741B1 true EP0167741B1 (fr) 1990-09-19

Family

ID=25821024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85105451A Expired - Lifetime EP0167741B1 (fr) 1984-05-09 1985-05-04 Pompe à injection de combustible pour moteurs à combustion interne

Country Status (3)

Country Link
US (1) US4640255A (fr)
EP (1) EP0167741B1 (fr)
DE (2) DE3509536A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546222A1 (de) * 1985-12-27 1987-07-02 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3844430A1 (de) * 1988-12-31 1990-07-05 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
FI93985C (fi) * 1991-04-17 1995-06-26 Waertsilae Diesel Int Polttoaineen ruiskutuspumpun asennus- ja kytkentäjärjestely
GB9823025D0 (en) * 1998-10-22 1998-12-16 Lucas Ind Plc Fuel system
DE10000876A1 (de) * 2000-01-12 2001-07-19 Deutz Ag Kraftstoffsystem einer Brennkraftmaschine
DE60319968T2 (de) * 2003-06-20 2009-04-16 Delphi Technologies, Inc., Troy Kraftstoffsystem
DE102011004993A1 (de) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Ventileinrichtung zum Schalten oder Zumessen eines Fluids
EP2667012B1 (fr) 2012-05-25 2017-02-22 Caterpillar Motoren GmbH & Co. KG Corps de déflecteur avec un élément d'insert résistant à l'usure et corps de déflecteur pour pompe à carburant actionnée par piston

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR822261A (fr) * 1936-05-29 1937-12-24 Pompe d'injection de combustible
FR975113A (fr) * 1942-02-05 1951-03-01 Daimler Benz Ag Pompe à injection de combustible pour moteurs à combustion interne avec réglage de trop plein et guidage suivant des courants de même sens
FR2242575B1 (fr) * 1973-09-05 1978-11-10 Sigma Diesel
FR2243345B1 (fr) * 1973-09-12 1979-02-09 Sigma Diesel
DE2547071A1 (de) * 1975-10-21 1977-05-05 Motoren Turbinen Union Brennstoff-einspritzpumpe
DE2900874C2 (de) * 1979-01-11 1985-11-14 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe für Brennkraftmaschinen
GB2074252B (en) * 1980-04-08 1983-09-21 Lucas Industries Ltd Fuel injection pumping apparatus
DE3136751A1 (de) * 1981-09-16 1983-03-31 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3136749A1 (de) * 1981-09-16 1983-03-31 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3326045A1 (de) * 1983-07-20 1985-01-31 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe fuer brennkraftmaschinen

Also Published As

Publication number Publication date
US4640255A (en) 1987-02-03
DE3579761D1 (de) 1990-10-25
DE3509536A1 (de) 1985-11-14
EP0167741A1 (fr) 1986-01-15

Similar Documents

Publication Publication Date Title
DE3112381C2 (fr)
DE4440205C2 (de) Luft-Kraftstoff-System für eine Brennkraftmaschine mit Kraftstoffeinspritzung
DE3508763A1 (de) Brennkraftmaschine mit mehreren einlassventilen
EP1870591A2 (fr) Dispositif d'admission pour un moteur à combustion interne
DE102012100020A1 (de) Kraftstoffeinspritzvorrichtung
DE102007039892A1 (de) Einspritzanlage für eine Brennkraftmaschine
EP0167741B1 (fr) Pompe à injection de combustible pour moteurs à combustion interne
DE19609800C1 (de) Brennstoffeinspritzsystem für Emulsionsbetrieb
DE19514055B4 (de) Kraftstoffzuführsystem und dafür vorgesehene Versorgungsleitung
WO1995021998A1 (fr) Systeme d'injection
DE19961092B4 (de) Verbrennungsmotor mit Hochleistungs-Kühlsystem
AT404166B (de) Kraftstoffeinspritzpumpe für brennkraftmaschinen
EP0855502B1 (fr) Moteur à combustion interne avec système de recirculation de gaz d'échappement
DE69817895T2 (de) Kraftstoffeinspritzpumpenanordnung in einer Brennkraftmaschine
DE69722966T2 (de) Verlängerter zylinderkopf für eine dieselbrennkraftmaschine ,mit löchern für einspritzeinheiten und brennstoffzufuhr
DE19609799C2 (de) Druckspeichereinspritzsystem
DE3040952C2 (de) Ansaugsystem für eine Brennkraftmaschine
EP0377102B1 (fr) Pompe d'injection de combustible pour moteurs à combustion interne
EP0933510B1 (fr) Moteur à combustion interne
DE102016100411A1 (de) Hubkolbenvorrichtung sowie Brennkraftmaschine mit einer solchen Hubkolbenvorrichtung
EP0540529B1 (fr) Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle
EP0637680B1 (fr) Moteur à combustion interne à plusieurs cylindres refroidi par liquide
WO2005088111A1 (fr) Culasse refroidie par eau pour un moteur a combustion interne
DE1426142A1 (de) Kraftstoffeinspritzvorrichtung
DE3624092C2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850504

AK Designated contracting states

Designated state(s): AT DE FR GB IT

17Q First examination report despatched

Effective date: 19870119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 56790

Country of ref document: AT

Date of ref document: 19901015

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3579761

Country of ref document: DE

Date of ref document: 19901025

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910514

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910531

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930723

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940504

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201