EP0147610B1 - Hohlleiterschalter - Google Patents

Hohlleiterschalter Download PDF

Info

Publication number
EP0147610B1
EP0147610B1 EP84113955A EP84113955A EP0147610B1 EP 0147610 B1 EP0147610 B1 EP 0147610B1 EP 84113955 A EP84113955 A EP 84113955A EP 84113955 A EP84113955 A EP 84113955A EP 0147610 B1 EP0147610 B1 EP 0147610B1
Authority
EP
European Patent Office
Prior art keywords
rotor
hollow waveguide
intermediate position
waveguide switch
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84113955A
Other languages
English (en)
French (fr)
Other versions
EP0147610A3 (en
EP0147610A2 (de
Inventor
Gerd Ruff
Werner Dr. Ing. Auer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwell Collins Deutschland GmbH
Original Assignee
Teldix GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teldix GmbH filed Critical Teldix GmbH
Publication of EP0147610A2 publication Critical patent/EP0147610A2/de
Publication of EP0147610A3 publication Critical patent/EP0147610A3/de
Application granted granted Critical
Publication of EP0147610B1 publication Critical patent/EP0147610B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/122Waveguide switches

Definitions

  • the invention relates to a waveguide switch with the features of the preamble of patent claim 1.
  • a waveguide switch with four hollow conductor connections and a rotor, which has three waveguide connection paths, is known.
  • the switch enables a cross connection for two RF signals to be connected simultaneously when the rotor is in a first or middle position. There are also two positions that differ by 45 °, in which two adjacent connection points are connected to each other.
  • a stepper motor is provided for rotating the switch, which rotates the rotor into the switch positions. Locking elements, for example screws, are used to determine the position of the rotor.
  • the rotor of this angle actuator has a permanent magnetic north and a permanent magnetic south pole.
  • a housing carries pole elements with coils and pole pieces. By appropriate excitation of the coils, one of the pole pieces is always a north pole, while the other two pole pieces are changed in their polarity at the same time.
  • the rotor of this angle actuator therefore has two stable positions that are offset by 120 ° to each other. The rotor movement can be limited by mechanical stops 15 ° before the stable positions in order to limit the maximum angular movement to 90 °.
  • the angle actuator is coupled to a waveguide switch.
  • the waveguide switch creates a different microwave path in each of the two positions.
  • the object of the invention is to provide a waveguide switch in which the rotor is rotated with high accuracy and with a short switching time in at least three switching positions and fixed there by means of permanent-magnetic latching elements, electrical losses being avoided.
  • the invention ensures that the rotor does not swing into the specific rotor position or switching position and is locked after the end of the transient process, but is moved into the switching position by magnetic attraction after a pre-alignment by the motor and at the same time is fixed by the generated forces.
  • the rotor of the waveguide switch is driven by a motor, e.g. a stepper motor or a simple torque sensor, brought close to the target positions.
  • the adjustment of the rotor from here to the target position and the fixing of the rotor in the target position is carried out using permanent magnetic attraction forces.
  • permanent magnets or a permanent magnet and a magnetic yoke are arranged radially opposite one another on the rotor and stator and separated by the air gap. If the rotor is brought into a position in which there is mutual attraction between the magnetic parts of the rotor and the stator, then the magnetic forces bring about an exact alignment of the rotor in the desired position.
  • By arranging several magnets on the circumference several positions of the rotor can be fixed in this way.
  • a sensor that senses the rotor position. This can be achieved, for example, with reed contact switches which are switched by a permanent magnet arranged on the rotor.
  • reed contact switches which are switched by a permanent magnet arranged on the rotor.
  • Hall sensors optical sensors or microswitches is also conceivable.
  • a waveguide switch as shown in Fig. 1 has the task of connecting or disconnecting different waveguide paths and is required, for example, to switch reserve microwave devices in a system to replace a defective device if such a measure for reasons of Operational security is required. For safety reasons, there is a need to provide reserve devices that can be put into operation by means of waveguide switches, particularly in the case of spacecraft.
  • the waveguide switch consists of a housing 1 with four symmetrically arranged waveguide inputs AD.
  • a rotor 2 arranged in the housing is rotatably arranged in the housing and has three waveguide passages.
  • switch positions I-IV are required, with the inputs AC in position I, the inputs AB and CD in position 11, the inputs BD in position 111 and the inputs BC, AD in position IV.
  • the switch housing 1 Due to the cube-shaped design of the switch housing 1, several switches can be coupled in any way, so that any switch combination can be realized. It has been shown that in order to achieve low transmission losses high position accuracy of the rotor is required. Conventional stepper motors do not show the required accuracy due to the step angle hysteresis. A locking element is therefore used to lock the rotor in a switch position.
  • a waveguide switch is shown in a complete version.
  • the housing 1 there are the rotor 2, the rotor bearing 12, 13, the stepper motor 14 and the connecting pins 15 required for the power supply of the motor 14 and the coil 5 of the stator are distributed so that when a specific motor coil is actuated, the rotor is rotated into one of the switch positions assigned to it.
  • a pair of coils can also be provided and the motor magnet 17 arranged on the rotor can be designed with two poles with an axial direction of magnetization.
  • the motor magnet 17 consists of an axially directed permanent magnet.
  • the motor coils 16 are applied to a yoke carrier 18.
  • the yoke carrier 18 is mounted with fastening elements 19 on a housing cover 20, which in turn is arranged on the end face of the housing 1.
  • the rotor bearing 12, 13 is accomplished with deep groove ball bearings, which are pushed onto axle pieces of the rotor with the interposition of bearing sleeves 21, 22 and are preloaded via an adjusting nut 23.
  • FIG. 3 An exemplary embodiment of the detent is shown in FIG. 3.
  • a waveguide rotor arrangement with a magnetic detent is shown.
  • the rotor body 26 is fastened in a known manner by means of a bearing in the stator body 27.
  • the RF channels as well as the bearing and the motor for rotating the rotor body are not shown in this top view.
  • the rotor body carries a permanent magnet 28 which is surrounded by a yoke part 29.
  • a first inference element 30 and a further inference element 31 are arranged on the stator. In the position shown here, the yoke element 30 forms a closed magnetic circuit with the yoke part 29 which is only interrupted by the air gap between the rotor body 26 and the stator body 27.
  • a further yoke element 31 which is arranged at 45 ° to the first one, enables the rotor body 26 to be set to an intermediate position rotated at 45 ° to the starting position.
  • a motor (not shown) moves the rotor close to the target positions. From here, the locking elements take over the turning into the target positions and the fixing of the rotor in the target positions. The drive torque of the motor must overcome the pull-off torque of the permanent magnet 28.
  • the end stops 32, 33 are also constructed to be magnetically active and each have a permanent magnet 28 which exerts an attractive force on the rotor 26 as soon as it is in the vicinity of the permanent magnets 28 with one of the ferromagnetic yoke plates 34, 35.
  • the exact assignment of the rotor position to the stator 27 is given when one of the yoke plates 34 or 35 rests on one of the stop surfaces 36 or 37.
  • the rotor body 26 can thus be moved into four defined positions.
  • the number of switch positions is variable, as is the angle of rotation. In the example shown here, the positions 0 °, 45 °, 90 ° and -45 ° can be fixed.
  • Fig. 4 shows the structure of a modular waveguide switch.
  • the switch part 101 consists of the housing 105, which is provided with the corresponding hollow conductor openings, the rotor 106 located therein and a front cover 107.
  • the rotor 106 has a pin-shaped shoulder 108, which effects the adaptation with the bearing unit 103.
  • the bearing unit 103 consists of a bearing housing 109, a bearing ring 110, axially clamped shoulder ball bearings 111, 112, a shaft 113 and a clamping ring 114.
  • the motor 102 consists of the stator part 116 with the coil carrier 117 and the coils 118.
  • the stator part 116 is fastened within a cup-shaped opening in the bearing housing 109.
  • the rotor part 119 of the motor 102 consists of a magnet carrier 120 and permanent magnetic segments 121.
  • the rotor part 119 is fastened directly on the shaft 113 of the bearing unit 113 by means of a screw connection 122.
  • the motor 102 and the bearing unit 103 are closed on the front side with a cover plate 123 and thus effectively protected against external influences.
  • the modular design of the waveguide switch makes it easy to replace the individual elements without losing accuracy.
  • the switch can be adapted to any application by selecting the individual elements.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

  • Die Erfindung betrifft einen Hohlleiterschalter mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
  • Aus der DE-OS 29 24 969 ist ein Hohlleiterschalter mit vier Hohlleilteranschlüssen und einem Rotor, der drei Hohlleiterverbindungstrekken aufweist, bekannt. Der Schalter ermöglicht eine kreuzweise Verbindung für zwei gleichzeitig anzuschließende HF-Signale, wenn der Rotor eine erste oder mittlere Stellung einnimmt. Außerdem gibt es zwei um 45° davon abweichende Stellungen, in denen jeweils zwei benachbarte Anschlußstellen miteinander verbunden sind. Zur Drehung des Schalters ist eine Schrittmotor vorgesehen, der den Rotor in die Schaltstellungen dreht. Rastglieder, beispielsweise Schrauben, werden dazu benutzt, die Stellung des Rotors festzulegen.
  • Es hat sich gezeigt, daß eine exakte Zuordnung vom Rotor zu den Anschlußflanschen zur Vermeidung von Verlusten gewährleistet sein muß. Ein radialer oder axialer Versatz der Hohlleiterverbindungsstrecken zu den Anschlüssen bewirkt eine Dämpfung bzw. eine Minderung des Übertragungsfaktors. Mit den üblichen Schraubenanschlägen kann die erforderliche Genauigkeit nicht erreicht werden.
  • Aus der DE-OS 33 15 682 ist ein Winkelstellglied mit zwei Schaltstellungen bekannt. Der Rotor dieses Winkelstellglieds besitzt einen permanentmagnetischen Nord- und einen permanentmagnetischen Südpol. Ein Gehäuse trägt Polelemente mit Spulen und Polstücken. Durch entsprechende Erregung der Spulen ist eines der Polstücke immer ein Nordpol, während die anderen beiden Polstücke in ihrer Polarität gleichzeitig geändert werden. Der Rotor dieses Winkelstellglieds besitzt daher zwei stabile Positionen, die um 120° zueinander versetzt sind. Die Rotorbewegung kann durch mechanische Anschläge 15° vor den stabilen Positionen begrenzt werden, um auf diese Weise die maximale Winkelbewegung auf 90° zu begrenzen.
  • Das Winkelstellglied ist mit einem Hohlleiterschalter gekoppelt. Der Hohlleiterschalter stellt in jeder der beiden Positionen einen anderen Mikrowellenpfad her.
  • Die Aufgabe der Erfindung besteht darin, einen Hohlleiterschalter zu schaffen, bei dem der Rotor mit hoher Genauigkeit und mit kurzer Schaltzeit in mindestens drei Schaltstellungen gedreht und dort mittels permanentmagnetischer Rastglieder fixiert wird, wobei elektrische Verluste vermieden werden sollen.
  • Diese Aufgabe wird durch die im Anspruch 1 angegebenen Merkmale gelöst.
  • Durch die Erfindung wird gewährleistet, daß der Rotor nicht in die bestimmte Rotorstellung bzw. Schaltstellung einschwingt und nach Beendigung des Einschwingvorgangs arretiert wird, sondern nach einer Vorausrichtung durch den Motor durch magnetischen Anziehungskräfte in die Schaltstellung bewegt und gleichzeitig durch die erzeugten Kräfte fixiert wird.
  • Der Rotor des Hohlleiterschalters wird mittels eines Motors, z.B. eines Schrittmotors oder eines einfachen Momentengebers, in die Nähe der Sollstellungen gebracht. Die Verstellung des Rotors von hier in die Sollstellung und die Fixierung des Rotors in der Sollstellung wird unter Ausnutzung permanentmagnetischerAnziehungskräfte durchgeführt. Hierzu sind auf Rotor und Stator radial gegenüberliegend und durch den Luftspalt getrennt Permanentmagnete oder ein Permanentmagnet und ein magnetischer Rückschluß angeordnet. Wird der Rotor in eine Stellung gebracht in der eine gegenseitige Anziehung zwischen den Magnetteilen von Rotor und Stator stattfindet, dann bewirken die Magnetkräfte eine exakte Ausrichtung des Rotors in der gewünschten Sollstellung. Durch Anordnung mehrerer Magnete am Umfang können auf diese Weise mehrere Stellungen des Rotors fixiert werden.
  • Zur Erhöhung der Einstellsicherheit wird vorgeschlagen, einen Sensor vorzusehen, der die Rotorstellung sensiert. Dieser läßt sich beispielsweise mit Reed-Kontakt-Schaltern verwirklichen, die von einem auf dem Rotor angeordneten Permanentmagneten geschaltet werden. Selbstverständlich ist auch die Verwendung von Hall-Sensoren, optischen Sensoren oder Mikro-Schaltern denkbar.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert.
  • Es zeigen
    • Fig. 1 die schematische Darstellung eines Vierstellungsschalters in den möglichen Stellungen,
    • Fig. 2 ein Schnittbild eines Hohlleiterschalters,
    • Fig. 3 eine Magnetrastung des Rotors,
    • Fig. 4 einen konstruktiven Aufbau eines modularen Hohlleiterschalters.
  • Ein Hohlleiterschalter wie in Fig. 1 dargestellt hat die Aufgabe, verschiedene Hohlleiterwege zu verbinden bzw. zu trennen und wird beispielsweise dazu benötigt, Reserve-Mikrowellen-Einrichtungen in ein System einzuschalten, um eine defekte Einrichtung zu ersetzen, wenn eine solche Maßnahme aus Gründen der Betriebssicherheit erforderlich ist. Eine Notwendigkeit, aus Sicherheitsgründen Reserveeinrichtungen vorzusehen, die mittels Hohlleiterschaltern bei Bedarf in Betrieb genommen werden können, besteht insbesondere bei Raumflugkörpern. Der Hohlleiterschalter besteht aus einem Gehäuse 1 mit vier symmetrisch angeordneten Hohlleitereingängen A-D. Ein in dem Gehäuse angeordneter Rotor 2 ist drehbar in dem Gehäuse angeordnet und weist drei Hohlleiterdurchgänge auf. Um die Eingänge beliebig zu kombinieren, sind vier Schaltstellungen I-IV erforderlich, wobei in Stellung I die Eingänge A-C in Stellung 11 die Eingänge A-B und C-D, in Stellung 111 die Eingänge B-D und in Stellung IV die Eingänge B-C, A-D miteinander verbunden sind. Durch die würfelförmige Ausbildung des Schaltgehäuses 1 können mehrere Schalter in beliebiger Weise verkoppelt werden, so daß jede beliebige Schaltkombination verwirklicht werden kann. Es hat sich gezeigt, daß zur Erzielung geringer Übertragungsverluste eine hohe Positionsgenauigkeit des Rotors erforderlich ist. Übliche Schrittmotoren zeigen aufgrund der Schrittwinkelhysterese nicht die benötigte Genauigkeit. Es wird deshalb ein Rastglied zur Arretierung des Rotors in einer Schaltstellung angewendet.
  • In Fig. 2 ist ein Hohlleiterschalter in einer vollständigen Ausführung dargestellt. In dem Gehäuse 1 befinden sich der Rotor 2, die Rotorlagerung 12, 13, der Schrittmotor 14 sowie die für die Stromversorgung des Motors 14 und der Spule 5 erforderlichen Anschlußstifte 15. Der Schrittmotor 14 besteht aus statorseitig angeordneten Motorspulen 16, die derart über den Umfang des Stators verteilt sind, daß bei Ansteuerung einer bestimmten Motorspule der Rotor in eine dieser zugeordneten Schaltstellungen gedreht wird. Zur Erhöhung des Wirkungsgrades kann auch ein Spulenpaar vorgesehen werden und der auf dem Rotor angeordnete Motormagnet 17 mit axialer Magnetisierungsrichtung zweipolig ausgebildet sein. Im ersten Fall besteht der Motormagnet 17 aus einem axial gerichteten Permanentmagneten. Die Motorspulen 16 sind auf einem Rückschlußträger 18 aufgebracht. Der Rückschlußträger 18 ist mit Befestigungselementen 19 an einer Gehäuseabdeckung 20 montiert, wobei diese wiederum an dem Gehäuse 1 stirnseitig angeordnet ist. Die Rotorlagerung 12, 13 wird mit Rillenkugellager bewerkstelligt die unter Zwischenschaltung von Lagerhülsen 21, 22 auf Achsstücke des Rotors aufgeschoben sind und über eine Einstellmutter 23 vorgespannt werden. Zwischen Rotor 2 und Gehäuse 1 besteht ein Radialluftspalt von wenigen Jlm, um bei möglichst geringen Hochfrequenzverlusten ein freies Durchdrehen des Rotors zu ermöglichen.
  • Ein Ausführungsbeispiel der Rastung zeigt die Fig. 3. Hier ist eine Hohlleiterrotoranordnung mit einer Magnetrastung dargestellt.
  • Der Rotorkörper 26 ist in bekannter Weise mittels einer Lagerung in dem Statorkörper 27 befestigt. Die HF-Kanäle sowie die Lagerung und der Motor zum Verdrehen des Rotorkörpers sind in dieser Draufsichtdarstellung nicht eingezeichnet. Der Rotorkörper trägt einen Permanentmagneten 28 der von einem Jochteil 29 umgeben ist. Auf dem Stator ist ein erstes Rückschlußelement 30 und ein weiteres Rückschlußelement 31 angeordnet. In der hier gezeigten Stellung bildet das Rückschlußelement 30 mit dem Jochteil 29 einen geschlossenen magnetischen Kreis der nur durch den Luftspalt zwischen Rotorkörper 26 und Statorkorper 27 unterbrochen wird. Durch die besondere, polschuhartige Ausbildung der Pole von Jochteil 29 und Rückschlußelement 30 wird der Rotorkörper 26 durch die wirkenden Magnetkräfte in der gezeigten Lage mit hoher Genauigkeit gehalten. Ein weiteres Rückschlußelement 31 das um 45° versetzt zum dem ersten angeordnet ist, ermöglicht die Einstellung des Rotorkörpers 26 in eine um 45° zur Ausgangsposition gedrehten Zwischenstellung. Ein Motor (nicht dargestellt) verstellt den Rotor in die Nähe der Sollstellungen. Von hier übernehmen die Rastglieder das Verdrehen in die Sollstellungen und die Fixierung des Rotors in den Sollstellungen. Das Antriebsmoment des Motors muß dabei das Abzugsmoment des Permanentmagneten 28 überwinden.
  • Die Endanschläge 32, 33 sind ebenfalls magnetisch wirkend aufgebaut und besitzen je einen Permanentmagneten 28 der eine Anziehungskraft auf den Rotor 26 ausübt sobald sich dieser mit einem der ferromagnetischen Rückschlußplättchen 34, 35 in der Nähe der Permanentmagnete 28 befindet. Die genaue Zuordnung der Rotorstellung zum Stator 27 ist dann gegeben, wenn eines der Rückschlußplättchen 34 bzw. 35 auf einer der Anschlagflächen 36 bzw. 37 anliegt. Der Rotorkörper 26 läßt sich damit in vier definierte Stellungen bewegen. Selbstverständlich ist die Anzahl der Schaltstellungen variabel ebenso wie der Verdrehwinkel. In dem hier gezeigten Beispiel sind die Stellungen 0°, 45°, 90° und -45° fixierbar.
  • Es ist zweckmäßig, eine Rückmeldung der Schalterstellung zu erzeugen. Dies geschieht beispielsweise durch Anwendung üblicher Positionssensoren, Lichtschranken, Reed-Schalter o.ä. Damit werden Schaltfehler, die zu einem Ausfall der HF-Elektronik führen können, vermieden.
  • Fig. 4 zeigt den Aufbau eines modular aufgebauten Hohlleiterschalters.
  • Das Schalterteil 101 besteht aus dem Gehäuse 105, das mit den entsprechenden Hohlleilteröffnungen versehen ist, dem darin befindlichen Rotor 106 und einer stirnseitigen Andeckung 107. Der Rotor 106 weist einen stiftförmigen Ansatz 108 auf, der die Adaption mit der Lagereinheit 103 bewirkt. Die Lagereinheit 103 besteht aus einem Lagergehäuse 109, einem Lagerring 110, axial verspannte Schulterkugellager 111, 112, einer Welle 113 und einem Spannring 114. Durch die Verspannung der Kugellager 111, 112 mittels des Spannrings 114 gegen eine Anschlagfläche 115 der Welle 113 wird eine spielfreie und durch Verwendung eines Werkstoffs für alle Lagerteile eine Lagerung mit einer unabhängig von der Umgebungstemperatur konstanten Vorspannung erzielt.
  • Der Motor 102 besteht aus dem Statorteil 116 mit Spulenträger 117 und Spulen 118. Das Statorteil 116 ist innerhalb einer topfförmigen Öffnung des Lagergehäuses 109 befestigt. Das Rotorteil 119 des Motors 102 besteht aus einem Magnetträger 120 und permanentmagnetischen Segmenten 121. Das Rotorteil 119 ist direkt auf der Welle 113 der Lagereinheit 113 mittels einer Schraubverbindung 122 befestigt. Mit einer Abdeckplatte 123 wird der Motor 102 und die Lagereinheit 103 stirnseitig verschlossen und somit gegen äußere Einflüsse wirksam geschützt.
  • Durch den modularen Aufbau des Hohlleiterschalters ist eine leichte Austauschbarkeit der einzelnen Elemente ohne Genauigkeitsverlust möglich. Außerdem kann durch Auswahl der einzelnen Elemente eine Anpassung des Schalters an beliebige Anwendungsfälle vorgenommen werden.
  • Bezugszeichenliste
    • 1 Gehäuse
    • 2 Rotor
    • 3 Rastglied
    • 12
    • Rotorlagerung
    • 13
    • 14 Schrittmotor
    • 15 Anschlußstifte
    • 16 Motorspulen
    • 17 Motormagnet
    • 18 Rückschlußträger
    • 19 Befestigungselemente
    • 20 Gehäuseabdeckung
    • 21 Lagerhülsen
    • 22
    • 23 Einstellmutter
    • 24 Paßstift
    • 25
    • 26 Rotorkörper
    • 27 Statorkörper
    • 28 Permanentmagnet
    • 29 Jochteil
    • 30 Rückschlußelement
    • 31
    • 32 Endanschlag
    • 33
    • 34 Rückschlußplättchen
    • 35
    • 36 Anschlagfläche
    • 37
    • 38 Grundkörper
    • 101 Schaltereinheit
    • 102 Motor
    • 103 Lagereinheit
    • 104 Schaltereinheit
    • 105 Gehäuse
    • 106 Rotor
    • 107 Abdeckung
    • 108 Ansatz
    • 109 Lagergehäuse
    • 110 Lagerring
    • 111 Schulterkugellager
    • 112
    • 113 Welle
    • 114 Spannring
    • 115 Anschlagfläche
    • 116 Statorteil
    • 117 Spulenträger
    • 118 Spulen
    • 119 Rotorteil
    • 120 Magnetträger
    • 121 Segmente
    • 122 Schraubverbindung
    • 123 Abdeckplatte

Claims (8)

1. Hohlleiterschalter mit einem Gehäuse (1), auf dessen Umfang wenigstens drei Hohlleiter-Anschlüsse vorgesehen sind (A, B, C, D), und mit einem in dem Gehäuse angeordneten, in zwei durch Anschläge bestimmte Endstellungen und wenigstens eine Zwischenstellung einstellbaren Rotor (2, 26) der wenigstens ein Hohlleiterelement zur Verbindung von wenigstens einem Hohlleiter-Anschlußpaar in jeder Rotorstellung enthält, wobei ein Motor zum Antrieb des Rotors und Rastglieder zur Fixierung des Rotors in der jeweiligen End-bzw. Zwischenstellung vorgesehen sind, dadurch gekennzeichnet, daß in der wenigstens einen Zwischenstellung je ein permanentmagnetisches Rastglied (3) wirksam ist, das durch die Wirkung wenigstens eines Permanentmagneten den Rotor in die Zwischenstellung zwingt, daß in den Endstellungen weitere permanent-magnetische Rastglieder wirksam sind, die den Rotor (26) an die Anschläge (32, 33) pressende Permanentmagnete (28) enthalten, daß der Rotor des Hohlleiterschalters bei einer Ansteuerung des Motors durch diesen in den magnetisch wirksamen Bereich des zugehörigen Rastglieds (28, 33, 37; 3; 28, 32, 36) einstellbar ist und daß mittels der permanentmagnetischen Wirkung des Rastglieds (28, 33, 37; 3; 28, 32, 36) der Rotor (26) in die jeweilige End-bzw. Zwischen stellung bewegbar ist und dort fixiert wird.
2. Hohlleiterschalter nach Anspruch 1, dadurch gekennzeichnet, daß jedes Rastglied (3) einer Zwischenstellung aus zwei sich in der Zwischenstellung einander gegenüberstehenden, auf dem Rotor (26) und auf dem Stator (27) angeordneten, entgegengesetzt gepolten, Permanentmagneten aufgebaut ist.
3. Hohlleiterschalter nach Anspruch 1, dadurch gekennzeichnet, daß jedes Rastglied (3) einer Zwischenstellung aus einem auf dem Rotor (26) oder auf dem Stator (27) angeordneten Permanentmagneten (28) und aus einem in der Zwischenstellung dem Permamentmagneten (28) gegenüberliegend angeordneten ferromagnetischen Teil (30) als Rückschlußelement aufgebaut ist.
4. Hohlleiterschalter nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Anschläge der Endstellungen aus jeweils zwei auf dem Rotor (26) oder auf dem Stator (27) angeordneten entgegengesetzt gepolten Permanentmagneten aufgebaut sind.
5. Hohleiterschalter nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Anschläge der Endstellungen aus jeweils einem auf dem Rotor (26) oder auf dem Stator (27) angeordneten Permanentmagneten (28) und aus einem auf dem Stator (27) oder auf dem Rotor (26) angeordneten ferromagnetischen Teil (34, 35) als Rückschlußelement aufgebaut sind.
6. Hohlleiterschalter nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Permanentmagnete (28) mit Polschuhen (29) versehen sind.
7. Hohlleiterschalter nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Rotorlagerung mit zwei gegenseitig verspannten Kugellagern (111, 112) erfolgt.
8. Hohlleiterschalter nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß ein Sensor vorgesehen ist zur Erkennung der Rotorstellung.
EP84113955A 1983-12-22 1984-11-17 Hohlleiterschalter Expired - Lifetime EP0147610B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3346449 1983-12-22
DE3346449 1983-12-22
DE3416704 1984-05-05
DE3416704 1984-05-05

Publications (3)

Publication Number Publication Date
EP0147610A2 EP0147610A2 (de) 1985-07-10
EP0147610A3 EP0147610A3 (en) 1986-07-23
EP0147610B1 true EP0147610B1 (de) 1991-01-16

Family

ID=25816670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84113955A Expired - Lifetime EP0147610B1 (de) 1983-12-22 1984-11-17 Hohlleiterschalter

Country Status (3)

Country Link
US (1) US4633201A (de)
EP (1) EP0147610B1 (de)
DE (1) DE3483959D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3522993A1 (de) * 1985-06-27 1987-01-08 Bosch Gmbh Robert Drehanker eines elektrischen stellmotors
DE3610228A1 (de) * 1986-03-26 1987-10-01 Teldix Gmbh Vorrichtung zum einstellen des rotors eines drehschalters
US4717898A (en) * 1986-06-26 1988-01-05 Mitec Electronics Ltd. Power combiner, polarizer and structure including a waveguide section rotated by a stepper motor arrangement
WO1988005965A1 (fr) * 1987-01-28 1988-08-11 Teldix Gmbh Agencement de reglage d'un rotor
DE3706515A1 (de) * 1987-02-28 1988-09-08 Teldix Gmbh Anordnung zum einstellen eines rotors
DE3731348A1 (de) * 1987-09-18 1989-03-30 Teldix Gmbh Bewegungsanordnung
DE3716850C2 (de) * 1987-05-20 1997-08-07 Bosch Gmbh Robert Vorrichtung zum Einstellen des Rotors eines Drehschalters
CA2014585C (en) * 1990-04-12 1992-11-03 R. Glenn Thomson C-, s- and t-switches operated by permanent magnets
US5111097A (en) * 1990-11-30 1992-05-05 Westinghouse Electric Corp. Rotor pole crossover
SE9402308L (sv) * 1994-06-29 1995-12-30 Sivers Ima Ab Mikrovågsomkopplare
US5642086A (en) * 1995-08-28 1997-06-24 Nelson; Victor H. Magnetic switch for coaxial transmission lines
US5699030A (en) * 1996-04-04 1997-12-16 The Narda Microwave Corporation Magnetically activated RF switch indicator
US5815057A (en) * 1996-05-17 1998-09-29 K & L Microwave Incorporated Electronically controlled switching device
SE9700711D0 (sv) * 1997-02-27 1997-02-27 Sivers Ima Ab Mikrovågsomkopplare
DE102006023165B4 (de) * 2006-05-17 2008-02-14 Infineon Technologies Ag Verfahren zur Herstellung eines akustischen Spiegels aus alternierend angeordneten Schichten hoher und niedriger akustischer Impedanz
US20130015923A1 (en) * 2011-07-13 2013-01-17 Lockheed Martin Corporation Automatic waveguide switch-based protection systems for receiver circuitry
CN104701058B (zh) * 2013-12-06 2017-01-11 北京北广科技股份有限公司 一种切换开关
US10122251B2 (en) 2015-05-29 2018-11-06 Com Dev Ltd. Sequential actuator with sculpted active torque
EP3707540A4 (de) * 2017-11-07 2021-07-21 Rahiminejad, Sofia Kontaktloser wellenleiterschalter und verfahren zur herstellung eines wellenleiterschalters
US11239535B2 (en) * 2018-11-19 2022-02-01 Optisys, LLC Waveguide switch rotor with improved isolation
WO2021237249A1 (en) * 2020-05-21 2021-11-25 John Lafergola Waveguide switch
CN114142189B (zh) * 2021-10-29 2023-04-14 西安空间无线电技术研究所 一种顺序式波导开关及使用方法
CN114976531B (zh) * 2022-05-25 2023-09-26 中国航天时代电子有限公司 一种新型顺序切换波导开关

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE39444C (de) * B LOEB JUN. in Berlin N., Fehrbellinerstr. 47 Gasspritze
US2780113A (en) * 1952-07-30 1957-02-05 Thompson Prod Inc Actuating mechanism for coaxial switch
US2905908A (en) * 1954-09-16 1959-09-22 Collins Radio Co Waveguide switch and electrical control means thereof
US2901708A (en) * 1955-04-08 1959-08-25 Meadows Lee Alvin High speed mechanical r-f waveguide switch
US2942208A (en) * 1955-07-13 1960-06-21 Bogart Mfg Corp Wave guide switch
US2917719A (en) * 1957-09-27 1959-12-15 Itt High speed waveguide switch
US3119974A (en) * 1960-12-01 1964-01-28 Thompson Ramo Wooldridge Inc Electric motor positioned rotary waveguide switch having absorber to increase attenuation
SE337051B (de) * 1968-02-16 1971-07-26 Philips Svenska Ab
US4051702A (en) * 1975-07-28 1977-10-04 Bunker Ramo Corporation Magnetically operated switch lock and key therefor
SU675493A1 (ru) * 1977-03-22 1979-07-25 Предприятие П/Я Р-6028 Волноводный переключатель
SU723699A1 (ru) * 1977-04-04 1980-03-25 Предприятие П/Я Р-6856 Волноводный переключатель
US4242652A (en) * 1978-07-10 1980-12-30 Hughes Aircraft Company Four port waveguide switch
GB2029529B (en) * 1978-09-08 1982-06-16 Marconi Co Ltd Waveguide switch movement damping
US4370631A (en) * 1981-01-22 1983-01-25 The United States Of America As Represented By The Secretary Of The Navy Waveguide switch
GB2120463B (en) * 1982-05-13 1985-12-11 Racal Mesl Microwave Improvements in and relating to rotary actuators
US4520331A (en) * 1983-12-27 1985-05-28 Transco Products, Inc. Rotary actuator for a microwave switch

Also Published As

Publication number Publication date
EP0147610A3 (en) 1986-07-23
EP0147610A2 (de) 1985-07-10
US4633201A (en) 1986-12-30
DE3483959D1 (de) 1991-02-21

Similar Documents

Publication Publication Date Title
EP0147610B1 (de) Hohlleiterschalter
DE3315682A1 (de) Winkelstellglied
EP1076924A1 (de) Senkrechter hallsensor und bürstenloser elektromotor mit einem senkrechten hallsensor
DE2807834A1 (de) Halleffekt-kodiergeraet fuer winkelstellungen von wellen
EP0014209B1 (de) Magnetische lageranordnung
DE2832387A1 (de) Hall-motor
DE69107941T2 (de) Bürstenloser Motor.
EP0766370A2 (de) Elektronisch kommutierter Aussenläufermotor
DE69930061T2 (de) Elektromotor
DE3502899C2 (de)
EP0094978B2 (de) Rotatorische, elektrische Maschine
EP0336078A1 (de) Anordnung zur Drehzahl- und Rotorlageerfassung einer elektrischen Maschine
DE69008654T2 (de) Linearmotor sowie mit mindestens einem Linearmotor versehene Positionierungsvorrichtung.
DE69836605T2 (de) Dynamoelektrische maschine
DE8702998U1 (de) Elektrokleinstmotor
EP0769841B1 (de) Elektromotor und Messwerk, insbesondere für Anzeigeinstrumente in Kraftfahrzeugen
DE3441728A1 (de) Hohlleiterschalter
DE69934291T2 (de) Schrittmotor
DE19858304C2 (de) Wechselstrommaschine mit transversaler Flußführung, insbesondere zweipolige Transversalflußmaschine für hohe Drehzahl
EP0501521A1 (de) Bürstenloser Gleichstrommotor für niedrige Drehzahlen
DE2913691A1 (de) Buerstenloser elektromotor
EP0696836A1 (de) Elektromagnetischer Schrittmotor mit zwei Drehrichtungen
DE3908313A1 (de) Permanentmagnet-gleichstrommotor ohne kommutator
DE1463833C3 (de) Gleichstrommotor mit massearmen Hohlläufer
WO2009121444A1 (de) Klauenpolmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19861212

17Q First examination report despatched

Effective date: 19880608

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 3483959

Country of ref document: DE

Date of ref document: 19910221

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19941125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941130

Year of fee payment: 11

EAL Se: european patent in force in sweden

Ref document number: 84113955.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951031

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951117

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960129

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960601

EUG Se: european patent has lapsed

Ref document number: 84113955.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961117

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST