EP0136998B1 - Nickel-Knetlegierung und Verfahren zur Wärmebehandlung derselben - Google Patents

Nickel-Knetlegierung und Verfahren zur Wärmebehandlung derselben Download PDF

Info

Publication number
EP0136998B1
EP0136998B1 EP84890149A EP84890149A EP0136998B1 EP 0136998 B1 EP0136998 B1 EP 0136998B1 EP 84890149 A EP84890149 A EP 84890149A EP 84890149 A EP84890149 A EP 84890149A EP 0136998 B1 EP0136998 B1 EP 0136998B1
Authority
EP
European Patent Office
Prior art keywords
max
wrought nickel
heat treatment
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84890149A
Other languages
English (en)
French (fr)
Other versions
EP0136998A1 (de
Inventor
Herbert Dipl.-Ing. Aigner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voest-Alpine Stahl AG Te Linz Ad
Original Assignee
Vereinigte Edelstahlwerke AG
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3541874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0136998(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vereinigte Edelstahlwerke AG, Voestalpine Stahl GmbH filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0136998A1 publication Critical patent/EP0136998A1/de
Application granted granted Critical
Publication of EP0136998B1 publication Critical patent/EP0136998B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to a wrought nickel alloy with the alloy components C, Si, Mn, Cr, Mo, Cu, Ti and Fe with the aim of making a substantial increase in strength possible by a special heat treatment by changing the percentage composition.
  • This alloy is generally used in the solution-annealed state, whereby (the mechanical characteristics refer to RT in the following) a tensile strength of about 600 to max. 700 N / mm 2 and a 0.2% proof stress from about 230 to max. 270 N / mm2.
  • the work hardened condition is also common for pipes and rods, with the work hardening achieved being of the order of magnitude as is the case for austenitic Cr-Ni steels; the tensile strength is accordingly for cold-formed pipes up to about 800 N / mm 2 and the 0.2% proof stress up to about 500 N / mm 2 .
  • Such an alloy also has a permeability below 1.010, with which it can be described as non-magnetic.
  • the invention also includes the heat-treated alloy.
  • a preferred method for the heat treatment of this wrought nickel alloy is characterized in that after solution annealing in the temperature range from 980-1170 ° C. with a holding time of at least 5 minutes in order to achieve a further increase in strength, the temperature is preferably set to 650-800 ° C. 680 - 770 ° C, is carried out for a period of 3 to 20 h, preferably from 6 to 16 h.
  • a further increase in these mechanical parameters can still be achieved in that, after solution annealing, a cold deformation with a degree of deformation of 5 to 15% is interposed.
  • the invention further relates to the use of the alloy as a material for non-magnetic parts, for. B. housing parts, boring bar parts and the like., In particular for the development and / or promotion of gaseous and / or liquid fossil fuels. It was quite surprising that with the increased addition of titanium, in addition to the possible increase in strength values, a permeability is also achieved which allows this material to be used for such components, while at the same time the low susceptibility to stress corrosion cracking makes this material suitable for use in drilling and Conveyor technology, e.g. B. as non-magnetic collars or as a housing for corresponding magnetic measuring devices and the like., Is extremely suitable.
  • melt no. 1 the composition of eleven test melts is compared to that of melt no. 1, the alloys according to the invention, beginning with melt no. 2, differing in particular from an increasing titanium content.
  • the permeability of samples 1 to 12 decreases with increasing titanium content, the permeability coming below approximately 1.01 from a titanium content of 1.2%, so that here a technically as non-magnetic significant material is present.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Forging (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

  • Die Erfindung betrifft eine Nickel-Knetlegierung mit den Legierungsbestandteilen C, Si, Mn, Cr, Mo, Cu, Ti und Fe mit der Zielsetzung, durch eine Abänderung der prozentualen Zusammensetzung eine wesentliche Festigkeitssteigerung durch eine spezielle Wärmebehandlung möglich zu machen.
  • Die Erfindung geht von einer Nickel-Knetlegierung aus, die im Deutschen Normenblatt DIN 17 744 (Feb. 1983) unter dem Kurzzeichen NiCr 21 Mo/Werkstoff-Nr 2.4858 angeführt ist, u.zw. mit nachfolgender Zusammensetzung:
    • max. 0,025 % C, max. 0,5 % Si, max. 1,0 % Mn, 38,0 - 46,0 % Ni, 19,5 - 23,5 % Cr, 2,5 - 3,5 % Mo, 1,5 - 3,0 % Cu, 0,6 - 1,2 % Ti, gegebenenfalls noch max. 0,2 % Al bzw. max. 1,0 % Co (wobei es sich jedoch bei AI und Co - siehe die Seiten 106 bzw. 107 der "Stahl-Eisen-Liste", 6. Auflage, 1977 - bloß um zulässige Verunreinigungen handelt), Rest im wesentlichen Fe.
  • Diese Legierung wird grundsätzlich im lösungsgeglühten Zustand angewendet, wobei sie (die mechanischen Kennwerte beziehen sich im folgenden grundsätzlich auf RT) eine Zugfestigkeit von etwa 600 bis max. 700 N/mm2 und eine 0,2 %-Dehngrenze von etwa 230 bis max. 270 N/mm2 aufweist. Für Rohre und Stangen ist auch der kaltverfestigte Verwendungszustand gebräuchlich, wobei die erzielte Kaltverfestigung in der Größenordnung derjenigen liegt, wie sie für austenitische Cr-Ni-Stähle gilt; die Zugfestigkeit beträgt demgemäß für kaltverformte Rohre bis etwa 800 N/mm2 und die 0,2 %-Dehngrenze bis etwa 500 N/mm2.
  • Wegen ihrer ausgezeichneten Korrosionsbeständigkeit auch in heißen Säuren bzw. Mischsäuren und gegenüber oxidierenden Einflüssen, beispielsweise seien Mischungen aus Salpeter-, Phosphor- und Schwefelsäure genannt, sowie der sehr guten Beständigkeit gegen Lochfraß und Spannungsrißkorrosion erfolgt die Anwendung insbesondere dort, wo ausnehmend heikle Korrosionsprobleme auftreten, wie beispielsweise bei Sulfonieranlagen, für Beizausrüstungen in der Metallindustrie sowie für Anwendungszwecke in der Zellstoff- und Kunstfaserindustrie und anderes mehr.
  • Eine Beschränkung von Anzahl und Umfang der Anwendungsarten erfährt diese Nickel-Legierung vorwiegend durch den verhältnismäßig hohen Preis und daraus folgert, daß mit einer Festigkeitssteigerung und den damit erzielbaren Einsparungen und der Erschließung neuer Anwendungsgebiete ein sehr bedeutender technischer Fortschritt zu erreichen wäre.
  • Zur Lösung des Problems und der gestellten Aufgabe wird gemäß dem Erfindungskennzeichen folgende Legierungszusammensetzung für die neue Nickel-Knetlegierung vorgeschlagen:
    • max. 0,1 % C,
    • max. 1 %, vorzugsweise max. 0,6 % Si,
    • max. 1,5 %, vorzugsweise max. 1,2 % Mn,
    • 36,5 bis 46,0, vorzugsweise 38,0 bis 44,0 % Ni,
    • 18,5 bis 26,0 %, vorzugsweise 19,0 bis 24,0 % Cr,
    • 1,0 bis 4,0 %,vorzugsweise 2,0 bis 3,5 % Mo,
    • 1,0 bis 4,0 %,vorzugsweise 1,0 bis 3,0 % Cu,
    • 1,35 bis 2,60 % Ti,

    gegebenenfalls bis 0,7 %, vorzugsweise bis 0,5 % Al, und/oder 0,3 bis 1,2 %, vorzugsweise 0,5 bis 1,2 % Nb/Ta, sowie Rest im wesentlichen Fe und herstellungsbedingte Verunreinigungen
  • Eine derartige Legierung weist weiters eine Permeabilität unter 1,010 auf, womit sie als amagnetisch bezeichnet werden kann.
  • Unter Bezugnahme auf den Aluminiumgehalt wird darauf verwiesen, daß geringe, meistens in der Größenordnung von einigen Hunderstel-Prozent liegende Gehalte dieses Legierungselementes oft herstellungsbedingt vorhanden sind, weshalb ein als Legierungszusatz zu wertender Anteil jedenfalls dann vorliegt, wenn ein Prozentanteil von 0,2 % AI in der Legierungszusammensetzung überschritten ist.
  • Dem alternativ eingeräumten Zusatz von AI kommt insbesondere die Bedeutung zu, daß es sich beim Erschmelzen der Legierung erübrigt, auf eine kritische Einstellung dieses Legierungsbestandteiles hinsichtlich einer einzuhaltenden Höchstmenge etwa bei der Desoxidation Bedacht nehmen zu müssen.
  • Die Abwandlung mit Bezug auf einen Zusatz von Nb/Ta erbringt eine kornfeinernoe Wirkung, die sich positiv auf die 0,2 %-Dehngrenze auswirkt.
  • Wie schon eingangs erwähnt, liegt die Bedeutung des neuen Werkstoffes, insbesondere in der Möglichkeit, durch eine Wärmebehandlung eine beträchtliche Festigkeitssteigerung erreichen zu können. Die Erfindung umfaßt auch die wärmebehandelte Legierung. Ein bevorzugtes Verfahren zur Wärmebehandlung dieser Nickel-Knetlegierung ist dadurch gekennzeichnet, daß nach einem Lösungsglühen im Temperaturbereich von 980 - 1170°C mit einer Haltezeit von zumindest 5 min zur Erzielung einer weiteren Festigkeitssteigerung eine Einstellung der Temperatur auf 650 - 800° C, vorzugsweise auf 680 - 770° C, während eines Zeitraumes von 3 bis 20 h, vorzugsweise von 6 bis 16 h, vorgenommen wird.
  • Es gelingt so, eine Erhöhung der Zugfestigkeit bis auf über 1.000 N/mm2 und der 0,2 %-Dehngrenze auf 800 N/mm2 zu erreichen.
  • Eine weitere Steigerung dieser mechanischen Kennwerte ist gemäß einem weiteren Verfahrensmerkmal noch dadurch erzielbar, daß nach dem Lösungsglühen noch eine Kaltverformung mit einem Verformungsgrad von 5 bis 15 % zwischengeschaltet wird.
  • Es hat sich nämlich unerwarteterweise gezeigt, daß dadurch der festigkeitssteigernde Effekt der Wärmebehandlung verbessert wird, weil eine noch feinere Verteilung der an den Korngrenzen ausgeschiedenen Partikel damit erreicht wird. Während in diesem Falle eine Abkühlung auf Raumtemperatur nach dem Lösungsglühen zwingend vorgenommen werden muß, kann ansonsten die festigkeitssteigernde Erwärmung gegebenenfalls auch ohne eine solche Abkühlung, also unmittelbar aus dem Temperaturbereich vom Lösungsglühen, vorgenommen werden.
  • Die Erfindung bezieht sich weiters auf die Verwendung der Legierung als Werkstoff für amagnetische Teile, z. B. Gehäuseteile, Bohrstangenteile u.dgl., insbesondere für die Erschließung und/oder Förderung von gasförmigen und/oder flüssigen fossilen Brennstoffen. Es war durchaus überraschend, daß mit dem erhöhten Zusatz von Titan neben der möglichen Steigerung der Festigkeitswerte auch eine Permeabilität erreicht wird, die es erlaubt, diesen Werkstoff für derartige Bauteile anzuwenden, wobei gleichzeitig die niedrige Spannungsrißkorrosionsanfälligkeit diesen Werkstoff für den Einsatz in der Bohr- und Fördertechnik, z. B. als amagnetische Schwerstangen oder auch als Gehäuse für entsprechende Magnetmeßvorrichtungen u.dgl., hervorragend geeignet ist.
  • Die Erfindung wird nachfolgend an Hand von Ausführungsbeispielen im Vergleich mit der Basislegierung (Schmelze Nr. 1) näher erläutert.
  • In der Tabelle ist die Zusammensetzung von elf Versuchsschmelzen derjenigen von Schmelze Nr. 1 gegenübergestellt, wobei die erfindungsgemäßen Legierungen, beginnend mit Schmelze Nr. 2 sich insbesondere durch einen jeweils steigenden Titan-Gehalt unterscheiden.
  • Alle Probe wurden in gleicher Weise einer Wärmebehandlung gemäß dem Verfahrensanspruch 3 unterzogen, und zwar nach einem Lösungsglühen bei 1150°C mit einer Haltezeit von 30 min, Abkühlung (durch Abschrecken in Wasser) auf RT und Aushärtung während zwölf Stunden bei 740°C, wonach langsam an ruhender Luft auf Raumtemperatur abgekühlt wurde.
    Figure imgb0001
  • In den Schaubildern der Fig. 1 und 2 sind die von den einzelnen Proben 1 bis 12 gemäß vorhergehender Tabelle ermittelten Werte der Zugfestigkeit bzw. der 0,2 %-Dehngrenze jeweils in Relation zum Titangehalt dargestellt, und es zeigt sich, daß die Vergleichsprobe (Schmelze Nr. 1) mit 1,12 % Ti im. Gegensatz zu den erfindungsgemäßen Schmelzen 1 - 12 praktisch keine auf die Wärmebehandlung zurückgehenden Festigkeitssteigerung erkennen läßt.
  • Das Diagramm der Fig. 3 zeigt den Einfluß der Aushärtetemperatur auf die Erhöhung der 0,2 %-Dehngrenze. Es sind dort die bei verschiedenen Aushärtetemperaturen erzielten Werte für die Schmelzen 1, 3, 7 und 12 - in dieser Reihenfolge mit vollem Kreis, Dreieck, Quadrat und leerem Kreis symbolisiert - sowie die Ausgangswerte dieser Schmelzen im lösungsgeglühten Zustand - mit L bezeichnet - angegeben; man ersieht daraus, daß im bevorzugten Temperaturbereich von 680 - 770° C die besten Ergebnisse erhalten wurden.
  • Wie dem Diagramm der Fig. 4 zu entnehmen, sinkt die Permeabilität der Proben 1 bis 12 mit steigendem Titangehalt, wobei ca. ab einem Titangehalt von 1,2 % die Permeabilität unter 1,01 zu liegen kommt, sodaß hier ein technisch als amagnetisch zu bezeichnender Werkstoff vorliegt.

Claims (6)

1. Nickel-Knetlegierung mit den Legierungsbestandteilen C, Si, Mn, Dr, Mo, Cu, Ti und Fe, dadurch gekennzeichnet, daß sie
max. 0,1 % C,
max. 1 % Si,
max. 1,5 % Mn,
36,5 bis 46,0 % Ni,
18,5 bis 26,0 % Cr,
1,0 bis 4,0 % Mo,
1,0 bis 4,0 % Cu,
1,35 bis 2,60 % Ti,
gegebenenfalls bis 0,7 % Al, und/oder
0,3 bis 1,2 % Nb/Ta,
sowie Rest im wesentlichen Fe und herstellungsbedingte Verunreinigungen, aufweist.
2. Nickel-Knetlegierung nach Anspruch 1, dadurch gekennzeichnet, daß
sie
bis 0,5 % Al , und/oder
0,5 bis 1,2 % Nb/Ta
enthält.
3. Verfahren zur Wärmebehandlung der Nickel-Knetlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nach einem Lösungsglühen im Temperaturbereich von 980° - 1170° mit einer Haltezeit von zumindest 5 min zur Erzielung einer Festigkeitssteigerung eine Einstellung der Temperatur auf 650 - 800 C, während eines Zeitraumes von 3 bis 20 h vorgenommen wird.
4. Verfahren zur Wärmebehandlung der Nickel-Knetlegierung nach Anspruch 1 oder 2 und 3, dadurch gekennzeichnet, daß zur Erzielung einer Festigkeitssteigerung eine Einstellung der Temperatur auf 680 - 770' C, während eines Zeitraumes von 6 bis 16 h, vorgenommen wird.
5. Verfahren nach den Ansprüchen 1 oder 2 und 4 oder 4, dadurch gekennzeichnet, daß nach dem Lösungsglühen eine Kaltverformung mit einem Verformungsgrad von 5 bis 15 % zwischengeschaltet wird.
6. Verwendung einer Legierung, hergestellt nach den Ansprüchen 3 bis 5, gekennzeichnet durch einen Werkstoff für magnetische Teile, z. B. Gehäuseteile, Bohrstangenteile und dergleichen, insbesondere für die Erschließung und/oder Förderung von gasförmigen und/oder flüssigen fossilen Brennstoffen.
EP84890149A 1983-08-10 1984-08-07 Nickel-Knetlegierung und Verfahren zur Wärmebehandlung derselben Expired EP0136998B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT288783 1983-08-10
AT2887/83 1983-08-10

Publications (2)

Publication Number Publication Date
EP0136998A1 EP0136998A1 (de) 1985-04-10
EP0136998B1 true EP0136998B1 (de) 1988-04-06

Family

ID=3541874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84890149A Expired EP0136998B1 (de) 1983-08-10 1984-08-07 Nickel-Knetlegierung und Verfahren zur Wärmebehandlung derselben

Country Status (3)

Country Link
EP (1) EP0136998B1 (de)
AT (1) ATE33404T1 (de)
DE (1) DE3470329D1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698883B1 (fr) * 1992-12-09 1995-01-13 Sima Sa Alliage base nickel du système quaternaire Ni-Fe-Cr-Mo à durcissement par précipitation de phase gamma prime et résistant aux modes de corrosion rencontrés notamment dans l'industrie pétrolière.
US5873950A (en) * 1996-06-13 1999-02-23 Inco Alloys International, Inc. Strengthenable ethylene pyrolysis alloy
EP3161174B1 (de) * 2014-06-27 2018-06-06 Nuovo Pignone S.r.l. Komponente einer turbomaschine, turbomaschine und verfahren zur herstellung davon
CN104451339B (zh) * 2014-12-23 2017-12-12 重庆材料研究院有限公司 低镍时效强化型铁镍基耐蚀合金及制备方法
CN105483494B (zh) * 2015-12-01 2018-02-06 重庆材料研究院有限公司 易加工成厚壁无缝管的时效强化型铁镍基耐蚀合金
CN109072365A (zh) * 2016-03-31 2018-12-21 新日铁住金株式会社 Ni-Fe-Cr合金
ITUA20163944A1 (it) 2016-05-30 2017-11-30 Nuovo Pignone Tecnologie Srl Process for making a component of a turbomachine, a component obtainable thereby and turbomachine comprising the same / Processo per ottenere un componente di turbomacchina, componente da esso ottenibile e turbomacchina che lo comprende
DE102020132909A1 (de) 2020-12-10 2022-06-15 Vdm Metals International Gmbh Nickellegierung
DE102020132910A1 (de) 2020-12-10 2022-06-15 Vdm Metals International Gmbh Aushärtbare Nickellegierung
CN113584381B (zh) * 2021-07-05 2023-03-07 重庆材料研究院有限公司 高强度含铜Ni-Fe-Cr基时效硬化型耐蚀合金及其电渣重熔的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641540A (en) * 1951-07-19 1953-06-09 Allegheny Ludlum Steel Ferrous base chromium-nickel-titanium alloy
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys
US2865741A (en) * 1957-11-06 1958-12-23 United States Steel Corp Acid resistant austenitic stainless steel
GB889243A (en) * 1958-02-24 1962-02-14 Allegheny Ludlum Steel Improvements in or relating to austenitic alloys
NO831752L (no) * 1982-05-17 1983-11-18 Kobe Steel Ltd Austenittiske legeringer med hoeyt nikkelinnhold.

Also Published As

Publication number Publication date
ATE33404T1 (de) 1988-04-15
EP0136998A1 (de) 1985-04-10
DE3470329D1 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
DE1964992C3 (de) Verfahren zur Erhöhung der Duktilität und Zeitstandfestigkeit einer Nickelknetlegierung sowie Anwendung des Verfahrens
EP0136998B1 (de) Nickel-Knetlegierung und Verfahren zur Wärmebehandlung derselben
DE1301586B (de) Austenitische ausscheidungshaertbare Stahllegierung und Verfahren zu ihrer Waermebehandlung
DE2456857C3 (de) Verwendung einer Nickelbasislegierung für unbeschichtete Bauteile im Heißgasteil von Turbinen
DE2447137B2 (de) Gegen gruebchenkorrosion bestaendige stahllegierung
DE2253148C3 (de) Verfahren zur Herstellung eines ferritischen, korrosionsbeständigen Stahls und dessen Verwendung
EP0774526B1 (de) Eisen-Nickel-Superlegierung vom Typ IN 706
EP0006953A4 (de) Nichtmagnetisierbare stahlgusslegierung, deren verwendung und herstellungsverfahren.
DE3628395C1 (de) Verwendung eines Stahls fuer Kunststofformen
DE3624669C2 (de) Verwendung eines 9%-Chromstahls als Werkstoff für Dampfgeneratoren in schnellen Brütern
DE1232759B (de) Martensitaushaertbarer Chrom-Nickel-Stahl
DE895382C (de) Legierung fuer die Herstellung von Permanentmagneten
DE10124393B4 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
DE2737308C2 (de) Chrom-Nickel-Edelstahl und dessen Verwendung
CH401486A (de) Mittels Präzisionsgusstechniken giessbare Legierung und Verfahren zur Herstellung derselben
DE2901869A1 (de) Luftschmelzbare, giessbare, bearbeitbare und schweissbare legierung
DE1558676C3 (de)
DE69907358T2 (de) Zusammensetzung von werkzeugstahl
DE68906708T2 (de) Austenitisch-ferritischer rostfreier stahl.
DE2262137A1 (de) Nickel-chrom-eisen-legierung mit hoher hitzebestaendigkeit und hoher zeitstandfestigkeit
DE1807992B2 (de) Wärmebehandlungsverfahren zur Erzielung eines bainitischen Gefüges in einem hochfesten Stahl
DE2622108C3 (de) Verwendung einer Kupfer und/oder Molybdän enthaltenden Eisenlegierung für Teile mit hoher Dampfungsfahigkeit gegenüber Schwingungen
DE2703644A1 (de) Korrosionshemmende eisenlegierung
DE2420072C2 (de) Verschleißfeste rostfreie Stahllegierung, Verfahren zum Wärmebehandeln derselben und deren Verwendung
DE3239268C2 (de) Verfahren zur Herstellung eines Werkstoffes aus einer ferritischen Eisen-Basislegierung mit einer guten Dämpfungsfähigkeit und hoher Festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR NL SE

17P Request for examination filed

Effective date: 19851004

17Q First examination report despatched

Effective date: 19860618

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR NL SE

REF Corresponds to:

Ref document number: 33404

Country of ref document: AT

Date of ref document: 19880415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3470329

Country of ref document: DE

Date of ref document: 19880511

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: METALLGESELLSCHAFT AG, FRANKFURT/M

Effective date: 19881221

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT

NLR1 Nl: opposition has been filed with the epo

Opponent name: METALLGESELLSCHAFT AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: VOEST-ALPINE STAHL AKTIENGESELLSCHAFT TE LINZ A.D.

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19890821

NLR2 Nl: decision of opposition
EUG Se: european patent has lapsed

Ref document number: 84890149.2

Effective date: 19900110