EP0166931B1 - Drehzahlregler für Kraftstoffeinspritzpumpen - Google Patents

Drehzahlregler für Kraftstoffeinspritzpumpen Download PDF

Info

Publication number
EP0166931B1
EP0166931B1 EP85105970A EP85105970A EP0166931B1 EP 0166931 B1 EP0166931 B1 EP 0166931B1 EP 85105970 A EP85105970 A EP 85105970A EP 85105970 A EP85105970 A EP 85105970A EP 0166931 B1 EP0166931 B1 EP 0166931B1
Authority
EP
European Patent Office
Prior art keywords
spring
lever
speed
speed governor
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85105970A
Other languages
English (en)
French (fr)
Other versions
EP0166931A3 (en
EP0166931A2 (de
Inventor
Gerald Höfer
Manfred Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0166931A2 publication Critical patent/EP0166931A2/de
Publication of EP0166931A3 publication Critical patent/EP0166931A3/de
Application granted granted Critical
Publication of EP0166931B1 publication Critical patent/EP0166931B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/04Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered by mechanical means dependent on engine speed, e.g. using centrifugal governors
    • F02D1/045Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered by mechanical means dependent on engine speed, e.g. using centrifugal governors characterised by arrangement of springs or weights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • F02D1/10Transmission of control impulse to pump control, e.g. with power drive or power assistance mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • F02M41/126Variably-timed valves controlling fuel passages valves being mechanically or electrically adjustable sleeves slidably mounted on rotary piston

Definitions

  • the invention relates to a fuel injection pump according to the preamble of the main claim.
  • a known speed controller of this type (used in the Bosch distributor injection pump type VE) has only one leaf spring as an intermediate spring in one version, which has the function of a so-called starting spring that generates a starting quantity, and in another version a combination of this starting spring with a coil spring, which regulates the idle speed.
  • the starting spring is as soft as possible and only has the task of pushing the second lever and thus the injection quantity control element into a position for additional starting quantity which is above the maximum full load injection quantity in the starting position
  • the idling spring has the task in the idling position of the controller the second lever and thus keeping the injection quantity control member in a position corresponding to the balance of the forces (spring, speed signal generator) as counterforce to the speed signal generator which develops only small forces at idling speeds.
  • the idle spring Only when the idle speed is exceeded is the idle spring pushed together, so that in the upper idle speed range the two levers are frictionally engaged. However, the idle spring is pushed together at idle speeds and sufficient load via the first lever as far as a stop determining the initial position of the first lever allows this.
  • a single helical spring or leaf spring serving as a starting and idling spring can also serve as an intermediate spring, in which it is assigned a first area which serves to generate a starting additional quantity and then a somewhat harder area serving to regulate the idling speed.
  • the actual consumption per engine cylinder is known to differ in contrast to the injection quantity metered by the injection pump per engine cylinder, which is the same for all engine cylinders when the speed controller is in a certain position.
  • the spread of the amount that can be consumed by the engine cylinder can be 30% of the average injection amount when idling and is therefore particularly disadvantageous there. If, for example, the average idling quantity is 5 mm 3 , the scatter may well be 2 mm 3 .
  • the scattering of the braking and shocks that occur during combustion in the engine result in corresponding power surges from the speed signal transmitter to the second lever, which can be absorbed by a stiff spring in such a way that jerking or engine shaking during idling is prevented.
  • a rigid idle spring has a high P-degree, which can be 40% when idle. At idle speeds of 600 rpm. this is already 240 rpm. This high P degree leads to an unstable running of the motors, the so-called sawing. This sawing can in turn be counteracted by a soft spring with a correspondingly low P-degree, namely a spring in which large distances (control paths) are covered even with relatively small changes in force of the speed signal transmitter. Due to the low P-grade of soft springs, adding or subtracting the small quantity changes caused by the scattering is largely absorbed as an influence on the speed, so that a low P-grade is achieved (low sawing, largely constant speed) but jerky or shaking the motor can take place. In the known speed controllers, a relatively high P-grade is therefore taken in order to avoid the unpleasant jerking, especially in the case of passenger car diesel engines.
  • a fuel injection pump in which an arbitrarily operated adjusting lever is provided which changes the regulating spring tension and which is used for Input of the speed or torque request via a drag link consisting of two mutually opposite springs, with which the fuel quantity adjusting element of the fuel injection pump is coupled.
  • the volume adjustment element can be operated via a control lever, on which a speed-dependent force counter to the force of the control spring set by the adjustment lever and, if applicable, the adjustment spring used in series, as well as the idle spring which is fixed in parallel to the control spring, regardless of the position of the adjustment lever in the Regulating case can be adjusted.
  • the adjustment of the fuel quantity adjusting member caused by the adjusting lever via the drag member in the event of non-regulation is delayed by an attenuator connected between the latter and the regulator lever.
  • An intermediate lever can be provided between the control spring and the adjustment spring.
  • This device is very complex and, since the idle spring abuts stationary on the one hand and the towing element lies in series with a pre-tensioned control spring and the damping element is provided parallel to both, there is no possibility of selecting the spring stiffness in different operating situations in the sense of the relationships discussed above.
  • the speed controller for fuel injection pumps according to the invention with the characterizing features of the main claim has the advantage that a controller with resilient feedback is created, in which the short shocks caused by the scattering of the engine cylinder combustion are absorbed by a stiff spring, which the desired high P- Degree corresponds and that a delayed action of a soft spring for a constant speed as possible a lower P-degree can be achieved.
  • the driving member works with two mutually counteracting damping springs, between which the point of attack of the second lever is clamped in a floating manner.
  • Both damping springs are designed to be relatively stiff, at least stiffer than the intermediate spring.
  • fuel is fed from a fuel tank 10 via a prefeed pump 11 and a fuel filter 12 to a distributor injection pump 13.
  • the pump housing of this pump is broken open so far that the elements of the speed controller are visible.
  • the load input which takes place arbitrarily in the motor vehicle, for example, is carried out via an adjusting lever 14, the pivoting movement of which is transmitted via an adjusting shaft 15 guided in the pump housing to a driving lever 16, on which a control spring 17 engages on the one hand, which on the other hand is connected to a regulator lever arrangement 18.
  • an adjusting sleeve 19 of a speed signal transmitter also acts on the control lever arrangement 18, which is articulated by flyweights 20 which are driven at a motor-synchronous speed.
  • the force acting on the control lever arrangement 18 from the sleeve 19 thus changes the speed according to a quadratic function.
  • the regulator lever arrangement 18 displaces a control slide 21 determining the injection quantity on a pump and distributor piston 22.
  • the fuel is fed from the injection pump via a distributor groove 23 to injection nozzles 24, the pump piston 22 executing as many pressure and suction strokes per revolution as injection nozzles 24 or engine cylinders are available.
  • injection nozzles 24 or engine cylinders are available.
  • all engine cylinders receive the same injection quantity.
  • the controller reduces the injection quantity per engine cylinder with the same load specification as soon as the speed drops.
  • a regulator lever arrangement 18 is shown with which this bucking can be largely avoided.
  • This regulator lever arrangement 18 has an adjusting lever 28 which is pivotally mounted in the housing at 29 and carries an axis 30. Swiveling around point 29 causes the axis 30 to be correspondingly displaced.
  • This adjusting lever 28 is set to adjust the position of the axis 30 and has no influence on the speed control.
  • the control spring 17 shown in FIG. 2 only by an arrow indicating the direction of force acts on a tensioning lever 31 which is pivotably mounted on the axis 30. Also on the axis 30, a start lever 32 is pivotally mounted, on which a head 33 is provided for articulating the control slide 21 and on which the speed signal transmitter 19 engages in the direction of force represented by the arrow.
  • An intermediate spring assembly 35 is arranged between the tensioning lever 31 (1st lever) and the starting lever 32 (2nd lever), by means of which the relative pivot position of the two levers relative to one another as a function of the forces 17 and 19 and thereby the fuel injection quantity are determined in a certain speed range becomes.
  • This intermediate spring assembly 35 consists of three springs of a first softer spring 36 and two harder stiffer springs 37.
  • the intermediate spring 36 is arranged in a cylinder 38 which is closed on one side and is supported on the one hand on the closing end wall and on the other hand on a piston 39 which is axially displaceable in the cylinder 38 .
  • the interior of the cylinder 36 is connected to the outside by a throttle bore 40 provided in the end wall.
  • a pin 41 is provided on the piston 39, on which the two stiffer intermediate springs 37 are guided, one of which is supported on the piston 39 and the other on a locking ring 42 which is arranged on the pin 41.
  • the end 43 of the start lever 32 is provided in a floating manner by the springs 37.
  • the stiff springs 37 absorbs these forces, the stiff spring causing a high P-degree.
  • the driving element consisting of cylinder 38, piston 39 with pin 41 acts like a rigid system, or spring 36 acts as an infinitely stiff spring, since the volume enclosed in the cylinder acts inelastic due to the throttling action of throttle 40 and only with a throttle cross section according to the time available, the spring 36 can come into effect.
  • the entire spring assembly 35 acts like a flexible return.
  • the spring 37 acts in the short-term behavior
  • the spring 36 acts in the long-term behavior.
  • the injection quantity Q is plotted on the ordinate and the rotational speed n on the abscissa in an injection quantity / speed diagram.
  • the characteristic curve indicates the full load, with b being the starting additional quantity.
  • c is the regulation process when the maximum speed is reached.
  • This diagram also shows the transition from idle volume to larger quantities when the load is taken up. It is significant that the controller has a very flat idling characteristic d, since the actual idling spring 36 is relatively soft and causes a low P-degree. This avoids sawing the engine, ie the engine runs at a largely constant idling speed. As soon as a load change is made, the relatively stiff retaining springs 37 cause a rapid increase in the injection quantity with a slight change in speed, in accordance with the characteristic curves e.
  • the problem with idling speed control namely motor jerking and sawing
  • the invention can accordingly be transferred to speed controllers for pumps of stationary motors or to corresponding problems in intermediate speed ranges. It is important that the speed controller according to the invention cause short-term changes in the force of parameters such as load or speed to cause a high P-degree, whereas longer-term parameter changes cause a low P-degree of the controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspitzpumpe nach der Gattung des Hauptanspruchs. Ein bekannter Drehzahlregler dieser Art (verwendet in der Bosch Verteilereinspritzpumpe Typ VE) weist als Zwischenfeder in einer Version lediglich eine Blattfeder auf, die die Funktion einer eine Startmehrmenge erzeugenden sogenannten Startfeder hat, und in einer anderen Version eine Kombination dieser Startfeder mit einer Schraubenfeder, welche die Leerlaufdrehzahl regelt. Während die Startfeder möglichst weich ist und lediglich die Aufgabe hat, in Startposition den zweiten Hebel und damit das Einspritzmengensteuerglied in eine Stellung für Startmehrmenge, die über der maximalen Volllasteinspritzmenge liegt, zu schieben, hat die Leerlauffeder die Aufgabe in Leerlaufposition des Reglers den zweiten Hebel und damit das Einspritzmengensteuerglied jeweils als Gegenkraft zu dem bei Leerlaufdrehzahlen nur geringe Kräfte entwickelnden Drehzahlsignalgeber in einer dem Gleichgewicht der Kräfte (Feder, Drehzahlsignalgeber) entsprechenden Lage zu halten.
  • Erst wenn die Leerlaufdrehzahl überschritten wird, wird auch die Leerlauffeder zusammengeschoben, so daß im oberen Leerlaufdrehzahlbereich die beiden Hebel kraftschlüssig aneinander liegen. Die Leerlauffeder wird jedoch auch bei Leerlaufdrehzahlen und ausreichender Last über den ersten Hebel zusammengeschoben soweit ein die Ausgangslage des ersten Hebels bestimmender Anschlag dieses zuläßt.
  • Natürlich kann als Zwischenfeder auch eine einzige als Start- und Leerlauffeder dienende Schrauben- oder Blattfeder dienen, in dem dieser ein erster weicher der Erzeugung einer Startmehrmenge dienender Bereich zugeordnet ist und danach ein etwas härterer der Leerlaufregelung dienender Bereich.
  • Bei einem Dieselmotor ist der tatsächliche Verbrauch pro Motorzylinder bekanntlich unterschiedlich im Gegensatz zu der von der Einspritzpumpe pro Motorzylinder zugemessenen Einspritzmenge, die bei einer bestimmten Stellung des Drehzahlreglers für alle Motorzylinder gleich ist. Die Streuung der von den Motorzylinder verbrauchbaren Menge kann im Leerlauf 30 % der durchschnittlichen Einspritzmenge betragen und ist deshalb dort besonders nachteilig. Wenn beispielsweise die durchschnittliche Leerlaufmenge 5 mm3 ist, so kann die Streuung durchaus 2 mm3 aufweisen. Diese Unterschiede bewirken dynamisch betrachtet einen entsprechend jeweils sehr kurzfristigen Einfluß auf die Drehzahl des Motors und über den Drehzahlsignalgeber des Drehzahlreglers wiederum auf die Einspritzmenge, deren Änderung je nach dem für welchen Motorzylinder sie wirksam wird, eine möglicherweise ungewünschte Verstärkung oder Abbremsung der zu regelnden Durchschnittsleerlaufdrehzahl bewirkt. Aus diesem Grunde soll der Ungleichförmigkeitsgrad (P - Grad) möglichst groß sein, was eine möglichst steife Leerlauffeder erfordern würde. Um eine bestimmte Wegstrecke (Regelweg) gegen eine steife Feder zurückzulegen, ist eine Verhältnismäßig große Kraftänderung erforderlich im Gegensatz zu einer weichen Feder. Durch die Streuungen der bei der Verbrennung im Motor sich einstellenden Bremsungen und Stöße ergeben sich entsprechende Kraftstöße vom Drehzahlsignalgeber auf den zweiten Hebel, die durch eine steife Feder so aufgefangen werden können, daß ein Ruckeln oder Motorschütteln im Leerlauf verhindert wird.
  • Eine steife Leerlauffeder hat aber, wie oben ausgeführt, einen hohen P-Grad, der im Leerlauf 40 % betragen kann. Bei Leerlaufdrehzahlen von 600 U/Min. sind dieses bereits 240 U/Min. Dieser hohe P-Grad führt zu einem instabilen Lauf der Motoren, dem sogenannten Sägen. Diesem Sägen kann durch wiederum eine weiche Feder mit entsprechend niedrigen P-Grad entgegengewirkt werden, nämlich einer Feder bei der bereits bei relativ geringen Kraftänderungen des Drehzahlsignalgebers große Wege (Regelwege) zurückgelegt werden. Aufgrund des niedrigen P-Grades weicher Federn wird ein Addieren bzw. Subtrahieren der durch die Streuung bewirkten geringen Mengenänderungen als Einfluß auf die Drehzahl weitgehend aufgefangen, so daß zwar ein niedriger P-Grad erzielt wird (geringes Sägen, weitgehend konstante Drehzahl) aber ein Ruckeln oder Schütteln des Motors stattfinden kann. Bei den bekannten Drehzahlreglern wird deshalb ein verhhältnismässig hoher P-Grad kauf genommen, um das unangenehme Ruckeln, besonders bei Pkw Dieselmotoren zu vermeiden.
  • Bei bekannten Drehzahlreglern der eingangs genannten Art wird somit versucht, durch die Wahl der Steife der Leerlauffeder einen Kompromiß zwischen möglichst geringem Motorschütteln und geringem Sägen des Motors zu erzielen, ohne deshalb mit der Leerlaufdrehzahl höher werden zu müssen.
  • Dieses Problem besteht nicht nur bei der Leerlauffeder als Zwischenfeder, sondern gilt gleichermaßen für Regler von Einspritzpumpen für stationäre Motoren oder sonstige zu regelnde Läufe, bei denen die Drehzahl konstant aufrecht erhalten werden muß. Auch hier muß einerseits ein Sägen, nämlich Abweichen von der konstanten Drehzahl vermieden werden und andererseits ein Motorruckeln, was möglicherweise zu Schäden des angetriebenen Aggregats führen könnte.
  • Durch die GB-A-2 090 430 ist eine Kraftstoffeinspritzpumpe bekannt, bei der ein die Regelfederspannung ändernder willkürlich betätigter Verstellhebel vorgesehen ist, der zur Eingabe des Drehzahl- oder Drehmomentenwunsches über ein Schleppglied bestehend aus zwei zueinander entgegengerichteten Federn, mit dem Kraftstoffmengenverstellorgan der Kraftstoffeinspritzpumpe gekoppelt ist. Dadurch kann das Mengenverstellorgan über einen Reglerhebel, an dem eine drehzahlabhängige Kraft entgegen der Kraft der durch den Verstellhebel eingestellten Regelfeder und gegebenenfalls der in Reihe dazu zum Einsatz kommenden Angleichfeder sowie der parallel zur Regelfeder liegenden, sich ortsfest abstützenden Leerlauffeder unabhängig von der Stellung des Verstellhebels im Abregelfall verstellt werden. Die vom Verstellhebel über das Schleppglied bewirkte Verstellung des Kraftstoffmengenverstellorgans im Nichtabregelfall wird durch ein zwischen dieses und dem Reglerhebel geschaltetes Dämpfungsglied verzögert. Zwischen Regelfeder und Angleichfeder kann dabei ein Zwischenhebel vorgesehen werden.
  • Diese Einrichtung ist sehr aufwendig aufgebaut und weist, da die Leerlauffeder sich einerseits ortsfest absttitzt und das Schleppglied in Reihe zu einer vorgespannten Regelfeder liegt, parallel zu beiden das Dämpfungsglied vorgesehen ist, keine Selektionsmöglichkeit der Federsteifigkeit bei verschiedenen Betriebssituationen im Sinne der eingangs diskutierten Zusammenhänge auf.
  • Durch die GB-A-1 231 010 ist es aber bekannt, bei einem Drehzahlgeber einer Kraftstoffeinspritzpumpe zwei gegeneinander wirkende Federn vorzusehen, die einen mit dem Stellglied des Drehzahlgebers verbundenen Kolben einspannen. Der Kolben trennt Arbeitsräume voneinander, die über einerseits eine Drossel und andererseits über Druckbegrenzungsventile miteinander verbindbar sind. Diese Einrichtung bewirkt eine Dämpfung der Verstellbewegung des Drehzahlgebers derart, daß bei langsamen Drehzahländerungen eine gedämpfte Verstellung erfolgt und bei schnellen Drehzahländerungen ein ungedämpfte Verstellung bei geöffneten Druckbegrenzungsventilen erfolgt.
  • Vorteile der Erfindung
  • Der erfindungsgemäße Drehzahlregler für Kraftstoffeinspritzpumpen mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß ein Regler mit nachgiebiger Rückführung entsteht, bei dem im Regellauf die kurzen durch die Streuungen der Motorzylinderverbrennung bewirkten Stöße durch eine steife Feder aufgefangen werden, was dem gewünschten hohen P-Grad entspricht und daß aber durch die verzögerte Wirkung einer weichen Feder fur eine möglichst konstante Drehzahl ein niederer P-Grad erzielbar ist. Hierdurch entsteht eine sehr flache Regellaufkennlinie im Mengendrehzahldiagramm, die in eine entsprechend steile Lastaufnahmekennlinie übergeht, beispielsweise beim Anfahren vom Leerlauf in höhere Lastzustände. Entsprechendes gilt für die Kennlinie bei stationären Antrieben.
  • Nach einer vorteilhaften Ausgestaltung der Erfindung arbeitet das Mitnahmeglied mit zwei einander entgegenwirkenden Dämpfungsfedern, zwischen denen die Angriffsstelle des zweiten Hebels schwimmend eingespannt ist. Beide Dämpfungsfedern sind entsprechend verhältnismäßig steif ausgebildet, jedenfalls steifer als die Zwischenfeder. Der Vorteil dieser Ausgestaltung besteht in der einfachen Anordnung, eine anpassbare Stellkraft für jede der zwei Schwenkrichtungen des zweiten Hebels zu erhalten, da naturgemäß das Dämpfungsglied je nach Stellrichtung eine unterschiedliche Wirkung aufweist. Während in der einen Richtung die eingeschlossene Menge durch eine Drossel gepreßt werden muß, kann in der anderen Richtung lediglich ein Unterdruck wirksam sein.
  • Zeichnung
  • Ein Ausführungsbeispiel des Gegenstandes der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
    • Fig. 1 eine Kraftstoffeinspritzanlage mit dem erfindungsgemäßen Drehzahlregler;
    • Fig. 2 das Reglerhebelpaket aus Fig. 1 in vergrößertem Maßstab im Längsschnitt gemäß, der Linie 11-11 in Fig. 3;
    • Fig. 3 eine Ansicht des Pakets aus Fig. 2 gemäß dem Pfeil 111 in Fig. 2 und
    • Fig. 4 ein Diagramm des Einspritzmengenverlaufs über der Drehzahl.
    Beschreibung des Ausführungsbeispiels
  • Bei einer Kraftstoffeinspritzanlage nach Fig 1. wird aus einem Kraftstoffbehälter 10 über eine Vorförderpumpe 11 und einen Kraftstofffilter 12 einer Verteilereinspritzpumpe 13 Kraftstoff zugeführt. Das Pumpengehäuse dieser Pumpe ist für die Darstellung soweit aufgebrochen, daß die Elemente des Drehzahlreglers sichtbar werden.
  • Die Lasteingabe, die beim Kraftfahrzeug beispielsweise willkürlich erfolgt, wird über einen Verstellhebel 14 vorgenommen, dessen Schwenkbewegung über eine im Pumpengehäuse geführte Verstellwelle 15 auf einen Mitnahmehebel 16 übertragen wird, an dem eine Regelfeder 17 einerseits angreift, die andererseits mit einer Reglerhebelanordnung 18 verbunden ist. Entgegen der Kraft dieser Regelfeder 17 greift ebenfalls an der Reglerhebelanordnung 18 eine Verstellmuffe 19 eines Drehzahlsignalgebers an, die durch Fliehgewichte 20 angelenkt ist, welche mit motorsynchroner Drehzahl angetrieben werden. Die von der Muffe 19 auf die Reglerhebelanordnung 18 angreifende Kraft ändert sich somit der Drehzahl gemäß einer quadratischen Funktion. Die Reglerhebelanordnung 18 verschiebt einen die Einspritzmenge bestimmenden Regelschieber 21 auf einem Pump- und Verteilerkolben 22. Von der Einspritzpumpe her wird der Kraftstoff über eine Verteilernut 23 Einspritzdüsen 24 zugeleitet, wobei der Pumpenkolben 22 bei einer Umdrehung soviel Druck- und Saughübe ausführt, wie Einspritzdüsen 24 bzw. Motorzylinder vorhanden sind. Für eine bestimmte Lage des Regelschiebers 21 erhalten alle Motorzylinder die gleiche Einspritzmenge. Sobald die Drehzahl steigt wird durch den Regler bei gleicher Lastvorgabe die Einspritzmenge pro Motorzylinder verringert, sobald die Drehzahl fällt, erhöht.
  • Da die Brennkraftmaschine pro Zylinder bei jeweils gleichen Einspritzmengen unterschiedlich viel von diesen eingespritzten Mengen verbrennen kann, bewirkt dieses einen unterschiedlichen Momentenverlauf an der Motorkurbelwelle und damit dynamisch gesehen pro Motorzylinder einen unterschiedlichen Drehmomentenverlauf an der Kurbelwelle. Dieses bewirkt entsprechende Änderungen der Drehzahl am Drehzahlsignalgeber, so daß sich die Kraft mit der die Reglermuffe 19 an der Reglerhebelanordnung 18 angreift, kurzzeitig dauernd ändert. Dieses hat eine entsprechende laufende minimale Änderung der Einspritzmenge zur Folge, was zu einem Ruckeln oder Schütteln des Motors führen kann, da die Mengenänderung nicht dem entsprechenden Zylinder zugeordnet werden kann. Hierdurch ergibt sich möglicherweise eine Addierung der Menge bei den Zylindern, die ohnehin schon zu viel bekommen und eine Verringerung der Menge bei den Zylindern, die schon zu wenig erhalten. Hierdurch wird das Ruckeln und, Schütteln verstärkt.
  • In Fig. 2 und 3 ist eine Reglerhebelanordnung 18, dargestellt mit der dieses Ruckeln weitgehend vermeidbar ist. Diese Reglerhebelanordnung 18 hat einen Einstellhebel 28, der bei 29 im Gehäuse schwenkbar gelagert ist und eine Achse 30 trägt. Ein Schwenken um den Punkt 29 bewirkt ein entsprechendes Verschieben der Achse 30. Dieser Einstellhebel 28 wird zur Justierung der Lage der Achse 30 eingestellt und hat keinen Einfluß auf die Drehzahlregelung.
  • Die in Fig. 2 lediglich durch einen die Kraftrichtung angebenden Pfeil dargestellte Regelfeder 17 greift an einem Spannhebel 31 an, der auf der Achse 30 schwenkbar gelagert ist. Ebenfalls auf der Achse 30 ist ein Starthebel 32 schwenkbar gelagert, an dem ein Kopf 33 zur Anlenkung des Regelschiebers 21 vorgesehen ist und an dem der Drehzahlsignalgeber 19 angreift in der durch den Pfeil dargestellten Kraftrichtung.
  • Zwischen dem Spannhebel 31 (1. Hebel) und dem Starthebel 32 (2. Hebel) ist ein Zwischenfederpaket 35 angeordnet, durch das in einem bestimmten Drehzahlbereich die relative Schwenklage der beiden Hebel zueinander in Abhängigkeit von den Kräften 17 und 19 und dadurch die Kraftstoffeinspritzmenge bestimmt wird.
  • Dieses Zwischenfederpaket 35 besteht aus drei Federn einer ersten weicheren Feder 36 und zwei härteren steiferen Federn 37. Die Zwischenfeder 36 ist in einem einseitig geschlossenen Zylinder 38 angeordnet und stützt sich einerseits an der Schließstirnwand und andererseits an einem in dem Zylinder 38 achsial verschiebbaren Kolben 39 ab. Der Innenraum des Zylinders 36 ist durch eine in der Stirnwand vorgesehene Drosselbohrung 40 mit außen verbunden. An dem Kolben 39 ist ein Zapfen 41 vorgesehen, auf dem die zwei steiferen Zwischenfedern 37 geführt sind, von denen sich eine am Kolben 39 und die andere an einem Sicherungsring 42 abstützt, der auf den Zapfen 41 angeordnet ist. Zwischen den Federn 37 ist schwimmend durch die Federn 37 eingespannt das Ende 43 des Starthebels 32 vorgesehen.
  • Bei kurzen harten Kraftstößen vom Drehzahlsignalgeber her fängt die eine der steifen Federn 37 diese Kräfte auf, wobei die steife Feder einen hohen P-Grad bewirkt. Für diese kurzen Stöße wirkt das aus Zylinder 38 Kolben 39 mit Zapfen 41 bestehende Mitnahmeglied wie ein starres System bzw. die Feder 36 wirkt als unendlich steife Feder, da das im Zylinder eingeschlossene Volumen aufgrund der Drosselwirkung der Drossel 40 unelastisch wirkt und erst bei einem Drosselquerschnitt entsprechend der zur Verfügung stehenden Zeit die Feder 36 zur Wirkung kommen läßt. Hierdurch wirkt das ganze Federpaket 35 wie eine nachgiebige Rückführung. Im Kurzzeitverhalten wirkt die Feder 37, im Langzeitverhalt die Feder 36. Dies ergibt für die kurzen Druckänderungen einen hohen P-Grad aufgrund der steifen Federn 37 und bei relativ längerfristiger Änderung der Kraft 19 (oder 17) einen niederen P-Grad aufgrund der sich dann auswirkenden weicheren Feder 36. Entsprechendem gilt bei schnellen Laständerungen, für die verhältnismäßig schnell eine Einspritzmengenänderung bewirkt wird, bis sich dann verzögert die erforderliche Einspritzmenge einstellt (kurzfristige Übermenge bei plötzlicher Lastzunahme).
  • In Fig. 4 ist in einem Einspritzmengen/Drehzahldiagramm über der Ordinate die Einspritzmenge Q und über der Abszisse die Drehzahl n aufgetragen. Die Kennlinie gibt dabei die Vollast an, wobei mit b die Startmehrmenge bezeichnet ist. c ist der Abregelverlauf, wenn die Maximaldrehzahl erreicht ist. Weiterhin ist in diesem Diagramm der Übergang von Leerlaufmenge zu größeren Mengen bei Lastaufnahme dargestellt. Bezeichnend ist daß der Regler eine sehr flach verlaufende Leerlaufkennlinie d aufweist, da die eigentliche Leerlauffeder 36 verhältnismäßig weich ausgebildet ist und einen niedrigen P-Grad bewirkt. Hierdurch wird ein Sägen des Motors vermieden, d. h. der Motor läuft mit einer weitgehend konstanten Leerlaufdrehzahl. Sobald eine Laständerung vorgenommen wird, wird durch die verhältnismäßig steifen Haltefedern 37 eine schnelle Einspritzmengenzunahme bei geringer Drehzahländerung bewirkt, entsprechend den Kennlinien e.
  • Obwohl gemäß dem Beispiel das Problem bei der Leerlaufdrehzahlregelung nämlich das Motorruckeln und Sägen so lösbar ist, ist die Erfindung entsprechend auf Drehzahlregler für Pumpen von stationären Motoren übertragbar oder auf entsprechende Probleme in Zwischendrehzahlbereichen. Maßgebend ist, daß durch erfindungsgemäße Drehzahlregler kurzfristige Kraftänderungen von Kenngrößen wie Last oder Drehzahl einen hohen P-Grad verursachen, hingegen längerfristige Kenngrößenänderungen einen niedrigen P-Grad des Reglers verursachen.

Claims (4)

1. Drehzahlregler für Kraftstoffeinspritzpumpen von Brennkraftmaschinen mit einem um eine Achse (30) schwenkbaren ersten Hebel (31), an dem eine insbesondere lastabhängig in der Kraft änderbare Regelfeder (17) entgegen einer Rückstellkraft angreift, welche durch einen Drehzahlsignalgeber (19) erzeugt über einen das Einspritzmengensteuerglied anlenkenden um eine Achse (30) schwenkbaren zweiten Hebel (32) auf den ersten Hebel (31) übertragbar ist, und mit mindestens zwei zwischen den Hebeln angeordneten Zwischenfedern (36, 37), dadurch gekennzeichnet, daß zwei in Reihe geschaltete Zwischenfedern (36, 37) vorgesehen sind, eine erste weichere Feder (36) und eine zweite steifere Feder (37), von denen die erste Feder (36) zwischen einem in einem Zylinder (38) einen Innenraum einschließenden Kolben (39) und dem Zylinder (38) innerhalb des Innenraumes angeordnet ist, der nach außen über eine Drosselöffnung (40) verbindbar ist und die erste Feder (36) bei kurzfristigen Kraftänderungen des Drehzahlsignalgebers (19) viel steifer als die zweite Feder (37) wirkt.
2. Drehzahlregler nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Zwischenfeder (37) am Kolben (39,41) außerhalb des Innenraumes angreift und diesen mit einem Hebel (32) koppelt.
3. Drehzahlregler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als zweite Zwischenfeder (37) zwei einander entgegenwirkende Federn dienen, zwischen denen die Angriffsstelle (43) des zweiten Hebels (32) schwimmend eingespannt ist.
4. Drehzahlregler nach Anspruch 3, dadurch gekennzeichnet, daß im Kolben (39) eine die erste Feder (36) teilweise aufnehmende Sackbohrung vorgesehen ist.
EP85105970A 1984-06-30 1985-05-15 Drehzahlregler für Kraftstoffeinspritzpumpen Expired EP0166931B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3424268 1984-06-30
DE19843424268 DE3424268A1 (de) 1984-06-30 1984-06-30 Drehzahlregler fuer kraftstoffeinspritzpumpen

Publications (3)

Publication Number Publication Date
EP0166931A2 EP0166931A2 (de) 1986-01-08
EP0166931A3 EP0166931A3 (en) 1987-02-25
EP0166931B1 true EP0166931B1 (de) 1988-08-31

Family

ID=6239614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85105970A Expired EP0166931B1 (de) 1984-06-30 1985-05-15 Drehzahlregler für Kraftstoffeinspritzpumpen

Country Status (4)

Country Link
US (1) US4649879A (de)
EP (1) EP0166931B1 (de)
JP (1) JPS6119942A (de)
DE (2) DE3424268A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3720466A1 (de) * 1987-06-20 1988-12-29 Bosch Gmbh Robert Einrichtung zur verbesserung des dynamischen verhaltens des reglers einer verteilereinspritzpumpe
DE4300015A1 (de) * 1993-01-02 1994-07-07 Bosch Gmbh Robert Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE9408125U1 (de) * 1994-05-17 1994-07-21 Klöckner-Humboldt-Deutz AG, 51149 Köln Einspritzvorrichtung für eine Brennkraftmaschine
JP4303536B2 (ja) * 2003-08-19 2009-07-29 ヤンマー株式会社 ガバナ装置
US7900739B2 (en) * 2006-12-12 2011-03-08 Cnh America Llc Control system for a vehicle system with a continously variable transmission
DE102009046387A1 (de) * 2009-11-04 2011-05-05 Robert Bosch Gmbh Pedalweggeber und Pedaleinheit
CN106968813A (zh) * 2017-02-28 2017-07-21 南京威孚金宁有限公司 一种ve分配泵调速系统及其调速方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1815595C3 (de) * 1965-02-05 1975-09-25 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln Direkt wirkender FKehgewichtsdrehzahlregler für Kraftmaschinen
GB1231010A (de) * 1967-04-12 1971-05-05
DE2349692C2 (de) * 1973-10-03 1985-04-04 Robert Bosch Gmbh, 7000 Stuttgart Drehzahlregler einer Kraftstoffeinspritzpumpe
DE2349663A1 (de) * 1973-10-03 1975-04-10 Bosch Gmbh Robert Drehzahlregler einer kraftstoffeinspritzpumpe
DE2402374C2 (de) * 1974-01-18 1983-05-26 Robert Bosch Gmbh, 7000 Stuttgart Drehzahlregler für Kraftstoffeinspritzpumpen von Brennkraftmaschinen
JPS544450B2 (de) * 1974-04-23 1979-03-07
GB2090430B (en) * 1980-12-31 1984-06-13 Lucas Industries Ltd Governor system
JPS57168026A (en) * 1981-04-09 1982-10-16 Nissan Motor Co Ltd Control device of vibration in diesel engine

Also Published As

Publication number Publication date
EP0166931A3 (en) 1987-02-25
US4649879A (en) 1987-03-17
JPH0577859B2 (de) 1993-10-27
DE3424268A1 (de) 1986-01-09
EP0166931A2 (de) 1986-01-08
JPS6119942A (ja) 1986-01-28
DE3564724D1 (en) 1988-10-06

Similar Documents

Publication Publication Date Title
DE2349692C2 (de) Drehzahlregler einer Kraftstoffeinspritzpumpe
DE2900198A1 (de) Fliehkraftdrehzahlregler fuer einspritzbrennkraftmaschinen, insbesondere leerlauf-enddrehzahlregler fuer fahrzeug-dieselmotoren
EP0166931B1 (de) Drehzahlregler für Kraftstoffeinspritzpumpen
DE2656261C2 (de) Fliehkraftdrehzahlregler für Einspritzbrennkraftmaschinen
DE2629620A1 (de) Fliesskraftdrehzahlregler fuer einspritzbrennkraftmaschinen
EP0168613B1 (de) Drehzahlregler für Kraftstoffeinspritzpumpen
DE2855889C2 (de) Leerlauf- und Enddrehzahlregler einer Kraftstoffeinspritzpumpe für Einspritzbrennkraftmaschinen, insbesondere für Fahrzeuge
DE3145233A1 (de) Reglersystem
EP0319707A2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen, insbesondere Dieselbrennkraftmaschinen
DE3630871C2 (de)
DE4129837C2 (de) Drehzahlregler für Kraftstoffeinspritzpumpen von Brennkraftmaschinen
DE3831788C2 (de)
EP0158846B1 (de) Fliehkraftdrehzahlregler für Einspritzbrennkraftmaschinen
EP0162287A2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE2838919A1 (de) Fliehkraftdrehzahlregler fuer einspritzbrennkraftmaschinen
EP0515816B1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
DE3632539C2 (de) Kraftstoffeinspritzpumpe für Kraftfahrzeug-Brennkraftmaschinen
DE864782C (de) Regler fuer Einspritzbrennkraftmaschinen
DE3632538A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3418174A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
EP0624720B1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP0296358B1 (de) Einrichtung zur Verbesserung des dynamischen Verhaltens des Reglers einer Verteilereinspritzpumpe
EP0208898B1 (de) Drehzahlregler für Kraftstoffeinspritzpumpen
EP0522359B1 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP0373383B1 (de) Drehzahlregler für Einspritzbrennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850515

AK Designated contracting states

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19870824

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3564724

Country of ref document: DE

Date of ref document: 19881006

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020425

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020625

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020823

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST