EP0540529B1 - Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle - Google Patents

Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle Download PDF

Info

Publication number
EP0540529B1
EP0540529B1 EP91910996A EP91910996A EP0540529B1 EP 0540529 B1 EP0540529 B1 EP 0540529B1 EP 91910996 A EP91910996 A EP 91910996A EP 91910996 A EP91910996 A EP 91910996A EP 0540529 B1 EP0540529 B1 EP 0540529B1
Authority
EP
European Patent Office
Prior art keywords
fuel
distributor
valve
injection device
rotating part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91910996A
Other languages
German (de)
English (en)
Other versions
EP0540529A1 (fr
Inventor
Helmut Rembold
Ernst Linder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0540529A1 publication Critical patent/EP0540529A1/fr
Application granted granted Critical
Publication of EP0540529B1 publication Critical patent/EP0540529B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/14Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons
    • F02M41/1405Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined rotary distributor supporting pump pistons pistons being disposed radially with respect to rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively

Definitions

  • the invention is based on a device according to the preamble of the main claim.
  • the duration of the fuel in the combustion chamber when the internal combustion engine is operating at full load is extended by the 180 ° angle of rotation of a camshaft connected to an internal combustion engine piston compared to the duration of stay in part-load operation.
  • the injection quantity of the fuel is adapted to the load operation.
  • the fuel injection device has a pump and a distributor, preferably driven at pump speed. The rotating part of the distributor alternately connects a supply line connected to the pump to injection lines leading to the individual cylinders of the internal combustion engine via internal flow channels depending on the angle of rotation.
  • the fuel When the internal combustion engine is operating at full load, the fuel is introduced into the combustion chamber during the suction stroke of the internal combustion engine piston so that it can mix well up to the ignition point. In this way, a complete combustion of the fuel-air mixture is ensured and soot emissions are prevented. In contrast, in part-load operation of the internal combustion engine, the fuel becomes very late, i.e. injected immediately before the ignition point, so that an ignitable mixture can form in layers in the area of the spark plug, so that the ignition initiated by the spark plug briefly detects the rest of the charge in the combustion chamber.
  • a switchover valve is provided for switching between the two different load-dependent injection times of the fuel injection device.
  • the outlet side has two outlet openings which are each connected to the inlet opening depending on the position of the valve slide.
  • the outlet openings lead to two different inner passages of the rotating part of the distributor.
  • the openings of the two passage channels occupy different angular positions in the fixed part of the distributor, so that the two opening angle regions of the rotating part of the distributor thus generated - with respect to the respective cylinder of the internal combustion engine - advance or lag relative to one another.
  • the injection which differs in time and is dependent on the angle opening area, takes place.
  • Corresponding ring grooves assigned to the lines are provided in each case for supplying the fuel from the changeover valve via lines into the flow channels of the rotating part of the distributor. As a result, the fuel flows from the changeover valve via the activated annular groove into the corresponding flow channel and via its opening further into the respective injection line connected to a cylinder.
  • the known fuel injection device has the disadvantage that it is complicated.
  • the production of the numerous transitions for the fuel between the fixed part of the distributor and the rotating part of the distributor is particularly complex.
  • These fuel transitions, which are designed as ring grooves, require precise manufacture with low tolerances for the distributor parts and the provision of appropriate sealants for fault-free operation.
  • the rotating part of the distributor does not have a homogeneous mass distribution on the surface of the rotating part of the distributor due to its flow channels running inside with the corresponding inlet and outlet openings. This places an unfavorable load on the bearings.
  • the fuel injection device according to the invention with the characterizing features of the main claim has a simplified construction while eliminating the disadvantages mentioned.
  • the invention is based on the knowledge that by moving the changeover valve in the rotating part of the distributor, a number of (to be sealed) fuel transitions between the lines of the fixed part of the distributor and the associated flow channels arranged in the rotating part of the distributor can be avoided, so that the manufacturing outlay is reduced. Furthermore, the flow conditions of the fuel delivered within the lines and the flow channels can be improved, so that a more direct fuel delivery is made possible.
  • the changeover valve is arranged concentrically within the rotating part of the distributor and its inlet opening is connected to the pump work space via a line which also runs exclusively within the rotating part of the distributor.
  • the rotating part of the distributor can be built up uniformly concentrically, so that the bearing forces which occur during rotation are reduced in relation to the known design.
  • the flow channels are directly connected to the changeover valve, whereby two transition channels of the fuel between the fixed part and the rotating part of the distributor are unnecessary.
  • the sliding arrangement of the valve slide of the changeover valve in the axial direction of the rotating part of the distributor results in the coaxial arrangement of the rotating part of the distributor with the changeover not changed from part load to full load operation.
  • An increase in the bearing forces during the switching process is thus avoided from the outset.
  • a more compact and lighter design is made possible in that the rotating part of the distributor forms the wall guiding the valve slide.
  • the longitudinal axis of the changeover valve and / or the connecting lines between the changeover valve and the pump work space coincide with the longitudinal axis of the rotating part of the distributor.
  • the movements of the individual parts can thus be coordinated with one another at low cost.
  • a streamlined arrangement of the fuel lines is made possible, that is to say fuel lines which have short lengths and are as straight as possible with few changes in direction.
  • the valve slide of the changeover valve is mounted in the rotating part of the distributor so that it can be switched easily by means of a hydraulic drive.
  • the valve spool forms the working piston of the hydraulic drive. Hydraulic fluid is applied to the front of this working piston, which ensures optimal power transmission.
  • the valve slide forms with its side wall a seal for the outlet opening of the changeover valve to be blocked. By moving the liquid, the valve slide is displaced between its two switching positions without being influenced by the rotational movement of the rotating part of the distributor.
  • a coaxial hydraulic channel with radial connecting channels to form an annular groove is provided as a connection between the hydraulic drive and the fixed part of the distributor.
  • the valve spool moves, the hydraulic fluid passes via the annular groove, the connecting channel to an end face of the valve spool, so that the valve spool can be switched while the distributor rotor is rotating.
  • this design and arrangement of the valve slide means that the hydraulic pressure for moving the valve slide can be built up without loss of pressure from the hydraulic drive and can be applied to the corresponding end face of the valve slide.
  • a valve in particular a solenoid valve, is provided in the hydraulic drive for determining the activation times of the valve slide.
  • the solenoid valve can be easily controlled by means of electrical signals and thus essentially the flow rate or flow times of the hydraulic fluid during the switching process of the changeover valve.
  • the valve slide has an annular groove which is connected to the connecting line via pressure channels. The fuel can be conveyed through the annular groove into the further openings of the passage channels of the distributor.
  • the effort involved in producing and processing the fixed part of the distributor can be reduced, that the outlet openings of the inner passage channels of the rotating part of the distributor on the outside thereof are located at the same height with respect to the axial direction.
  • Axial compensation by moving the valve slide is provided in the rotating part of the distributor.
  • the valve spool can also be stabilized in a position which forms the starting position, in which a spring acting in the axial direction and biased in the direction of the pump working space rests on the end face of the valve spool which is remote from the pump working space.
  • the spring force presses the slide against a stop arranged in accordance with the starting position of the slide.
  • the valve slide is held in the starting position in the event of a possible defect in the hydraulic line, i.e. preferably in the position for partial load operation. This avoids an uncontrolled movement of the slide in the event of a possible hydraulic line defect, and controlled injection also takes place in the event of failure or malfunctions of the hydraulic drive.
  • the rotating part of the distributor forms the working piston of the pump.
  • the size of the fuel injection device is thereby reduced in a favorable manner and the possibility of constructive design of the fuel injection device is expanded, in particular with regard to optimal fuel delivery.
  • the annular groove for the hydraulic fluid or an opening provided on the opposite wall has an extent in the axial direction that hydraulic fluid can pass regardless of the axial position of the rotating part of the distributor. The transition during the rotational and lifting movements of the corresponding part of the distributor is thus guaranteed throughout.
  • the pump work space can be connected to a relief space via a relief line that can be released as a function of time.
  • the fuel line leading the fuel into the pump work space is arranged coaxially with the axis of the rotating part of the distributor.
  • a check valve can be used, which is provided in the fuel line leading the fuel into the pump work chamber for closing the fuel line during the pressure stroke.
  • a controllable fuel shut-off means is preferably connected in parallel to the check valve, the fuel shut-off valve being located in the relief line.
  • a pressure limiter is provided in the fuel line, which avoids suddenly increasing line pressures, in which the pressure limiter opens its valve.
  • the hydraulic drive is connected to the fuel line, the fuel forming the pressure medium and the pressure being generated by a feed pump provided in the fuel line.
  • FIG. 1 shows a section through a fuel injection pump shown in simplified form
  • FIGS. 2a and 2b each show a section through the distributor of the fuel injection pump in different switching positions
  • FIGS. 3a to 3e each show a diagram of an injection sequence depending on the load of the internal combustion engine and in accordance with the possible switchover processes a schematically illustrated cross section of the distributor and in Figure 4 five time diagrams in different dependencies in a switching process by the switching valve.
  • an injection pump 9 for spark-ignition internal combustion engines which has a distributor 10 consisting of a fixed part 101 and a distributor rotor 102.
  • the cylindrical distributor rotor 102 of the distributor 10 is also designed as a working piston of the injection pump 9 for pumping movements and is connected to a rotating drive, not shown here, which generates lifting movements by means of a control disk.
  • the fixed part 101 of the distributor 10 is designed as a cylinder adapted to the rotating part 102 of the distributor 10.
  • the distributor rotor 102 is guided in the fixed part 101 of the distributor 10.
  • the free end of the distributor rotor 102 is adjoined by a pump work chamber 11 which essentially has the diameter of the distributor rotor 102 and which is expanded or reduced by the lifting movements of the distributor rotor 102 and thus promotes the fuel located in the pump work chamber.
  • the pump working space 11 is delimited in the axial direction by a wall 12 and in the radial direction by the inner surface 103 of the fixed part 101 of the distributor 10 which is adapted to the distributor rotor 102.
  • a cylindrical recess 13 which extends to the pump working chamber 11 and which has a constant diameter over its axial extent.
  • an axially displaceable valve slide 14 which is adapted to the recess 13 in the radial direction and is limited in the direction of the pump working space 11 by a stop disk 15 in its axial displacement movement.
  • the stop disc 15 is in an adapted Groove in the distributor rotor 102 clamped in the recess 13.
  • the limitation of the displacement movement in the opposite direction of displacement of the valve spool 14 is formed by the end face 16 of the recess 13, so that the valve spool 14 is displaceably mounted from the end face 16 of the recess 13 up to the stop disc 15.
  • a hydraulic channel 17 runs coaxially up to two connecting channels 18 that run radially with respect to the axis of the distributor rotor 102.
  • These two radial connecting channels 18 end in an annular groove 19 formed in the distributor rotor 102 19 corresponds to an opening 20 of a hydraulic line 21 and extends in the axial direction according to the maximum stroke movements, so that regardless of the position of the distributor rotor hydraulic fluid from the opening 20 into the annular groove 19 and thus the valve spool 14 are always moved by the hydraulic drive can.
  • valve spool 14 close tightly with the recess 13, so that the associated end face 141 of the valve spool 14 can be acted upon with hydraulic fluid without loss.
  • a solenoid valve 23 connected to a control device 22 is arranged in the hydraulic line 21 to determine the activation times of the valve slide. According to the control by the control device 22, the solenoid valve 23 opens, so that the valve slide is pressed into its left or right position as a result of the pressure conditions in the pump work chamber 11 and the pressure conditions by the hydraulic fluid of the hydraulic drive.
  • a cylindrical, coaxially arranged recess 24 and a corresponding further recess 25 in the end face 141 of the valve slide 14 are provided in the end face 16 of the recess 13.
  • the two recesses 24 and 25 are connected to one another via a prestressed spring 26, which presses the valve slide 14 in the direction of the pump work chamber 11. In the event of a possible defect in the hydraulic line, the valve slide 14 is thus pressed against the stop disk 15, the position of the valve slide during part-load operation of the internal combustion engine, by the prestressed spring 26.
  • valve spool 14 is an outwardly facing annular groove 27 and in the recess 13 and in the distributor rotor 102 are two inwardly facing, in the axial direction corresponding to the displacement movement of the valve spool 14 offset annular grooves 28 and 29 are formed.
  • connection channel 30 which initially runs radially to the center of the valve slide 14 and then in the axial direction to the pump work chamber 11 and which enables a fuel flow from the pump work chamber 11 into the inlet opening 31 of the connection channel 30 into the annular groove 27.
  • a passage channel 32 and 33 leads from the annular grooves 28 and 29 to the outer surface of the distributor rotor 102, the outlet openings 34 and 35 of the passage channels 32 and 33 being arranged at the same height in the axial direction.
  • the outlet openings 34 and 35 of the passage channels 32 and 33 have inlet openings 36 to 39 of injection lines 361 to 391 in the fixed part 101 of the distributor 10.
  • the passage channels 32 and 33 run obliquely in the distributor rotor 102 in order to compensate for the axial offset of their associated ring grooves 28 and 29.
  • the inlet openings 36 to 39 have an angle of 90 ° adjacent to one another.
  • the injection lines 361 to 391 are connected to injection nozzles 362 to 392, which introduce the fuel into the cylinder of the internal combustion engine.
  • the outlet openings 34 and 35 assume different angular positions on the outer surface of the distributor rotor 102, so that the opening angle regions of the distributor thus generated, in relation to the respective cylinder of the internal combustion engine, not shown here, lag or lag relative to one another.
  • the reference numerals are omitted the openings mentioned in this figure. However, these can be seen from FIGS. 2a and 2b.
  • the pump work chamber 11 By moving the valve slide 14 into one of the two stop positions, the pump work chamber 11 can be connected to the passage channel 32 or 33 via the annular groove 27 and the annular groove 28 or 29. As a result, the fuel introduced into the pump work chamber 11 can be conveyed via the passage channel 32 or 33 into the injection lines 361 to 391 and accordingly into the cylinders of the internal combustion engine.
  • the fuel enters the pump work chamber 11 via a fuel line 40 arranged coaxially to the rotating axis of the distributor rotor 102.
  • the fuel line 40 leads the fuel from an electric fuel pump 42 which pressurizes the fuel and delivers it from a storage tank 41 via a to close the fuel line 40 during
  • Check valve 43 provided in the pump stroke chamber 11 is connected in parallel with the check valve 43 and a further solenoid valve 44 is connected to the control device 22.
  • the solenoid valve 44 opens for predetermined periods of the pressure stroke by signals from the control device 22. The injection duration and the injection quantity are controlled via this solenoid valve 44, since when the solenoid valve 44 opens during the pressure stroke, fuel flows from the pump work chamber 11 through the solenoid valve 44.
  • the solenoid valve 44 When the solenoid valve 44 is opened, the start of delivery, the delivery rate and the delivery time can be controlled, so that the fuel is correspondingly less or over a shorter period of time is injected into the cylinder of the internal combustion engine through the distributor rotor 102.
  • the check valve 43 and the solenoid valve 44 are preceded by a pressure limiter 45, so that when a predetermined pressure value is exceeded, the pressure limiter 45 opens and fuel flows into a collecting tank 46 can escape.
  • the hydraulic drive is connected to the fuel line 40, the fuel being the pressure medium, i.e. forms the hydraulic fluid and the pressure in the hydraulic fluid is generated by the electric fuel pump 42.
  • the injection takes place in the suction stroke or in the compression stroke of the piston of the internal combustion engine via the outlet openings 34 or 35 of the passage 32 or 33 which are relatively advanced or lagging, with the different Points in time at which the outlet openings 34 and 35 pass through the inlet openings 36 to 39 are essentially fixed at the injection times.
  • the solenoid valve 44 there is still the possibility of influencing the injection process via the solenoid valve 44.
  • valve slide 14 At full load operation, ie injection in the suction stroke, the valve slide 14 is in its left position, so that the fuel from the pump work chamber 11 passes through the connection channel 30 into the passage channel 33 and then into the corresponding cylinder.
  • the solenoid valve 23 initially remains open during the delivery stroke of the distribution rotor 102. After the closing of the solenoid valve 44, the pressure builds up in the pump work chamber 11 and the valve slide 14 moves to its left stop, the end face 16 of the recess 13. Before the solenoid valve 44 is opened, the solenoid valve 23 closes. This keeps the control slide in its left position . Solenoid valve 23 is opened again briefly only at the beginning of the build-up of pressure during the next stroke cycle of the distributor rotor. The process is then repeated periodically.
  • valve slide 14 At partial load operation, i.e. Injection in the compression stroke of the piston of the internal combustion engine, the valve slide 14 is in the right position, so that the fuel passes through the connecting channel 30 into the passage channel 32 and thus into the associated cylinders of the internal combustion engine.
  • the solenoid valve 23 remains closed during the delivery stroke of the distributor rotor 102, as a result of which the valve slide 14 cannot deflect to the left because the hydraulic pressure continues to act on the valve slide 14. To correct an adjustment that can occur due to leakage on the valve slide 14, the solenoid valve 23 is briefly opened during the suction stroke of the distributor rotor 102. The forces acting on the valve slide 14 The spring force, mass force and pressure differential force between the left and right end faces then ensure that the stop disc 15 is pressed on.
  • valve slide 14 can also take place via the described circuitry of the solenoid valve 23.
  • a spark-ignited internal combustion engine can be operated with gasoline fuel in connection with the advantages which result in a self-igniting internal combustion engine from the low-loss, unthrottled supply of the combustion air into the combustion chambers.
  • the exemplary embodiment relates to a fuel supply for a four-cylinder internal combustion engine.
  • a fuel supply for a four-cylinder internal combustion engine can also be supplied with such a correspondingly modified fuel injection pump.
  • the outlet opening 34 rushes by the angular distance in front of the outlet opening 35 which the successive injection lines 361 to 391 have from one another.
  • FIG. 2a and 2b show a cross section II and II-II from FIG. 1 through the distributor 10.
  • the valve slide 14 assumes the left position, FIG. 2a, and the right position, FIG. 2b, from which the functioning of the distributor during full and part-load operation can be seen.
  • valve spool 14 When operating at full load, the valve spool 14 is in the left position.
  • the fuel from the pump work chamber 11 passes from the connecting channel 30 into the annular groove 27 of the valve slide 14, into the annular groove 28 of the distributor rotor 102 via the passage channel 33, the outlet opening 34 thereof, via the inlet openings 36 to 39 into the injection lines 361 to 391 into the respective cylinders.
  • valve spool 14 In contrast, at part-load operation the valve spool 14 is in the right position and the fuel passes from the ring groove 27 of the valve spool 14, into the ring groove 29 of the distributor rotor 102, the passage channel 32, the outlet opening 35 of which via the inlet openings 36 to 39 into the injection lines 361 to 391 in the connected cylinders.
  • the outlet openings 34 and 35 are arranged at an angle of 90 ° to one another, so that the injection time is offset by a crank angle of 180 °.
  • FIGS. 3a to 3d the injection times for cylinders 1 to 4 are shown in four diagrams as a function of the crankshaft rotation angle, with FIG. 3e - for better understanding of FIGS. 3a to 3d - a schematic cross section through distributor 10 with its passage channels 32 and 33 and the connected cylinders 1 to 4 shows.
  • FIG. 3a the injection sequence at part-load operation of the internal combustion engine is shown schematically in the form of the black boxes shown, i.e. injection on compression stroke.
  • the ignition timing and top dead center for the 1st cylinder is 180 °, for the 3rd cylinder at 360 °, for the 4th cylinder at 540 ° and for the 2nd cylinder at 0 ° and 720 °.
  • 3b shows the injection cycle for full-load operation, injection in the suction stroke, in the form of the white boxes.
  • the charge exchange and the top dead center are 180 ° for the 4th cylinder, 360 ° for the 2nd cylinder, 540 ° for the 1st cylinder and 720 ° for the 3rd cylinder.
  • Figure 3c shows the control when switching from compression to suction stroke injection.
  • the first cylinder is injected in the compression stroke.
  • no work cycle would take place in the next cycle in cylinder 3, since the entire quantity is injected into cylinder 4.
  • injection is now first carried out in cylinder 3 in the compression stroke and then injected into cylinder 4 in the same cycle by switching valve slide 14.
  • the pump feed cam is sufficient for this, since the compression stroke is only carried out in the lower partial load, i.e. with a small injection quantity
  • Figure 3d shows the reverse case, switching from suction to compression stroke injection.
  • fuel was still injected during the suction stroke.
  • This quantity is ignited in the next cycle, ie the magnetic valve 44 must not be closed now, since an additional quantity would otherwise be injected.
  • the switching of the valve spool 14 takes place, so that the injection stroke of the 4th cylinder is injected.
  • the embodiment of the invention is not limited to the preferred exemplary embodiment specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.

Abstract

Dispositif d'injection de carburant pour moteurs à combustion interne à allumage par étincelle comportant une pompe et un distributeur comprenant une partie fixe et une partie en rotation, entraîné de préférence à la vitesse de rotation de la pompe et présentant une soupape d'inversion. La soupape d'inversion est disposée, de préférence concentriquement, à l'intérieur de la partie en rotation (102) du distributeur (10), son ouverture d'admission (31) étant reliée à la chambre de la pompe (11) par un conduit (30) s'étendant également exclusivement à l'intérieur de la partie en rotation du distributeur.

Claims (17)

  1. Dispositif d'injection de carburant pour moteurs à combustion interne à allumage par étincelle, avec une pompe et un distributeur (10), entraîné de préférence à la vitesse de rotation de la pompe, dont la partie tournante (102) relie par l'intermédiaire de canaux d'écoulement intérieurs (32, 33), en fonction de l'angle de rotation, une conduite d'alimentation (13, 30) reliée à la pompe, de façon alternative, aux conduites d'injection (361 à 391) allant aux différents cylindres du moteur à combustion interne, une vanne de commutation étant prévue avec un tiroir de vanne (14), qui peut prendre deux positions, vanne qui est actionnée en fonction de la charge et de la vitesse de rotation du moteur à combustion interne, dont l'orifice d'admission peut être relié, par l'intermédiaire de la conduite d'alimentation (30), à la chambre de travail de la pompe et dont le côté sortie présente deux orifices de sortie (28, 29) qui, en fonction de la position du tiroir de vanne (14), sont reliés respectivement à l'orifice d'entrée (31), les orifices de sortie (28, 29) conduisant à deux canaux d'écoulement (32, 33) intérieurs différents de la partie tournante (102) du distributeur, dont les orifices (34, 35) prennent une position angulaire différente sur la face extérieure de la partie tournante de telle façon que les deux zones angulaires d'ouverture ainsi produites du distributeur soient en avance ou en retard l'une par rapport à l'autre, en ce qui concerne le cylindre correspondant du moteur à combustion interne, dispositif d'injection de carburant caractérisé en ce que le tiroir (14) de la vanne de commutation est disposé à l'intérieur de la partie tournante (102) du distributeur (10), de préférence de façon concentrique, et en ce qu'également la conduite d'alimentation (30) se trouve exclusivement à l'intérieur de la partie tournante (102) du distributeur (10).
  2. Dispositif d'injection de carburant selon la revendication 1, caractérisé en ce que le tiroir (14) de la vanne de commutation est monté de façon à coulisser dans le sens de l'axe de la partie tournante (102) du distributeur (10), et en ce qu'en particulier la partie tournante (102) du distributeur (10) forme la paroi de guidage du tiroir de vanne (14).
  3. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que l'axe longitudinal de la vanne de commutation et/ou la conduite de liaison (30) entre la vanne de commutation et la chambre de travail (11) de la pompe coïncident avec l'axe longitudinal de la partie tournante (102) du distributeur (10).
  4. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que le tiroir de vanne (14) forme le piston de travail d'un mécanisme d'entraînement hydraulique, ce piston de travail étant sollicité du côté frontal par le liquide hydraulique et formant par sa paroi latérale un joint d'étanchéité pour l'orifice de sortie (28, 29), respectivement à obturer, de la vanne de commutation.
  5. Dispositif d'injection de carburant selon la revendication 4, caractérisé en ce que l'on prévoit comme liaison entre le mécanisme d'entraînement hydraulique et la partie fixe (101) du distributeur (10), un canal hydraulique (17) s'étendant coaxialement avec des canaux de liaison radiaux (18) allant à une rainure annulaire (19), d'une façon telle que le liquide hydraulique passe par la rainure annulaire (19) et le canal de liaison (18) vers une face frontale du tiroir de vanne (14) lors de ses mouvements de coulissement.
  6. Dispositif d'injection de carburant selon l'une des revendications 4 ou 5, caractérisé en ce que, dans le mécanisme d'entraînement, on prévoit une vanne, en particulier une électrovanne (23), pour déterminer les temps d'activation du tiroir de vanne (14).
  7. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que le tiroir de vanne (14) présente une rainure annulaire (27) qui est en liaison avec la conduite de liaison (30) par l'intermédiaire de canaux de pression, de telle sorte que l'on peut refouler le carburant via la rainure annulaire dans les autres orifices des canaux de pression (32, 33) du distributeur (10).
  8. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que les orifices de sortie (34,35) des canaux intérieurs d'écoulement (32, 33) de la partie tournante (102) du distributeur (10), sont mis à la même hauteur sur sa face extérieure dans le sens axial.
  9. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que, sur la face frontale (141) du tiroir de vanne (14), qui est mise à l'écart de la chambre(11) de travailde la pompe, repose un ressort (26) agissant dans le sens axial et précontraint en direction de la chambre de travail(11) de la pompe.
  10. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que la partie tournante (102) du distributeur (10) constitue le piston de travail de la pompe.
  11. Dispositif d'injection de carburant selon les revendications 5 et 10, caractérisé en ce que la rainure annulaire (19) présente, pour le liquide hydraulique ou un orifice (20) prévu sur la paroi opposée, une étendue dans le sens axial telle qu'il peut se passer un transfert de liquide hydraulique indépendant de la position axiale de la partie tournante (102) du distributeur (10).
  12. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que, pour limiter la durée d'injection pour des intervalles de temps prédéfinis de la course de compression, on peut relier la chambre de travail (11)de la pompe, par l'intermédiaire d'une conduite de décharge que l'on peut libérer en fonction du temps, à une chambre de décharge.
  13. Dispositif d'injection de carburant selon l'une des revendications précédentes, caractérisé en ce que la conduite de carburant (40) qui amène le carburant à la chambre de travail (11) de la pompe est disposée coaxialement à l'axe de la partie tournante (102) du distributeur (10).
  14. Dispositif d'injection de carburant selon l'une des revendications 10 à 13, caractérisé en ce que l'on prévoit, dans la conduite de carburant (40) amenant le carburant à la chambre de travail (11) de la pompe un clapet anti-retour (43) pour obturer la conduite de carburant (40) pendant la course de compression.
  15. Dispositif d'injection de carburant selon la revendication 14, caractérisé en ce que l'on monte des moyens d'obturation du carburant, pouvant être commandés en parallèle au clapet anti-retour (43).
  16. Dispositif d'injection de carburant selon l'une des revendications 10 à 15, caractérisé en ce que l'on prévoit dans la conduite de carburant (40) un limiteur de pression (45).
  17. Dispositif d'injection de carburant selon l'une des revendications 10 à 16, caractérisé en ce que le mécanisme hydraulique d'entraînement est relié à la conduite de carburant (40), le carburant constituant l'agent sous pression et la pression étant produite par une pompe de refoulement (42) prévue dans la conduite de carburant (40).
EP91910996A 1990-07-21 1991-06-26 Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle Expired - Lifetime EP0540529B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4023307 1990-07-21
DE4023307A DE4023307A1 (de) 1990-07-21 1990-07-21 Kraftstoffeinspritzvorrichtung fuer fremdgezuendete brennkraftmschinen
PCT/DE1991/000518 WO1992001863A1 (fr) 1990-07-21 1991-06-26 Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle

Publications (2)

Publication Number Publication Date
EP0540529A1 EP0540529A1 (fr) 1993-05-12
EP0540529B1 true EP0540529B1 (fr) 1995-09-13

Family

ID=6410807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91910996A Expired - Lifetime EP0540529B1 (fr) 1990-07-21 1991-06-26 Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle

Country Status (5)

Country Link
US (1) US5327869A (fr)
EP (1) EP0540529B1 (fr)
JP (1) JPH05507990A (fr)
DE (2) DE4023307A1 (fr)
WO (1) WO1992001863A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257529A (ja) * 1993-02-18 1994-09-13 Robert Bosch Gmbh 内燃機関用の燃料噴射装置
AU6828294A (en) * 1993-05-06 1994-12-12 Cummins Engine Company Inc. Distributor for a high pressure fuel system
DE69409743T2 (de) * 1993-09-14 1998-10-22 Lucas Ind Plc Kraftstoffzufuhreinrichtung
KR100499583B1 (ko) * 1999-11-17 2005-07-07 엘지.필립스 엘시디 주식회사 액정 주입장치와 액정주입방법
US8118549B2 (en) * 2008-08-26 2012-02-21 Siemens Energy, Inc. Gas turbine transition duct apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE933182C (de) * 1953-10-04 1955-09-22 Daimler Benz Ag Kraftstoffeinspritzpumpe, insbesondere fuer Diesel-Brennkraftmaschinen
GB1542865A (en) * 1975-06-13 1979-03-28 Lucas Industries Ltd Fuel injection pumping apparatus
US4052971A (en) * 1975-10-10 1977-10-11 Stanadyne, Inc. Fuel injection pump and timing control therefor
DE3001166A1 (de) * 1980-01-15 1981-07-23 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzanlage
DE3124500A1 (de) * 1981-06-23 1983-01-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzpumpe
DE3248713A1 (de) * 1982-12-31 1984-07-05 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur einspritzung von kraftstoff und kraftstoffeinspritzvorrichtung zur durchfuehrung des verfahrens
DE3543151A1 (de) * 1985-08-16 1987-02-26 Daimler Benz Ag Druckoelzufuehrvorrichtung fuer einen mit einer einspritzpumpe zusammenwirkenden hydraulisch betaetigten spritzversteller
US4667641A (en) * 1985-09-23 1987-05-26 Stanadyne, Inc. Injection pump with radially mounted spill control valve

Also Published As

Publication number Publication date
US5327869A (en) 1994-07-12
WO1992001863A1 (fr) 1992-02-06
EP0540529A1 (fr) 1993-05-12
DE59106489D1 (de) 1995-10-19
DE4023307A1 (de) 1992-01-23
JPH05507990A (ja) 1993-11-11

Similar Documents

Publication Publication Date Title
EP0911511B1 (fr) Procédé d'injection de carburant dans la chambre de combustion d'un moteur auto-allumage par compression d'air
DE3112381C2 (fr)
DE3235413C2 (fr)
DE2759187A1 (de) Kraftstoffeinspritzanlage mit mindestens einem kraftstoffeinspritzventil, insbesondere fuer grossmotoren
EP0328602B1 (fr) Dispositif d'introduction de carburant dans la chambre de combustion d'un moteur a combustion interne
EP0114991B1 (fr) Dispositif d'injection de carburant pour moteurs à combustion
WO1995021998A1 (fr) Systeme d'injection
DE60023168T2 (de) Verfahren zum vermindern der emissionen in einer brennkraftmaschine
EP0021170A1 (fr) Moteur à combustion interne à deux temps
EP0178487B1 (fr) Dispositif d'injection de carburant pour moteurs à combustion interne
EP0298254B1 (fr) Pompe à injection de combustible
DE19833692C2 (de) Injektoreinheit mit Zeitsteuerplungerkolben mit festem Anschlag
DE2541363C2 (de) Fremdgezündete Rotationskolben-Einspritz-Brennkraftmaschine
DE7903595U1 (de) Verteiler-einspritzpumpe fuer mit kompressionszuendung arbeitende mehrzylinder-verbrennungsmotoren
DE10117600C1 (de) Hochdruck-Kraftstoffpumpe für ein Kraftstoffsystem einer direkteinspritzenden Brennkraftmaschine, Kraftstoffsystem sowie Brennkraftmaschine
EP0540529B1 (fr) Dispositif d'injection de carburant pour moteurs a combustion interne a allumage par etincelle
DE8021214U1 (de) Verbrennungsmotor-Ansauganordnung
DE10327845A1 (de) Verfahren zur Verwendung von mehreren Brennstoffeinspritzungen zur Reduzierung von Motoremissionen im Leerlauf
DE2009365A1 (de) Kraftstoff-Einspritzvorrichtung für eine Diesemaschine
CH671809A5 (fr)
DE102015105735A1 (de) Verfahren zum Betreiben einer Kraftstoffpumpe für einen Verbrennungsmotor, Kraftstoffpumpe und Verbrennungsmotor
DE4310457A1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP0543805B1 (fr) Pompe d'injection de carburant pour moteurs a combustion interne
DE3216513C2 (fr)
DE19602474B4 (de) Einspritzzeitpunkt-Steuervorrichtung für eine Kraftstoffeinspritzpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19940715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106489

Country of ref document: DE

Date of ref document: 19951019

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000626

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050626