EP0133766A2 - Dérivés de coumarine, compositions pharmaceutiques les contenant et leur utilisation pour le traitement du cancer - Google Patents

Dérivés de coumarine, compositions pharmaceutiques les contenant et leur utilisation pour le traitement du cancer Download PDF

Info

Publication number
EP0133766A2
EP0133766A2 EP84304976A EP84304976A EP0133766A2 EP 0133766 A2 EP0133766 A2 EP 0133766A2 EP 84304976 A EP84304976 A EP 84304976A EP 84304976 A EP84304976 A EP 84304976A EP 0133766 A2 EP0133766 A2 EP 0133766A2
Authority
EP
European Patent Office
Prior art keywords
group
formula
hydroxy
methyl
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84304976A
Other languages
German (de)
English (en)
Other versions
EP0133766A3 (en
EP0133766B1 (fr
Inventor
Francesco Della Valle
Aurelio Romeo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fidia SpA
Original Assignee
Fidia SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fidia SpA filed Critical Fidia SpA
Priority to AT84304976T priority Critical patent/ATE60329T1/de
Publication of EP0133766A2 publication Critical patent/EP0133766A2/fr
Publication of EP0133766A3 publication Critical patent/EP0133766A3/en
Application granted granted Critical
Publication of EP0133766B1 publication Critical patent/EP0133766B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors

Definitions

  • the present invention relates to new basic coumarin derivatives, procedures for their preparation, pharmaceutical compositions containing them, and methods for their use.
  • the compounds according to the invention correspond to the following general formula (I): in which R 2 , R 5 , R 6 and R 7 represent hydrocarbyl groups or hydrogen and R 1 , R 3 and R 4 represent hydrocarbyl groups and wherein R 1 can also represent a halogen and R 5 also a halogen or a free or protected hydroxyl group.
  • the hydrocarbyl groups can also be substituted by various functions such as hydroxyl, amino or carbonyl groups, and can be interrupted in the carbon atom chain by heteroatoms such as oxygen, sulfur or nitrogen.
  • the compounds of the invention are prepared by procedures which are themselves already known, such as by reacting, using a Mannich reaction, the coumarin derivatives corresponding to formula (II): with formic aldehyde and a secondary amine HN and if desired, by introducing an R 2 hydrocarbyl group into a compound obtained having a free phenolic hydroxyl in the 7-position.
  • the present invention relates to new basic coumarin derivatives, and in particular the compounds corresponding to the general formula (I): in which R 2 , R 5 , R 6 and R 7 each represent nonsubstituted or substituted hydrocarbyl groups which may be interrupted in the carbon atom chain by heteroatoms, or hydrogen; R 1 , R 3 and R 4 individually and R 3 and R 4 jointly, represent unsubstituted or substituted hydrocarbyl groups which may be interrupted in the carbon atom chain by heteroatoms, and R 1 may also represent a halogen and R 5 may represent a halogen or a free or protected hydroxyl group, their salts, procedures for the preparation of such new compounds and their salts, pharmaceutical compositions containing the same and methods for the use of the compounds and their salts.
  • R 2 , R 5 , R 6 and R 7 each represent nonsubstituted or substituted hydrocarbyl groups which may be interrupted in the carbon atom chain by heteroatoms, or hydrogen;
  • the compounds of the present invention are active in inhibiting platelet aggregation. They can therefore be used for experimental, diagnostic or therapeutic purposes in veterinary or human medicines and especially as an antithrombotic drug.
  • One of the groups of compounds of the present invention also has an antitumoral and antimetastatic action and can be used to this end on animals for experimental purposes and in medicine, for instance, on patients with lung carcinoma.
  • the hydrocarbyl groups in formula (I) are aliphatic, araliphatic or alicyclic groups and R 6 and R 7 may also represent aromatic hydrocarbyl groups. These groups can be unsubstituted or substituted, saturated or unsaturated and can be interrupted in the carbon atom chain by heteroatoms such as oxygen, sulfur or nitrogen. Of the aliphatic groups thus defined, alkyl groups having preferably 1 to 7 carbon atoms and especially from 1 to 4 carbon atoms should be noted.
  • the unsaturated hydrocarbon groups may be alkenyl or polyunsaturated groups such as alkyldienyl, alkyltrienyl and the like having from 1 to 7 carbon atoms, preferably from 1 to 4 carbon atoms.
  • alkenyl groups having from 2 to 4 carbon atoms are particularly worthy of mention. All of these groups may form linear or branched chains.
  • the alicyclic groups as described above the ones with a simple saturated ring should particularly be mentioned, that is, the cycloalkyl monocyclic groups and especially those with 3 to 7 carbon atoms in the ring, and more particularly from 5 to 7 carbon atoms in the ring.
  • Alicyclic unsaturated groups having 3 to 7, preferably 5 to 7, . carbon atoms in the ring may be used. These groups may have one or more double bonds in their cycle, such as the cycloalkenyl groups with a double bond.
  • unsubstituted alkyl groups the following preferred groups should be mentioned: methyl, ethyl, propyl, isopropyl, butyl, isobutyl and tert-butyl.
  • Preferred unsubstituted alkenyl groups include vinyl, allyl, propenyl, isobutenyl, 2-butenyl and 2-pentenyl.
  • Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • Suitable unsubstituted cycloalkenyl groups include cyclopentenyl and cyclohexenyl.
  • hydrocarbyl aliphatic groups may however also be substituted by aromatic hydrocarbyl groups, especially for example by phenyl, which may in turn be substituted by various functions, for example from 1 to 3 halogen atoms (particularly chlorine and/or bromine) or by alkyl groups having 1 to 4 carbon atoms such as methyl.
  • the alicyclic groups include the cycloalkyl and cycloalkenyl groups, such as those mentioned above, having from 3 to 7 and especially between 5 and 7 carbon atoms in the ring, substituted for example by 1 to 3 alkyl groups having for example from 1 to 7, and especially from 1 to 4, carbon atoms, such as methyl, ethyl, propyl and/or isopropyl.
  • the aromatic hydrocarbon groups directly bound to the coumarin ring, such as the R 6 and R7 groups are generally phenyl groups,which may be substituted for example by 1 to 3 functions, especially chlorine and/or bromine atoms or by alkyl groups having from 1 to 4 carbon atoms, particularly methyl groups.
  • the hydrocarbyl groups and especially the aliphatic and alicyclic groups like all those already mentioned, can be interrupted in the carbon atom chain by heteroatoms, especially by one heteroatom, as in particular by oxygen, sulfur or nitrogen and may be substituted by functions, preferably one or two, for example halogens, free or protected alcoholic functions, free or protected carbonyl groups, free or protected carboxylic groups or free or substituted amine groups.
  • Halogens are especially represented by fluorine, chlorine and bromine.
  • etherified or esterified hydroxy groups should have special mention.
  • the etherifying groups may correspond to each of the above-mentioned hydrocarbyl groups, particularly alkyl groups having 1 to 7, preferably 1 to 4, carbon atoms or cycloalkyl moieties having 3 to 7 carbon atoms in the ring, such as the following groups: methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl and cyclohexyl.
  • the esterified hydroxyl groups may be derived from organic or inorganic acids, for example from acids of the aliphatic, araliphatic, aromatic or alicyclic series, having from 1 to 15 carbon atoms, for example from lower aliphatic acids having from 1 to 7 carbon atoms, such as formic acid, acetic acid, propionic acid, the butyric acids, trimethylacetic acid, caproic acid, succinic acid, phenylacetic acid, benzoic acid, the trimethoxybenzoic acids and the chlorobenzoic acids.
  • organic or inorganic acids for example from acids of the aliphatic, araliphatic, aromatic or alicyclic series, having from 1 to 15 carbon atoms, for example from lower aliphatic acids having from 1 to 7 carbon atoms, such as formic acid, acetic acid, propionic acid, the butyric acids, trimethylacetic acid, caproic acid, succinic acid, phenylacetic acid, benzoic acid,
  • the ester groups may also be derived from organic sulfonic acids, especially from alkylsulfonic acids containing from 1 to 7 carbon atoms, such as methanesulfonic acid, or from arylsulfonic acids, such as those containing only one aromatic ring, such as para-toluenesulfonic acid.
  • Ester groups derived from inorganic acids include for example, sulfuric acid, the phosphoric acids and the hydracids, such as hydrochloric or hydrobromic acid.
  • the ketal groups should be mentioned, especially cyclic ketal groups, such as those derived,from ethylene glycol or propylene glycol.
  • the esters and amides should especially be mentioned.
  • the esterifying groups may correspond to each of the above-mentioned hydrocarbyl groups, particularly alkyl groups having 1 to 7, preferably 1 to 4, carbon atoms, or cycloalkyl groups having 3 to 7 carbon atoms in the ring, such as methyl, ethyl, isopropyl, cyclopentyl and cyclohexyl.
  • the amide groups may be the free amido group -CONH 2 or an amide substituted at the nitrogen atom, such as the groups de.riving from the amine groups exemplif ied. below.
  • the amine group can be free or substituted by hydrocarbyl groups, the substituting groups being, for example, the above-mentioned ones, especially alkyl groups having 1 to 7, preferably 1 to 4, carbon atoms, such as methyl, ethyl or isopropyl, or cycloalkyl groups having 3 to 7, preferably from 5 to 7, carbon atoms in the ring thereof, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • the amine groups may be derived from primary or secondary amines, that is, one or two of the hydrocarbyl substituent groups may be present.
  • the amine group may be the -NH 2 group or a methylamine, ethylamine, propylamine or dimethylamine group.
  • amine groups may in turn be substituted in their hydrocarbyl residues by other functional groups such as a free or protected hydroxyl group, and the free or substituted amine group, such groups being preferably those just mentioned hereinabove.
  • the above-mentioned functions maybe found in any position in the chain of carbon atoms of the hydrocarbyl groups, such as in the alpha, beta or gamma position with respect to the coumarin ring.
  • an alkyl group such as R 1 , R 6 or R 7 may especially be a -CO-R group, in which R is a hydrocarbyl group, unsubstituted for instance, such as an acyl group, -CO-CH 3 , -CO-C 2 H 5 , -CO-C 3 H 7 , etc. Specifically, therefore:
  • the groups R 3 and R 4 jointly may also represent a bivalent aliphatic hydrocarbyl group bound to nitrogen by two valences starting from two different carbon atoms (alkylene groups).
  • the alkylene (or alkylenic) groups usually have from 2 to 7 and especially from 2 to 5 carbon atoms and can contain double bonds and be a linear or branched chain.
  • Exemplary alkylene groups include ethylenic, trimethylenic, tetramethylenic, 2-methyltrimethylenic, pentamethylenic, esamethylenic and groups derived therefrom by substitution with one or more methyl or ethyl groups.
  • hydrocarbyl groups may or may not be substituted by functions, as in the previously mentioned case of the monovalent hydrocarbyl groups and/or they may be interrupted in the carbon atom chain by heteroatoms, such as oxygen, sulfur or nitrogen (-NE) in particular.
  • R 3 and R 4 jointly represent an alkylene group they form, with the nitrogen atom, heterocyclic monoazotate systems, that is, azacycloalkyl groups, and when the alkylene group represented by R 3 and R 4 is interrupted by a heteroatom, hetero-azacycloalkyl groups are formed.
  • the alkylene group represented by R 3 and R 4 is interrupted by a heteroatom, hetero-azacycloalkyl groups are formed.
  • the azacycloalkyl groups the following are worthy of special mention: pyrrolidino, piperidino, 3-hydroxypiperidino and 4-hydroxypiperidino.
  • oxygen, sulfur, nitrogen or the NH group which may be substituted by an aliphatic hydrocarbyl group, especially an alkyl group having 1 to 7, particularly 1 to 4, carbon atoms, such .as methyl, ethyl or isopropyl, which in turn may be substituted by one or more, for instance from 1 to 3 free or protected hydroxyl groups like those already mentioned, and/or may be interrupted in the carbon atom chain thereof by heteroatoms like those already mentioned above.
  • hetero azacycloalkyl groups the following are worthy of special mention: the morpholino, thiomorpholino, piperazino, N-ethylpiperazino and N-hydroxyethylpiperazino rings.
  • the group R 5 is a hydrogen atom or a halogen as previously described for R 1 or one of the hydrocarbyl groups also as previously described or a free or protected hydroxyl group.
  • a protected hydroxyl group means an etherified or esterified group as defined above.
  • the etherifying groups are especially C 1 -C 7 , preferably C l -C 4 , alkyl groups such as methyl, ethyl or isopropyl, or cycloalkyl groups having 3 to 7, preferably 5 to 7, carbon atoms in the ring, such as the cyclopentyl and cyclohexyl groups.
  • R 6 and R 7 moieties are both hydrogen atoms or one of the hydrocarbyl groups previously defined by R 1 or one of the aromatic hydrocarbyl groups also described above.
  • Rl is an unsaturated hydrocarbyl group, especially an alkenyl group having from 2 to 7 carbon atoms, such as the vinyl, allyl, 2-butenyl and isobutenyl groups and wherein R 3 and R 4 are hydrocarbyl groups, especially alkyl groups having from 1 to 7, preferably 1 to 4, carbon atoms or R 3 and R 4 jointly with the nitrogen atom constitute a piperazinyl group which may be substituted in the N'- position by an alkyl group with 1 to 4 carbon atoms, which may be terminally substituted by a free hydroxyl, etherified by an alkyl with 1 to 4 carbon atoms or esterified with an aliphatic organic acid having from 1 to 7 carbon atoms.
  • R 3 and R 4 jointly with the nitrogen atom represent the morpholino or thiomorpholino group or the pyrrolidino or piperidino groups which may be C-substituted by a free or etherified hydroxyl group with an alkyl having 1 to 4 carbon atoms or esterified with an organic aliphatic acid having 1 to 7 carbon atoms.
  • the compounds of formula (I) may be salified by known methods and these salts are also an object of the present invention.
  • these salts those obtained by adding acids are particularly important. These are obtained in a conventional manner by treatment with suitable acids.
  • Therapeutically acceptable acids such as hydrochloric, hydrobromic, sulfuric, the phosphoric acids, methanesulfonic, malic, tartaric and succinic acid are suitably used.
  • Nontherapeutic acids may . however also be used, thus obtaining salts which can be used for the purification of the products, such as picric acid and picrolonic acid.
  • the compounds of formula (I) in which R 1 represents hydrogen may be transformed into metal salts or organic bases by salifying a phenolic group in the 7-position with these bases.
  • These salts are also an object of the invention and may be used in place of the acid addition salts or free compounds for pharmaceutical or medical purposes.
  • the alkali metal salts, for instance, the sodium and potassium salts, as well as the ammonium salt are worthy of special mention.
  • the compounds of formula (I) and their salts are active in preventing platelet aggregation.
  • these 'compounds exhibit this activity in vitro at a concentration of between 10 /ml and 1000 ⁇ /ml, as the following experiments show.
  • Aggregation is evaluated by an aggregometer ELVI 840 according to Born's method (Nature 194, 927, 1962).
  • New Zealand rabbits are anaesthetized with a mixture of Chloralose and Urethane (40 mg/kg + 500 mg/kg), the carotid is cannulated and 40 ml of blood is drawn and 3.8% of sodium citrate is immediately added. Two separate centrifugations are effected (at 1000 rpm and at 6000 rpm), thus obtaining PRP (protein rich plasma) and PPP (protein poor plasma); the first is diluted with the second in order to obtain a platelet concentration of 300,000 per mm 3 (the count is effected in a Buerker apparatus).
  • the compounds with a platelet antiaggregating activity of the present invention are added at the desired concentrations and incubated for 30 minutes at 37 o C. with the aggregating agents. Platelet aggregation is stimulated by adding ADP at a concentration of 20 ug/ml.
  • results are expressed as percentage of inhibition of platelet hyperaggregation induced by ADP added to the PRP in a concentration of 20 ug/ml.
  • results reported in Table 1 refer to the tests effected with 100 y/ml of the single compound.
  • the various compounds represented by the numbers in the first column are identifiable by the numbers in the second column which refer to the examples described below in this specification.
  • 1 x 10 5 3LL carcinoma cells (Lewis lung carcinoma) are implanted by intramuscular injection in the paws of male mice of the C57Bl/6J strain, weighing about 20-22 g. This operation is effected as described in the literature (Poggi A. et al. Cancer Res. 37, 272-277, 1977). The growth of the tumor is observed until the 25th day after transplant. On this day the animals are sacrificed and the primary tumor and lungs are removed in order to evaluate the growth of the primary tumor and the number of metastases. Pharmacological treatment by the oral route begins 2 days before transplant of the tumor and continues until sacrifice. The substances are dissolved in tap water and are changed every 24 hours.
  • the anticoagulating activity of the compounds is verified on the same strain of mice at the same doses used for antimetastatic activity evaluation.
  • Table 2 reports the results obtained with the two coumarin derivatives 19 and 26, previously mentioned in comparison to Warfarin, the well-known antitumor and antimetastatic compound, which is also a coumarin derivative. Warfarin's antimetastatic activity is widely documented both experimentally (Zacharski, L.R. et al. Cancer 44, 732-741, 1979 and Poggi, A. et al. Lancet i 163-164, 1978) and clinically (Zacharski, L.R. et al. J. Am. Med. Assoc. 245, 831-835, 1981).
  • Warfarin has an antimetastatic effect on 'Lewis lung carcinoma', syngeneic with mice of the C57Bl/6J strain, causing spontaneous metastasis in the lungs after intramuscular implantation of tumoral cells. This effect is measured by the number of metastases (Zacharski, L.R. et al. Cancer 44, 732-741, 1979 and Poggi, A. et al. Lancet i 163-164 . , 1978).
  • Warfarin in association with classic methods such as chemotherapy and radiation prolongs survival time in patients with lung carcinoma.
  • Warfarin in antitumor therapy has the disadvantage of having a strong anticoagulating activity, and it seems that its antitumor action mechanism is mainly linked with this activity. (Donati, M.B. et al. Brit. J. Haematol. 44, 173-182, 1980).
  • the anticoagulating effect measured by the "thrombotest”, the antitumor effect measured by the decrease in weight of the primary tumor and the antimetastatic effect shown as the number of metastases present in the lungs, are reported in Table 2. While the antitumor and antimetastatic effects of Warfarin and the two new products according to the present invention are roughly equal, the strong anticoagulating effect is absent in the two new products of the invention. This is not only a completely unexpected result, but also represents a very important advantage of the new coumarin derivatives of the invention in view of their use as antitumor and antimetastatic agents.
  • the compounds which are the object of the present invention have low toxicity, as can be shown by acute toxicity studies by the oral route in two animal species:
  • Acute toxicity in the rat groups of Sprague Dawley rats (male + female) are treated with graduated doses ranging from 0.125 g/kg of body weight to 10g/kg of body weight of the above mentioned compounds in aqueous solution.
  • the comp.ounds are administered orally by intubation. Subsequent death may be immediate or may occur at any'time up to 14 days after treatment.
  • the lethal dose 50 that is, the dose which causes the death of 50% of the animals, is evaluated by the method of Litchfield and Wilcoxon (J. Pharmacol. Ex. Ther.96, 99-113, 1949).
  • The' LD 50 determined for the two compounds under examination shows low toxicity, as is seen in Table 3.
  • Acute toxicity in the mouse groups of Swiss mice (male + female) are treated with graduated doses ranging from 0.125 g/kg to 5 g /kg of body weight with compounds 19 and 26. The compounds are administered orally by intubation and dissolved in water.
  • LD 50 lethal dose 50
  • Table 4 shows that the compounds are more toxic in the mouse than in the rat. It is, however, a known fact that different results are obtained from a toxicological point of view, according to the animal species considered.
  • the coumarin derivatives of formulas I and IA and their salts, according to the present invention, may be used as platelet antiaggregation drugs for therapeutic and/or prophylactic purposes.
  • the dosages vary according to the conditions, age and state of the patient. Generally, a daily dose by the oral route of about 20-500 mg for a mammal weighing about 70 kg is advisable.
  • the compounds of the invention with an antitumor and antimetastatic action may be used mainly for the treatment of tumors of various origin.
  • the Mannich reaction can be conducted in the known manner.
  • the formic aldehyde may be used as such or may be formed in situ,for example using agents which generate formaldehyde, such as the polymerized or condensed aldehydes, for example paraformaldehyde or hexamethylenetetramine.
  • All of the solvents recommended or described in the literature for the Mannich reaction may be used.
  • the most suitable solvents are aliphatic alcohols, such as those with 1 to 5 carbon atoms, or aliphatic carboxylic acids, such as those with 2 to 4 carbon atoms.
  • ethyl alcohol or acetic acid either as such or containing water, is suitably employed.
  • the amine HNR 3 R 4 may be used in its free form, or as one of its salts, such as the hydrochloride or sulfate.
  • the secondary amines particularly suitable for the preparation of the compounds (I) are dimethylamine, diethylamine, pyrrolidine, morpholine, piperidine, 3-hydroxypiperidine, 4-hydroxypiperidine, N-ethylpiperazine and N-hydroxyethylpiperazine. Condensation according to Mannich's method is generally effected at a temperature of between about 20° and 120oC., and preferably between about 50° and 90°C.
  • R 1 in the compounds of formula III may be for example an unsaturated aliphatic hydrocarbyl group, particularly an alkenyl group, with a double bond in the beta- or gamma- position, such as an allylic group, which is transferred in the 8-position by applying a Claisen reaction, carried out by a method which is itself well known.
  • the starting compound is heated to a suitable temperature, such as between 130° and 230 o C. with or without a solvent.
  • a tertiary aromatic base such as dimethylaniline or diethylaniline, can be used as the solvent.
  • R 1 may however also represent a substituted hydrocarbyl group, for instance an acyl group, such as an acetyl, propionyl, butyryl group, etc.
  • a Fries reaction is used for the transfer of the R 1 group in the 8-position and is effected by the known method, for example in the presence of suitable catalysts, such as aluminum chloride in a solvent, which could be for instance carbon disulfide or carbon tetrachloride, at between room temperature and the boiling point of the solvent.
  • R 1 may be a substituted or unsubstituted hydrocarbyl aliphatic, araliphatic or alicyclic group, introduced in the 8-position by applying a Friedel-Crafts reaction by the known method.
  • a suitable derivative containing the R 1 group is heated and bound to a halogen or an oxyhydryl (haloid, alcohol) with compound IV at a suitable temperature, such as between 50 o and 120°C. in the presence of a solvent and a catalyst.
  • Hydrocarbons such as petroleum ether, carboxylic aliphatic acids such as acetic acid, haloids or organic sulfides such as carbon disulfide may be used as solvents, and Lewis acids, such as boron trifluoride, zinc chloride, aluminum chloride, ferric chloride or sulfuric acid are used as catalysts.
  • R l may also represent a chlorine or bromine atom.
  • a halogenation reaction is used for the introduction of the chlorine or bromine atom, by means of the known method for the halogenation of aromatic compounds.
  • a compound IV is treated with chlorine or bromine and with one of their derivatives in the presence of a solvent and possibly also a catalyst at a suitable temperature.
  • the reductive alkylation reaction may be effected in the known way.
  • Aldehyde V is made to react with the amine R 4 R 3 NH in the presence of a suitable reducing agent.
  • Leukart's reaction is usually used, in which case the reducing agent is formic acid, formamide or methylformate.
  • the reaction is carried out in a suitable solvent, such as the same reducing agent, at a temperature of between 30° and 100°C.
  • the conversion of a functionally modified hydroxyl group X in the group -NR 3 R 4 is obtained by reaction of the compound of formula VI with the amine NHR 3 R 4 in a suitable solvent according to a known method.
  • a suitable basic compound may be added to the reaction mixture, for instance an inorganic base such as sodium or potassium carbonate, or tertiary organic bases such as pyridine.
  • the most suitable solvents for the alkylation reaction are -the aliphatic alcohols and aliphatic ketones with between 1 and 5 carbon atoms.
  • a functionally modified and reactive hydroxyl group is especially a hydroxyl group esterified with a hydracid such as hydrochloric, hydrobromic or hydriodic acid, and in this sense X represents chlorine, bromine or iodine, or an organic sulfonic acid such as an alkylsulfonic acid with between 1 and 7 carbon atoms,. for example, methylsulfonic acid or ethylsulfonic acid or an arylsulfonic monocyclic acid such as p-toluenesulfonic or benzenesulfonic acid.
  • one or both of the R 3 and R 4 groups are introduced into the -NHZ group of the compound of formula VII where Z represents respectively one of the above mentioned groups or hydrogen, in order to obtain the compound of formula I, for example by an alkylation or reductive alkylation reaction, according to known methods.
  • the alkylation reaction may be carried out using as an alkylating agent a haloid of the R 3 -Y or R 4 -Y formula where Y signifies chlorine, bromine or iodine.
  • this agent With the correct dose of this agent it is possible to introduce just one of the R 3 or R 4 groups and the compounds thus obtained may be further alkylated, as described above, thus obtaining, if it should be desired, compounds with the two R 3 and R 4 groups which differ between themselves.
  • the compounds of the two identical R 3 and R 4 groups may be advantageously obtained by reductive alkylation. Aldehydes with the same number of carbon atoms and the same substitutions present in the R 3 or R 4 groups may be used as alkylating agents.
  • the Pechmann reaction may be carried out in the known way.
  • the phenolic compound corresponding to formula VIII is made to react with the carbonyl compound of formula IX in which the R group corresponds to a hydrogen or an alkyl, preferably with between 1 and 4 carbon atoms.
  • the reaction is carried out using the usual condensing agents for the Pechmann reaction, such as sulfuric, hydrochloric and polyphosphoric acid, phosphorus oxychloride, aluminum chloride and zinc chloride.
  • the reaction is generally carried out at a temperature of between about 0 0 and 80 o C. In some cases it is advisable to use those solvents which are recommended or described in the literature for the Pechmann reaction.
  • the Perkin's reaction may be carried out in the known way.
  • the aldehyde compound of formula X is made to react with the compound of formula XI in which the R group corresponds to a hydrogen or alkyl, preferably with between 1 and 4 carbon atoms.
  • the reaction is carried out using condensing agents and the solvents recommended or described in the literature for the Perkin's reaction.
  • the reaction is generally carried out at a temperature of between 50° and 110°C..
  • a hydrocarbyl R 2 group in compounds of formula IA obtained according to any one of the above mentioned procedures may be effected by means of an etherifying reaction using an etherifying agent derived from the R 2 hydroxy alcohol.
  • etherifying agents are for example R 2 X alkylation agents, in which R 2 signifies a hydrocarbyl group as already described for formula I and X represents a group derived from the functional modification of the hydroxyl, or more precisely, of an ester such as a hydracid ester (and therefore a halogen) or of an inorganic acid such as sulfuric, sulfurous or silicic acid, or of organic sulfonic acids such as the sulfonic acids derived from lower aliphatic hydrocarbons with between 1 and 7 carbon atoms, for example methanesulfonic acid or sulfonic acids derived from aromatic hydrocarbons, especially monocyclic hydrocarbons, such as paratoluenesulfonic or benzenesulfonic acid.
  • X may theretore generally represent a halogen atom, in particular chlorine, bromine or iodine or an alkyl or arylsulfonyloxy, such as the methyl or ethylsulfonyloxy or benzene or p-toluenesulfonyloxy group.
  • esterification reaction represented by the following diagram, may be effected in the known manner.
  • the compound R 2 X is made to react with the compounds of formula IA or possibly also with their phenolic salts in a suitable solvent.
  • a suitable basic compound should be added to the reaction mixture, for instance, an inorganic base such as hydrates or the basic salts of alkali or alkaline earth metals, such as sodium or potassium carbonate, or tertiary organic bases such as pyridine, quinoline, collidine or Huenig's base.
  • an inorganic base such as hydrates or the basic salts of alkali or alkaline earth metals, such as sodium or potassium carbonate
  • tertiary organic bases such as pyridine, quinoline, collidine or Huenig's base.
  • the most suitable solvents for the previously described alkylation reaction are the aliphatic alcohols such as those with between 1 and 5 carbon atoms, aliphatic ketones or aprotic solvents; in particular acetone, methylethylketone, dimethysulfoxide and sulfolane may be employed.
  • R 2 may represent a protection group of the hydroxyl substitutable by hydrogen, that is, a hydroxyl in the 7-position may be temporarily protected during the reactions of the respective procedures and finally liberated.
  • This temporary protection of the, hydroxyl group may take place by functional modification as described in the literature, especially by esterification or etherification.
  • esters it is worth mentioning those with aliphatic araliphatic or aromatic acids having between 1 and 15 carbon atoms such as those mentioned previously, and also acids which give easily saponifiable esters, for example, halogenated lower aliphatic acids, such as trichloro- or trifluoroacetic acid.
  • ester groups may then be saponified to give the hydroxyl group by well known methods such as alkaline or possibly acid hydrolysis.
  • ethers those of tertiary lower aliphatic alcohols such as tert-butyl alcohol, which may be hydrolyzed under acid conditions, can be used.
  • Ethers of aliphatic alcohols such as benzyl or nitrobenzyl alcohol may also be prepared and then separated by reduction in the known way.
  • the same protection groups may also serve to protect, perhaps temporarily, an R S hydroxyl group which is then liberated in the same way.
  • moieties present in the hydrocarbyl substituents in the protected form can also be liberated, that is, functionally modified, where the protecting groups are easily eliminated.
  • free functions may, if suitable, be converted into their functional derivatives.
  • the transformation of a functional, free or modified group into another functional group, an object of the general preparation procedure may be effected according to methods described in the literature.
  • the compounds obtained according to the above mentioned procedures can be isolated from the reaction mixture in the known way, for example by extraction with organic solvents, such as aliphatic chlorinated hydrocarbides such as methylene chloride, chloroform, dichloroethane, or esters such as ethylacetate, butylacetate, etc.
  • organic solvents such as aliphatic chlorinated hydrocarbides such as methylene chloride, chloroform, dichloroethane, or esters such as ethylacetate, butylacetate, etc.
  • reaction products Before isolating the reaction products, these may be converted into their, salts, which may then be purified. From these salts it is possible to obtain the reaction products in the known manner, for instance by adding a base such as a hydrate of an alkali metal or an ammonium compound or with a suitable ion exchanger.
  • a base such as a hydrate of an alkali metal or an ammonium compound or with a suitable ion exchanger.
  • the starting compounds to be used in the above mentioned procedures are well known, as are the methods by which they are prepared.
  • the compounds II used to prepare derivatives I and IA according to procedure A can be prepared from the resorcinol derivatives of the formula: where R 1 and R have the significance given for formula I by condensation with betacarbonyl acid esters or from coumarin or coumarinic compounds free from any of the desired substituents in which these are introduced.
  • the starting compounds for procedures B, C, D, E, F are generally obtained by methods which are the same as the above mentioned procedures G and H, while the starting products in these procedures may be obtained from resorcinols or fluoroglucines, possibly substituted or functionally modified by known reactions, such as by introduction of the -CH 2 -NR 3 R 4 group by a Mannich reaction similar to that used for procedure A. If the resorcinic or coumarinic starting compounds contain carbonyl reactive functions, such as ketonic functions in particular, it is advisable or necessary to protect them before the various reactions such as the Mannich-type condensation reaction.
  • Protection of the carbonyl functions for example is effected by one of the known methods such as by action of an ethylene glycol under anhydrous conditions in the presence of acid catalysts. Once the Mannich condensation has been obtained, the carbonyl functions can be regenerated by hydrolysis in an acid aqueous solvent.
  • the coumarin derivatives of formula I may be used as drugs in pharmaceutical preparations intended for administration to man or animals by intramuscular, subcutaneous or intradermic routes, by injection or intravenous infusion.
  • These preparations may therefore be formulated as solutions of.the active compounds or as freeze-dried powders of the active compounds to be mixed with one or more excipients or diluents which are acceptable from a pharmaceutical point of view, and suitable for the above mentioned means of administration and with an osmolarity compatible with physiological liquids.
  • the therapeutic compounds of formula I (and therefore also formula IA) of the present invention may be in solid or semi-solid form and may be administered by the oral or rectal route, in the form of tablets, sugar-coated pills, gelatinous opercula, suppositories, soft gelatine capsules mixed with pharmaceutically acceptable excipients and suitable for this use, or in the form of creams, ointments or sprays for local, such as topical, use.
  • the preparations according to the present invention generally contain between 0.01% and 10%.by weight of the active component for the solutions, sprays, ointments and creams and between 1% and 100%, preferably between 5% and 50% by weight, of the active component for the preparations in solid form.
  • the dosage to be administered depends on the prescription, the desired effect and the chosen route of administration.
  • Examples 29 and 30 may be administered directly to animals or human patients by one of the routes described.
  • Examples 29 and 30 show a few possible pharmaceutical compositions which can be prepared for the treatment of tumor pathologies or platelet hyperaggregation pathology.
  • the pharmaceutical compositions shown in Example 29 are prepared using a double container made of glass.
  • the first contains the active substance in the form of a freeze-dried powder together with a pharmaceutically acceptable excipient.
  • the second container is filled with the desired quantity of solvent. Not until just before administration are the contents of the two flacons mixed and the active substance, in the form of a freeze-dried powder, is rapidly dissolved to produce an injectable solution.
  • the pharmaceutical' form preferred by the present invention is that which consists of a container holding the active substance as a freeze-dried powder, as the active substance has proved to be more stable in a dry, powdered form than in solution.
  • Example 30 shows pharmaceutical-preparations to be used by the oral route in tumoral pathologies or in pathologies connected with platelet hyperaggregation.
  • the preparations may also be formulated in a gastro- resistant form.
  • the present invention also includes modifications of the above mentioned procedures, where the procedures are interrupted at a certain point, or where an intermediate compound is used to begin with, after which the subsequent stages are carried out, or where the starting products are formed in situ.
  • the following examples amply illustrate the products, the preparation procedures and the pharmaceutical preparations of the present invention, but are not to be considered as limiting. Unless otherwise noted, the percentages therein and throughout the application are by weight and the temperatures are in degrees Centigrade.
  • 4-methyl-6-dimethylaminomethyl-7-hydroxy-8-allylcu- marin hydrochloride 30 g of 4-methyl-7-hydroxy-8- allylcoumarin are mixed with 350 ml of ethanol, 24.3 g of dimethylamine aqueous solution at 33% and 5.5 g of paraformaldehyde. The mixture is refluxed for 48 hours, while being continuously agitated; the ethanol is then evaporated in vacuum. The residue is gathered with ethyl acetate and the organic solution is extracted with 1N hydrochloric acid. The acid aqueous layer is alkalinized with sodium bicarbonate and extracted with ethyl acetate.
  • the ethyl acetate extract is dried on anhydrous sodium sulfate and, after filtration, is concentrated to a small volume; precipitation of the crystalline hydrochloride is achieved by adding gaseous hydrochloric acid.
  • the precipitate is separated and crystallized from ethanol; when the crystals have been filtered and dried, the hydrochloride of 4-methyl-6-dimethylaminomethyl-7-hydroxy-8-allylcoumarin is obtained.
  • MP 216°, Rf 0.46 [thin layer chromatography (silica) chloroform-methanol-acetic acid-water (25 + 15 + 4 +2)].
  • 4-methyl-6-(4-morpttolinylmetnyl)-7-nydroxy-8-allylcu marin hydrochloride 32.4 g of 4-metnyl-7-nvdroxy-8- allylcoumarin are mixed with 300 ml of etnanol, 13 g of morpholine and 4.5 g of paraformaldenyde. Tne mixture is heated to 60° for 48 hours, being continuously agitated in the meantime; the etnanol is then evaporated in vacuum. A saturated solution of sodium bicarbonate is added to tne residue and the mixture is then extracted witn methylene cnloride.
  • the organic solution is extracted 3 times with hydrochloric acid 1N and the aqueous acid layer is neutralised with aqueous ammonium hydroxide at 32%; a suspension is thus formed wnich is then filtered.
  • the precipitate is vacuum dried and then treated with ethyl acetate; precipitation of the crystalli-The hydrochloride is achieved by addition of gaseous hydrochloric acid.
  • the precipitate is separated and then crystallised by ethanol; after filtration and drying of the crystals, hydrochloride of 4-methyl-6-(4-morpholinylmethyl)-7-hydroxy-8-allylcoumarin is obtained.
  • 4-methvl-6-[[4-(2-hydroxyethyl)-1-piperazinyl] methyl]-7-hydroxy-8-allylcumarin dichlorhydrate 21.6 g of 4-methyl-7-hydroxy-8-allylcoumarin are mixed with 250 ml of ethanol, 16.9 g of 1-(2-nydro- xyethyl)piperazine and 11.2 g of formaldehyde aqueous solution at 35%. The mixture is heated to 70° for 48 hours, being continuously agitated meanwhile; the ethanol is then evaporated in vacuum. A saturated solution of sodium bicarbonate is added to the residue and the mixture is extracted with methylene chloride.
  • the organic solution is extracted 3 times with hydrochloric acid 1N and the acid aqueous layer is alkalized with bicarbonate of soda and extracted with toluene.
  • the toluenic solution is dried on anhydrous sodium sul - fate, filtered and the solvent is then eliminated in vacuum.
  • the residue is gathered witn ethyl ace - tate and the formation of crystalline hydrochloride is achieved by adding gaseous hydrochloric acid.
  • the precipitate is separated and crystallised with 95% ethanol; after filtration and drying of the crystals dichlorhydrate of 4-methyl-6-[(4-(2-hydroxyethyl)-1-piaerazinyl/methyl]-7-hydroxy-8-allylcoumarin is obtained.
  • Ethyl ester the acid [4-methyl-6-(4-morpholinyl methyl)-8-allylcumarin-7-yl]oxvacetic 16 g of 4-methyl-6-(4-morpholinylmethyl)-7-hydroxy-8-allylcou marin are mixed with 300 ml of toluene and 1.25 g of sodium hydride. The mixture is gradually heated to 60°, being continuously agitated meanwnile; after thirty minutes' heating the solvent is evaporated in vacuum.
  • the residue is solubilised with 100 ml of dimethylsulfoxide and to this solution, kept at room temperature, 9.8 g of ethyl cnloroace- tate are added; after twelve hours 300 ml of toluene are added and tne organic mixture is washed with water.
  • the toluenic solution is reduced to a small volume in vacuum and the formation of crystalline hydrochloride is achieved by adding gaseous hydrochloric acid.
  • the precipitate is separated and tnen crystallized in ethanol; after filtering and drying the crystals, hydrocnloride of 4-metnyl-6-(4-morpno- linylmethyl)-7-(ethoxylcarbonylnethoxy)-8-allylcoumarin is obtained.
  • Ethyl ester of tne acid 2-[4-metnyl-6-(4-morpholinyl methyl)-8-allylcumarin-7-yl]oxy-2-methylnrocionic hydrochloride 9.5 g of 4-methyl-5-(4-morpholinylmethyl)-7-hydroxy-8-allylcoumarin are mixed with 300 ml of toluene and 0.8 g of sodium hydride. The mixture is gradually heated to 60°, being constantly agitated meanwhile; after 30 minutes' heating the solvent is evaporated in vacuum. The residue is solubilised with 100 ml of dimethylsulfoxide and 5.9 g of ethyl a-bromoisobutyrate are added to the solution which is kept at a temperature of 60°.
  • 4-phenyl-6-(4-morpholinylmethyl)-7-hydroxy-8-allylcuma rin hvdrochloride 20 g of 4-phenyl-7-hydroxy-8-allyl coumarin are mixed with 200 ml of 80% aqueous ethanol, 6.3 g of morpholine and 6,2 g of 35% formalde- hyde aqueous solution. The same procedure as in the case of example 1 is used until precipitation of the hydrochloride. The precipitate is separated and crystallised with ethanol; after filtering and drying the crystals, hydrochloride of 4-phenyl-6-(4-morpno- linylmethyl)-7-hydroxy-8-allylcoumarin is ootained. MP 208°, Rf 0.87[thin layer chromatograpny (silica) chloroform-methanol-water-ammonium hydroxide 32% (130 + 25 + 2.8 + 0.5)].
  • the aqueous acid layer is alkalinized with sodium bicarbonate; a suspension is formed which is then filtered.
  • the precipitate is vacuum dried and then treated with ethyl acetate; precipitation of the crystalline hydrochloride is achieved by adding gaseous hydrocnloric acid.
  • Tne precipitate is separated and crystallised with ethanol; after filtering and drying tne crystals, dihydrochloride of 4-pnenyl-6-[[4-(2-hydroxyethyl)-1-piperazinyl]metnyl]-7-hydroxy-8-allylcoumarin is obtained.
  • 4-phenyl-6-(4-moronolinylnethyl)-7-allyloxy-8-allylcum arin hydrochloride 20 g of 4-pnenyl-o-(9-morpholinyl methyl)-7-hydroxy-8-allylcoumarin are mixed with 300 ml of toluene and 1.35 g of sodium hydride. The mixture is gradually heated to 60°, being constantly agitated in the meantime. After 30 minutes' heating the solvent is evaporated in vacuum. The residue is solubilised with 100 ml of dimethylsulfoxide and 6.4 g pf allyl bromide; after 12 hours 300 ml of toluene are added and the organic mixture is washed with water.
  • the toluenic solution is extracted witn hydrochloric acid 1N and the aqueous solution is alkalinized with sodium caroonate and tnen extracted witn methylene chloride.
  • the methylene chloride solution is dried on anhydrous sodium sulfate and tne solvent is eliminated.in vacuum after filtration.
  • the resi - due is gathered with toluene and formation or crystalline hydrochloride is acnieved by adding gaseous hydrochloric acid.
  • the precipitate is gathered and then crystallised with ethanol; after filtering and drying the crystals, hydrochloride of 4-phenyl-6 - (4-morpholinylmethyl)-7-allyloxy-8-allylcoumarin is obtained.
  • Ethyl ester of[4-phenyl-6-(4-morpholinylmethyl)-8- allylcumarin-7-yl]oxy acetic acid hydrochloride 24 g of 4 phenyl-6-(4-morpholinylmethyl)-7-hydroxy-8-allylcoumarin are mixed with 300 ml of toluene and 1.6 g of sodium hydride. The mixture is gradually heated to 60°, being constantly agitated meanwhile;
  • the toluenic solution is extracted witn hydrochloric acid IN and the acid aqueous solution is aixalinised with sodium bicarbonate. A suspension is tnus formed. which is then filtered. The precipitate is vacuum dried and then gathered with toluene; tne precipitation of the crystalline hydrochloride is achieved by adding gaseous hydrochloric acid. The precipitate is separated and then crystallised with etnanol; after filtering and drying the crystals, tne hydrocnloride of the ethyl ester of [4-phenyl-6-(4-morpholinylmethyl)-8-allylcoumarin-7-yl]oxy acetic acid is obtained.
  • Ethvl ester of 2-(4-phenyl-6-(9-morpnolinylmethyl)-8- allylcumarin-7-yl]oxy-2-methylpropionic acid hydrochloride 20 g of 4-phenyl-6-(4-morpholinylmethyl)-7-hydroxy-8-allylcoumarin are mixed with 300 ml of toluene and 1.35 g of sodium hydride, the mixture is gradually heated to 60°, being constantly agitated meanwhile. After thirty minutes' heating tne solvent is evaporated in vacuum. The residue is solubilized with 100 ml of dimethylsulfoxide and 11.7 g of etnyl ⁇ -bromoisobutyrate are added to the solution, which is kept at a temperature of 60°.
  • the precipitate is separated and crystallized with ethanolic solution by adding ethyl acetate; after filtering and drying the crystals, hydrochloride of the ethyl ester of 2-[4-phenyl-6-(4-morpnolinylmethyl)-8- allylcoumarin-7-yl]oxy-2-methylpropionic acid is obtained.
  • 4-methyl-6-diethylaminomethyl-7-nydroxy-6-allylcuma- rin hydrochloride 25 g of 4-metnyl-7-nydroxy-8- allylcoumarin are mixed.with 350 ml of etnanol, 8.9 g of diethylamine and 3.9 g of paraformaldenyde. The mixture is refluxed for 60 hours, being kept in constant agitation meanwhile; the ethanol is then evaporated in vacuum. The residue is gathered with ethyl acetate and the organic solution is extracted with hydrochloric acid 1N. The aqueous acid layer is alkalinized with sodium bicarbonate and then extracted with methylene chloride.
  • the methylene chloride solution is dried on anhydrous sodium sulfate, filtered and then the solvent is eliminated in vacuum.
  • the residue is gathered with ethyl acetate and the formation of crystalline nydrochloride is achieved by adding gaseous hydrochloric acid.
  • the precipitate is separated and then crystallized with isopropanol; after filtering and drying tne crystals, hydrochloride of 4-metnyl-6-dietnylamino- methyl-7-hydroxy-8-allylcoumarin is obtained.
  • 4-methyl-6-[(4-hydroxy-1-piperidinyl)methyl]-7-hydroxy-8-allylcumarin hydrocnloride 30 g of 4-methyl-7 - hydroxy-8-allylcoumarin are mixed with 300 ml of ethanol, 14.1 g of 4-hydroxypiperidine and 4.2 g of paraformaldehyde. The procedure is then the same as for example 8 until precipitation of tne hydrochlo- ' ride. The precipitate is separated and then crystallized with ethanol; after filtering and drying the crystals, hydrochloride of the 4-methyl-6-[(4-hydroxy-l-piperidinyl)methyl]-7-hydroxy-8-allylcoumarina is obtained.
  • the precipitate is separated and then crystallized from ethanol solution by adding ethyl acetate; after filtering and drying the crystals, hydrocnloride of 4-methyl-6-[(3-hydroxy-1-piperidinyl) methyl]-7-hydroxy-8-allylcoumarin is obtained.
  • 3-(2-diethylaminoethyl)-4-methvl-6-(4-morpholinvlme- thvl)-7-hvdroxv-8-cnlorocumarin dinvdrochloride 6.19 g of 3-(2-diethylaminoethyl)-4-methyl-7-hydroxy-8-chlorocoumarin are mixed with 200 ml of etnanol, 3.5 g of morpholine and 1.7 g of aqueous soiu- tion of 35% formaldenyde. Tne mixture is refluxed for 24 hours, being kept in constant agitagtintion meanwhile.
  • the ethanol is then evaporated in vacuum and the residue is gathered with etnyl acetate; a suspension is thus formed which is tnen filtered; the organic solution is extracted with hydrochloric acid 1N.
  • the aqueous acid layer is alkalinized with sodium bicarbonate and then extracted with methylene chloride. Tne metnylene cnloride solution is dried
  • Ethyl ester of [3-(2-diethylaminoethyl) -4-methyl-6-(4-morpholinylmethyl)-8-chlorocumarin-7-yl]oxyacetic acid dihvdrochloride 18 g of 3-(2-diethylaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-7-nydroxy-8-chlorocoumarin are mixed with 300 ml of acetone, 12.2 g of potassium carbonate and 5.4 g of etnyl chloroacetate; the mixture is gradually brought to the boiling point, being kept in constant agitation meanwhile, and then refluxed for 24 nours. Tne solvent is then evaporated in vacuum.
  • the residue is gathered with 300 ml of toluene and tne mixture is treated with water.
  • the toluenic layer is separated and then extracted with hydrochloric acid 1N; the aqueous acid solution is alkalinized with sodium bicarbonate; a suspension is thus formed which is then filtered.
  • the precipitate is vacuum dried and tnen gathered with toluene; the formation of crystalline hydrochloride is achieved by addition of gaseous hydrocnloric acid.
  • the precipitate is separated and crystallized from ethanol; after filtering and drying the crystals, hydrocnloride of tne etnyl ester of [3-(2-diethylam- min p ethyl)-4-methyl-6-(4-morpholinylmetnyl)-8-chlorocoumarin-7-yl]oxy acetic acid is obtained.
  • the precipitate is separated and crystallized from ethanolic solution by adding ethyl ether; after filtering and drying the crystals, hydrochloride of 3-(2-diethylaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-7-allyloxy-8-chlorocoumarin is obtained.
  • Ethyl ester of 2-[3-(2-dietnvlaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-8-chlorocumarin-7-yl]oxy-2-methylpropion'ic acid dihydrochloride 16 g of 3-(2-diethylaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-7-hydroxy-8-chlorocoumarin are mixed with 300 ml of toluene and 1 g of sodium hydride; the mixture is gradually heated to a temperature of 60°, beina kept in constant agitation in the meantime; after thirty minutes' heating the solvent is evaporated in vacuum.
  • the residue is solubilized with 100 ml of dimethylsulfoxide and 7.6 g of ethyl ⁇ -bromoisoou- tyrate are added to the solution, whicn is kept at room temperature; after 48 hours 300 ml of toluene are added and the organic mixture is wasned with water.
  • the toluenic solution is extracted witn hydrochloric acid 1N and the acid aqueous solution, after being alkalinized with sodium carbonate, is extracted with methylene chloride.
  • the metnyiene chloride solution is dried on anhydrous sodium sulfate, filtered and the solvent is then eliminated in vacuum.
  • 4-methyl-6-(4-morpholihylmethyl)-7-hydroxy-8--chlorocu- marin hvdrochloride 20 g of 4-metthyl-7-hydroxy-8-chlorocoumarin are mixed with 300 ml of etnanol, 16.5 g of morpholine and 8 g of 35% formaldenyde aqueous solution. The mixture is refluxed for 48 hours, being kept in constant agitation meanwnile, and after 12 hours a suspension is obtained which is then filtered. The precipitate is dissolved in methylene chloride and the organic solution is extracted with aqueous solution of 10% acetic acid; the organic solution is then extracted (3 times) with hydrochloric acid 1N.
  • the aqueous hydrochloric layer is alkalinized with sodium bicarbonate; a suspension is thus formed which is then filtered.
  • the precipitate is vacuum dried and then treated with ethyl acetate; the precipitation of the crystalline hydrochloride is achieved by adding gaseous hydrochloric acid.
  • the precipitate is then separated and crystallized from methanol. After filtering and drying the crystals, hydrocnloride of 4-metnyl-6-(4-morpholinylmethyl)-7-nydroxy-8-chlorocoumarin is obtained.
  • 4-phenyl-6-(4-morpholinylmethyl)-7-hydroxy-8-chlorocu- marin hydrochloride 20 g of 4-phenyl-7-hydroxy-8-chloro coumarin are mixed with 300 ml of ethanol, 12.1 g of morpholine and 4.2 g of paraformaldehyde. The mixture is refluxed for 96 hours, being constantly agitated in the meantime; it is brought to room temperature and after 12 hours a suspension is obtained which is tnen filtered. Tne precipitate is dissolved in hydrochloric acid lN and the resulting solution is extracted (3 times) with methylene chloride. Evaporation of the solvent produces a methylene chloride solution from which a chloride residue is obtained. The precipitate is crystallized from ethyl acetate; after filtering and drying the crystals, hydrochloride of 4-phenyl-6-(4-morpholinylmethyl)-7-hydroxy-8-chlorocoumarin is obtained.
  • 3-(2-diethylaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-7-metnoxy-8-chlorocumarin dihvdrocnloride 24.5 g of 3-(2-diethylaminoethyl)-4-methyl-6-(4-morpholinylmethyl)-7-hydroxy-8-chlorocoumarin are mixed with 300 ml of toluene and 1.6 g of sodium hydrate; the mixture is gradually heated to 60°, being constantly agitated meanwhile; after 30 minutes' heating tne solvent is evaporated in vacuum.
  • the residue is solubilized with 100 ml of dimethylsulfoxide and 7.5 g of dimethyl sulfate are added to the solution, wnich is kept at a temperature of 80°; after 48 hours 300 ml of toluene are added and the organic mixture is washed with water.
  • the toluene solution is extracted with hydrochloric acid 1N and the acid aqueous solution is alkalinized with sodium oicaroonate; a suspension is thus formed wnich is tnen filtered.
  • the precipitate is vacuum dried and gathered witn toluene; crystalline hydrochloride is formed by tne addition of gaseous hydrocnloric acid.
  • 4-methyl-7-hydroxy-6-dimethylaminomethyl-7-hydroxy-8-chlorocumarin hvdrochloride 30 g of 4-methyl-7-hy- drooxy-8-chlorocoumarin are mixed witn 200 ml of ethanol, 38.2 g of 33% dimethylamine aqueous solution and 8.5 g of paraformaldenyde. The mixture is refluxed for 72 hours, being constantly agitated in the meantime. The ethanol is evaporated in vacuum.
  • the precipitate is separated and then crystallized from 95% etnanol; after filtering and drying tne crystals, hydrochloride of 4,8-dimethyl-6-dimethylaminomethyl-7-hy- droxycoumarin is obtained.
  • 4-phenyl-6-dimethylaminomethyl-7-hydroxy-8-allylcuma- rin hydrochloride 18 g of 4-phenyl-7-nydroxy-8-allyl coumarin are mixed with 250 ml of ethanol, 23.4 g of 18.5% dimethylamine aqueous solution and 5.6 c of 35% formaldehyde aqueous solution. Tne mixture is refluxed for 60 hours, being constantly agitated meanwhile. The ethanol is evaporated in vacuum. The procedure is then the same as for example 8 until the precipitation of the hydrochloride. The precipitate is separated and crystallized from 95% ethanol. After filtering and drying the crystals, hydrocnloride of 4-phenyl-6-dimethylaminometnyl-7-hydroxy-8- allylcoumarin is obtained.
  • Example 29 Examples of injectaole pharmaceutical compositions (the active compounds can be identified from Table 1 of the general description)
  • Example 30 Examples of pharmaceutical compositions by oral route (The compounds can be identified from Table 1 of the general description)
  • each tablet contains:
  • each pill contains:
  • each gelatinous operculum contains:
  • each soft gelatine capsule contains:

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrane Compounds (AREA)
EP84304976A 1983-07-29 1984-07-20 Dérivés de coumarine, compositions pharmaceutiques les contenant et leur utilisation pour le traitement du cancer Expired - Lifetime EP0133766B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84304976T ATE60329T1 (de) 1983-07-29 1984-07-20 Cumarinderivate, diese enthaltende pharmazeutische zubereitungen und ihre verwendung bei der behandlung von krebs.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT4879183 1983-07-29
IT8348791A IT1212882B (it) 1983-07-29 1983-07-29 Derivati basici della cumarina

Publications (3)

Publication Number Publication Date
EP0133766A2 true EP0133766A2 (fr) 1985-03-06
EP0133766A3 EP0133766A3 (en) 1985-12-27
EP0133766B1 EP0133766B1 (fr) 1991-01-23

Family

ID=11268572

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84304976A Expired - Lifetime EP0133766B1 (fr) 1983-07-29 1984-07-20 Dérivés de coumarine, compositions pharmaceutiques les contenant et leur utilisation pour le traitement du cancer

Country Status (25)

Country Link
US (1) US4737517A (fr)
EP (1) EP0133766B1 (fr)
JP (1) JPS6054378A (fr)
KR (1) KR870001483B1 (fr)
AR (2) AR240816A1 (fr)
AT (1) ATE60329T1 (fr)
AU (1) AU581853B2 (fr)
BE (1) BE900225A (fr)
CH (1) CH662563A5 (fr)
DE (1) DE3483989D1 (fr)
DK (1) DK354784A (fr)
ES (4) ES8602739A1 (fr)
FI (1) FI85269C (fr)
FR (1) FR2549832B1 (fr)
GR (1) GR82014B (fr)
HU (2) HUT36815A (fr)
IL (1) IL72515A (fr)
IN (1) IN161176B (fr)
IT (1) IT1212882B (fr)
LU (1) LU85476A1 (fr)
MX (1) MX162759A (fr)
NO (1) NO843042L (fr)
NZ (1) NZ209003A (fr)
PT (1) PT78986B (fr)
ZA (1) ZA845670B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032120A2 (fr) * 2004-09-20 2006-03-30 Universidade Federal Do Rio De Janeiro - Ufrj Cumarines substitues, procede de production de ces cumarines et composition contentant ces cumarines

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008529A2 (fr) * 1989-01-23 1990-08-09 Lehigh University 7-alkoxycoumarines, dihydropsoralenes et benzodipyranones constituant des agents therapetiques photosensibilises et des inhibiteurs de facteur de croissance epidermique
US5356929A (en) * 1989-01-23 1994-10-18 Lehigh University Reduced and quaternized psoralens as photo-activated therapeutics
US5516629A (en) 1990-04-16 1996-05-14 Cryopharm Corporation Photoinactivation of viral and bacterial blood contaminants using halogenated coumarins
US6251644B1 (en) 1990-04-16 2001-06-26 Baxter International, Inc. Method for inactivating non-enveloped viral contaminants with a photosensitizer by increasing viral permeability to the photosensitizer
US5484951A (en) * 1990-10-19 1996-01-16 Octamer, Incorporated 5-iodo-6-amino-6-nitroso-1,2-benzopyrones useful as cytostatic and antiviral agents
US5877185A (en) * 1991-10-22 1999-03-02 Octamer, Inc. Synergistic compositions useful as anti-tumor agents
US5482975A (en) * 1991-10-22 1996-01-09 Octamer, Inc. Adenosine diphosphoribose polymerase binding nitroso aromatic compounds useful as retroviral inactivating agents, anti-retroviral agents and anti-tumor agents
US5783599A (en) * 1993-02-24 1998-07-21 Octamer Inc Methods of treating cancer and viral infections with 5-iodo-6-amino-and 5-iodo-6-nitroso-1 2-benzopyrones
DE69425210T2 (de) * 1993-04-13 2001-03-01 Morinaga Milk Industry Co Ltd Cumarin derivate und deren anwendung
DE10352535A1 (de) * 2003-11-07 2005-06-16 Steag Microparts Gmbh Mikrostrukturierte Trennvorrichtung und Verfahren zum Abtrennen von flüssigen Bestandteilen aus einer Partikel enthaltenden Flüssigkeit
US7456214B2 (en) * 2004-05-03 2008-11-25 Baylor University Chromene-containing compounds with anti-tubulin and vascular targeting activity
US20050245489A1 (en) * 2004-05-03 2005-11-03 Pinney Kevin G Chromene-containing compounds with anti-tubulin and vascular targeting activity
CN104529972B (zh) * 2014-10-10 2016-05-18 北京工业大学 蛋白激酶抑制剂香豆素及其制备方法和医药应用
KR102053748B1 (ko) 2017-12-20 2019-12-09 강원대학교산학협력단 쿠마린 유도체를 포함하는 알레르기성 염증성 질환의 예방 또는 치료용 약학 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2120709A1 (de) * 1970-10-19 1972-05-31 Recordati S.A., Chemical And Pharmaceutical Co., Lugano (Schweiz) Verfahren zur Herstellung von, gegebenenfalls am Cumarin- beziehungsweise Chromonring substituierten, Dimethylaminomethylcumarinen und Dimethylaminomethylchromonen
EP0068875A2 (fr) * 1981-07-01 1983-01-05 EASTMAN KODAK COMPANY (a New Jersey corporation) Chélates fluorescents et des réactifs marqués liants, spécifiquement préparés de ceux-ci

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515721A (en) * 1967-06-26 1970-06-02 Cassella Farbwerke Mainkur Ag 3-tertiary-aminoethyl-4-methyl or phenyl-7-ethoxycarbonylmethoxy - halo or mononitro coumarins and congeners
US3880885A (en) * 1971-11-23 1975-04-29 Sandoz Ag Tertiary aminoethyl isochromans and isocoumarins
IT1088554B (it) * 1977-11-17 1985-06-10 F I D I A Spa Procedimento sellettivo per la preparazione di derivati della 7-indrossi cumarina
IT1160366B (it) * 1978-12-19 1987-03-11 F I D I A Spa Applicazioni in campo farmacologico e terapeutico dell'8-cloro-3(beta-dietilamincetil)-4-metil-7-etossi-carbonilmetossi cumarina cloridrato preparato allo stato puro con procedimento selettivo con particolare riguardo alla sua attivita' anti-aggregante piastrinica
US4321270A (en) * 1981-01-29 1982-03-23 E. R. Squibb & Sons, Inc. Substituted chromans

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2120709A1 (de) * 1970-10-19 1972-05-31 Recordati S.A., Chemical And Pharmaceutical Co., Lugano (Schweiz) Verfahren zur Herstellung von, gegebenenfalls am Cumarin- beziehungsweise Chromonring substituierten, Dimethylaminomethylcumarinen und Dimethylaminomethylchromonen
EP0068875A2 (fr) * 1981-07-01 1983-01-05 EASTMAN KODAK COMPANY (a New Jersey corporation) Chélates fluorescents et des réactifs marqués liants, spécifiquement préparés de ceux-ci

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 80, 1974, page 439, no. 89338p, Columbus, Ohio, US; K. KATO et al.: "Longitudinally pumped high-power dye laser in the blue" & OPT. COMMUN. 1974, 10(1), 21-2 *
CHEMICAL ABSTRACTS, vol. 84, 1976, page 438, no. 30814v, Columbus, Ohio, US; D.O. SHAH et al.: "Mannich bases derived from substituted halomethylcoumarins" & INDIAN J. CHEM. 1975, 13(10), 1096-7 *
CHEMICAL ABSTRACTS, vol. 89, 1978, page 34, no. 157317u, Columbus, Ohio, US; I.S. MATHUR et al.: "Antitumor activity of certain N-arylmethyl nitrogen mustards in Walker carcinosarcoma 256 and lymphocytic leukemia P 388" & INDIAN VET. MED. J. 1977, 1(1), 11-19 *
Indian J Chem. 1975, 13 pages 1096-1097 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032120A2 (fr) * 2004-09-20 2006-03-30 Universidade Federal Do Rio De Janeiro - Ufrj Cumarines substitues, procede de production de ces cumarines et composition contentant ces cumarines
WO2006032120A3 (fr) * 2004-09-20 2009-05-14 Univ Rio De Janeiro Cumarines substitues, procede de production de ces cumarines et composition contentant ces cumarines

Also Published As

Publication number Publication date
ES545240A0 (es) 1987-06-01
LU85476A1 (fr) 1984-12-06
CH662563A5 (fr) 1987-10-15
ATE60329T1 (de) 1991-02-15
FR2549832A1 (fr) 1985-02-01
FI85269B (fi) 1991-12-13
EP0133766A3 (en) 1985-12-27
FI842997A (fi) 1985-01-31
ES8706139A1 (es) 1987-06-01
NO843042L (no) 1985-01-30
IN161176B (fr) 1987-10-10
US4737517A (en) 1988-04-12
FR2549832B1 (fr) 1987-08-14
ES534581A0 (es) 1985-12-16
DK354784A (da) 1985-01-30
ES8602739A1 (es) 1985-12-16
ES8608503A1 (es) 1986-07-16
JPS6054378A (ja) 1985-03-28
KR850001189A (ko) 1985-03-16
IL72515A (en) 1992-05-25
AU3127484A (en) 1985-01-31
JPH0475911B2 (fr) 1992-12-02
AR240816A2 (es) 1991-02-28
AR240816A1 (es) 1991-02-28
IL72515A0 (en) 1984-11-30
FI85269C (fi) 1992-03-25
DK354784D0 (da) 1984-07-19
ES8700246A1 (es) 1986-11-16
FI842997A0 (fi) 1984-07-27
DE3483989D1 (de) 1991-02-28
IT1212882B (it) 1989-11-30
ES545238A0 (es) 1986-11-16
ES545239A0 (es) 1986-07-16
NZ209003A (en) 1988-04-29
PT78986A (pt) 1985-02-20
GR82014B (fr) 1984-12-12
AR240926A2 (es) 1991-03-27
AU581853B2 (en) 1989-03-09
BE900225A (fr) 1985-01-28
MX162759A (es) 1991-06-25
PT78986B (en) 1986-06-18
HUT36815A (en) 1985-10-28
AR240926A1 (es) 1991-03-27
ZA845670B (en) 1985-03-27
HU199819B (en) 1990-03-28
IT8348791A0 (it) 1983-07-29
EP0133766B1 (fr) 1991-01-23
KR870001483B1 (ko) 1987-08-13

Similar Documents

Publication Publication Date Title
EP0133766B1 (fr) Dérivés de coumarine, compositions pharmaceutiques les contenant et leur utilisation pour le traitement du cancer
EP0385237B1 (fr) Dérivés de 2-(1-pipérazinyl)-4-phénylcycloalkynopyridines, procédés de préparation et compositions pharmaceutiques les contenant
NO156525B (no) Analogifremgangsmaate ved fremstilling av terapeutisk aktive (3-aminopropoksy)bibenzylderivater.
NZ202404A (en) Acylmorphinan derivatives and pharmaceutical compositions containing such
EP0198456A2 (fr) Dérivés de la 1,7-naphtyridine et préparations médicales les contenant
US7863323B1 (en) Flavonols
US4406908A (en) Tetrazolylcoumarin derivatives and antiallergic compositions containing the same
US4327088A (en) Phosphonooxy- or glycosyloxy-substituted acrylophenones, compositions and uses thereof
JP3575610B2 (ja) 新規ベンゾピラノン、それらの製造方法およびそれらの使用
CA1258455A (fr) Derives de la coumarine, composes pharmaceutiques les contenant et application dans le traitement du cancer
CS207633B2 (en) Method of preparation of the 3-oxaloamino-4-oxo-4h-1-benzopyran derivatives
EP0566288B1 (fr) Dérivés de flavone
CA2566166C (fr) Flavonols ameliores
US3457273A (en) Derivative of phenylbutazone
RU2090559C1 (ru) Рацемические или оптически активные производные изохинолина, способ их получения, фармацевтическая композиция на их основе и способ получения фармацевтической композиции
AU2006233256B2 (en) Improved flavonols
JP2004505072A (ja) 新規なクマリン誘導体及びそれらの塩類、それらの調製方法及び薬学分野におけるそれらの使用
CN112812028B (zh) 蒽醌类化合物及其在制备抗寨卡或登革病毒药物中的应用
US5292751A (en) 5,7-dihydroxy-2-methyl-8-(4-(3-hydroxy-1-(1-propyl))piperidinyl)-4H-1-benzopyran-4-one, its preparation and its use
US3458507A (en) 3-tropanyl-2-aminophenylacrylate compounds
US3096334A (en) 6-methoxy-8-(5-n-propylaminopentylamino) quinoline, its salts and its preparation
JPS59219275A (ja) フラバノン構造をもつ化合物を含有する製薬組成物
IL43667A (en) 2,7 bis-dialkylaminoalkyl esters and ethers of 9-benzylidenefluorene
KR790001577B1 (ko) 이소퀴놀린 유도체의 제조방법
EP0532328A2 (fr) Lignanes, leurs intermédiaires et procédé de préparation des intermédiaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE GB IT NL SE

17P Request for examination filed

Effective date: 19860212

17Q First examination report despatched

Effective date: 19871022

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL SE

REF Corresponds to:

Ref document number: 60329

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3483989

Country of ref document: DE

Date of ref document: 19910228

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910708

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910730

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910927

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920720

Ref country code: AT

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

EUG Se: european patent has lapsed

Ref document number: 84304976.8

Effective date: 19930204