EP0131512B1 - Doppelreflektorantenne mit fast ringflächiger Strahldeckung - Google Patents

Doppelreflektorantenne mit fast ringflächiger Strahldeckung Download PDF

Info

Publication number
EP0131512B1
EP0131512B1 EP84401409A EP84401409A EP0131512B1 EP 0131512 B1 EP0131512 B1 EP 0131512B1 EP 84401409 A EP84401409 A EP 84401409A EP 84401409 A EP84401409 A EP 84401409A EP 0131512 B1 EP0131512 B1 EP 0131512B1
Authority
EP
European Patent Office
Prior art keywords
network
reflector
antenna
antenna according
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84401409A
Other languages
English (en)
French (fr)
Other versions
EP0131512A1 (de
Inventor
Serge Drabowitch
Claude Aubry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0131512A1 publication Critical patent/EP0131512A1/de
Application granted granted Critical
Publication of EP0131512B1 publication Critical patent/EP0131512B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/245Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching in the focal plane of a focussing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/102Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are of convex toroïdal shape

Definitions

  • the present invention relates to an antenna with quasi toroidal coverage with two reflectors, for the emission and / or reception of a microwave wave.
  • Various embodiments of static antennas are known, including a structure consisting of a set of antenna shaped slabs, arranged in a trunk of a pyramid; the coverage obtained is semi-spherical and the operation is satisfactory; its disadvantage, however, is that it has a high cost price.
  • An antenna known as a dome antenna is also known, which is constituted by a network of radiating elements allowing a scanning of the beam according to a cone of limited angle, of the order of 90 °, covered by a hemispherical dome, which comprises elements phase shifting the radiation passing through it, so that the scanning angle of the beam outside the dome is equal to 180 °.
  • This structure has the particular advantage of reducing the number of active elements necessary compared to the previous solution, but it has a number of drawbacks among which the complexity of manufacturing the dome which must include phase shifters, the volume of the resulting antenna and the losses occurring by reflection on the wall of the dome.
  • a microwave antenna comprising a source in the shape of a horn and two reflectors; the reflector placed in front of the horn is formed by two arcs of ellipse and has a vertex in the axis of the antenna; these various elements are arranged so that the phase center of the horn is one of the focal points of the ellipse and that the other focal point of the ellipse is that of the second reflector, formed by a parabolic arc.
  • a multibeam antenna comprising a plurality of horns illuminating a single reflector.
  • the present invention relates to a static antenna making it possible to avoid these drawbacks by using a double reflection system, the reflectors being passive and of revolution, which is relatively simple and therefore inexpensive to manufacture.
  • the subject of the invention is an antenna as defined by claim 1.
  • This antenna comprises means 1 for emitting a microwave radiation, constituted for example by a network of radiating elements substantially planar and parallel to a plane XOY, for example horizontal, of revolution around an axis OZ normal to XOY. It receives the energy to be transmitted from means 5, for example placed under the network 1, on a plane 6 supporting the antenna, for example also substantially parallel to XOY, and transmitting to the network 1 the microwave energy and the commands required by means 51.
  • the network 1 can be constituted for example by a plurality of sources, supplied by a matrix of circuits for forming one or more beams, represented in FIG. 1 as part of the means 5.
  • the network 1 can also use phase shifters as illustrated below, these various devices constituting means for controlling the law of illumination of the network in phase and possibly in amplitude.
  • the energy radiated by the network 1 is reflected by a reflector 2, of revolution around the axis OZ, in the form of a substantially elliptical or parabolic cap for example, the concavity of which is turned towards the network 1.
  • the rays reflected by the reflector 2 are reflected a second time by a reflector 3 which is itself in the form of a ring surrounding the network 1, this ring having a meridian whose concavity is turned towards the reflector 2; the reflector 3 is also of revolution around the axis OZ; it preferably extends to plane 6 supporting the antenna.
  • the antenna also includes a radome 4, the presence of which is not essential for its operation but which allows, in addition to the conventional functions of a radome, to support the reflector 2.
  • This radome 4 is substantially of revolution around the OZ axis like reflector 2; it can be cylindrical or conical; it is preferably based on the one hand on the circumference 20 of the reflector 2 and on the other hand on the outer circumference 30 of the reflector 3.
  • FIG. 2 represents an embodiment of the network 1 of FIG. 1.
  • a plate 12 in the form of a disc with an OZ axis, comprising radiating elements 11 and 14 respectively on its two faces, for example of the dipole type.
  • Each of the elements 11 is connected to an element 14 by means of a phase shifting circuit 13.
  • the network 1 thus formed is illuminated by a source or a system of primary microwave sources 10 of axis OZ.
  • the radiation emitted by the system 10 is picked up by the elements 11; after the phase shift induced by the circuits 13, the radiation is re-emitted by the radiating elements 14.
  • the angles of emission of energy by all of the radiating elements 14 are determined by the value of the phase shifts conferred by each of the circuits 13 and by the characteristics of the system 10.
  • FIG. 3a represents a partial view of an alternative embodiment of the array (1) used in the antenna according to the invention, in which the radiating elements 14 of FIG. 2 are of the unipole type.
  • FIG. 3a a fraction of the plate 12 is seen in section in which are inserted radiating elements of the unipole type, marked 15, which are solids of revolution for example as shown in the figure of conical shape, this which allows for greater bandwidth.
  • grooves 16 circularly around each unipole 15, these grooves constituting traps for the microwave wave; the depth of the grooves 16 is of the order of a quarter of the wavelength ( ⁇ ) emitted. As shown in the figures, the grooves 16 may be tangent circles.
  • the unipoles 15 are arranged in staggered rows.
  • the height of the unipoles is of the order of ⁇ / 4
  • the angle at the top of the cone formed by a unipole can be of the order of 20 ° and the diameter of the circles formed by the grooves, of the order of A / 2.
  • FIG. 3b the meridian section of the coverage diagram (envelope of the possible radiation diagrams) obtained with a network 1 made up of unipoles as shown in FIG. 3a is shown in polar coordinates.
  • the coverage of such a network is of quasi toroidal shape, that is to say of which the director is a closed non-circular curve, with a zero along the axis OZ and a zero in the plane XOY.
  • the maximum opening angle is for example between 45 ° and 60 °.
  • the geometry adopted for the reflectors 2 and 3 is a function, from the characteristics of the network 1, of the law of coverage in site desired for the whole of the antenna, for example a cosecanted law. Such a law is shown by way of example in FIG. 4.
  • a curve 7 represents the law of coverage of the antenna, which is almost toroidal and limited. substantially, on the one hand, by a plane parallel to XOY and, on the other hand, by a cone of axis OZ and of angle at the vertex y. It appears that the coverage of the antenna according to the invention is not hemispherical; however, this drawback is considered to be negligible, since the only targets which cannot be reached by such an antenna are those which are close to OZ, that is to say generally close to the zenith, i.e. - again say close targets.
  • the first method consists in considering the diagram of each source in the presence of reflectors, writing the expressions connecting the energy densities at the level of the network 1, the first then the second reflectors, then integrating the expressions obtained.
  • Another method consists in decomposing the network illuminations and consequently the resulting diagrams, in the absence and in the presence of reflectors, on the basis of orthogonal functions with circular symmetry. The calculation shows that there are a multiplicity of possible solutions for the equations of the meridians of the reflectors 2 and 3, the desired coverage diagram of the antenna being previously fixed; a particular radiation pattern is then obtained by the choice of the weighting law of the network in phase and possibly in amplitude; this is of course an advantage.
  • the final choice of the couple of meridians is preferably done using the technique known as conformation known in Cassegrain type systems and which consists, after having calculated the two reflectors, to modify by successive approximations the meridian of one of them to get closer to the desired radiation pattern, then modify the second reflector accordingly.
  • the element 4 can be a continuous radome or a simple support, continuous or not, metallic or dielectric of the reflector 2. It can also carry a polarization filter, formed of conductive wires parallel to the polarization direction to be eliminated. It can also carry a polarizer making it possible to radiate for example a wave with circular polarization: in this case, it carries conductive wires oriented at 45 ° with respect to the incident polarization.
  • An antenna has been described above using passive focusing devices, which make it possible to modulate the gain of the array and thereby limit the number of active elements necessary, for a given gain, compared to direct radiation antennas.
  • this antenna uses the reflection phenomenon, thus avoiding losses at the interfaces encountered in transmission systems.
  • it uses two reflectors, which on the one hand gives greater flexibility in the choice and focusing of the reflectors and on the other hand limits the size of the antenna.
  • the reflectors are passive and of revolution, which is relatively simple and inexpensive to manufacture.
  • this antenna is adapted to the radiation of any polarization: constant polarization throughout the diagram and parallel to OZ if the network consists of unipoles, in the XOY plane if the network consists of current loops parallel to XOY, and circular if the network consists for example of propellers or any other source of circular polarization.
  • the antenna described above is therefore capable of transmitting and receiving a directive beam electronically scanning the antenna coverage area. It is also likely to operate in multibeam mode.
  • the means 1 can be any and for example constituted by an omnidirectional source, with the exception of the reservation made above on the angle a m ( Figure 1).
  • the means 1 When the multibeam antenna is used for reception, the means 1 must be constituted by a network, associated with a beam forming matrix (analog or digital) connected to a set of receivers; as is known, when the beam forming matrix is digital, it must be placed upstream of the receivers.
  • the beam-forming matrix like the receivers are included in the means 5.
  • the OZ axis can be vertical, but it is not at all necessary. It is thus also that the network 1 has been described as flat, but that it may be slightly concave, its concavity being turned towards the reflector 2, in order to facilitate the focusing of the energy that it radiates on this reflector. Finally, the use of the single-pole network as described in FIG. 3 is not limited to an antenna as described in FIG. 1, but extends to any type of antenna using a network.

Claims (9)

1. Statische Antenne mit quasi-torischem Empfindlichkeitsbereich zur Aussendung und/oder zum Empfang eines Mikrowellenstrahls, wobei die Antenne im wesentlichen eine Rotationssymmetrieachse (OZ) besitzt und aufweist: eine Mikrowellenenergiequelle zum Aussenden oder Empfangen des Mikrowellenstrahls, wobei die Quelle auf die Symmetrieachse zentriert ist, einen ersten konkaven Reflektor (2), der auf die Symmetrieachse zentriert ist, einen zweiten ringförmigen Reflektor (3), der auf die Symmetrieachse zentriert ist und sich auf der dem ersten Reflektor (2) entfernten Seite der Quelle (1) erstreckt, und dessen Meridian in jedem punkte eine zum ersten Reflektor (2) weisende Konkavität besitzt, wobei die Quelle und die beiden Reflektoren so zueinander angeordnet sind, daß der größte Teil der von der Quelle ausgesandten oder empfangenen Energie durch die beiden Reflektoren reflektiert wird, dadurch gekennzeichnet, daß der Strahl ein elektronisch geschwenkter Richtstrahl ist, daß die Mikrowellenenergiequelle aus einem Netzwerk strahlender Elemente besteht, wobei jedes der strahlenden Elemente Mitteln zur Phasenverschiebung der Mikrowelle zugeordnet ist, welche das Element durchläuft, wobei das Netzwerk den Strahl in eine Richtung aussenden oder aus einer Richtung empfangen kann, die durch die Phasenverschiebungsmittel elektronisch steuerbar ist und wobei das Netzwerk senkrecht zur Rotationssymmetrieachse orientiert ist, daß der erste Reflektor (2) die Gestalt einer Kalotte besitzt, deren Konkavität in jedem ihrer Punkte zum Netzwerk (1) weist, und daß die Randlinie des Netzwerkes innerhalb der inneren Grenzlinie des ringförmigen Reflektors (3) verläuft.
2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß sie weiter Stützmittel (4) für den ersten Reflektor (2) aufweist, die ihn an seiner Peripherie (20) stützen.
3. Antenne nach Anspruch 2, dadurch gekennzeichnet, daß die Stützmittel (4) weiter eine Antennenkuppel bilden.
4. Antenne nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Stützmittel (4) weiter einen Polarisator oder ein Polarisationsfilter bilden.
5. Antenne nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Stützmittel (4) weiter einen beweglichen Schirm bilden.
6. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der erste Reflektor (2) die Gestalt einer im wesentlichen elliptischen oder parabelförmigen Kalotte besitzt.
7. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Netzwerk (1) eine Vielzahl einpoliger strahlender Elemente (15) aufweist.
8. Antenne nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Netzwerk (1) Mittel zur Steuerung seines Strahlungsgesetzes besitzt.
9. Antenne nach einem der vorhergehenden Ansprüche vom Mehrstrahltypus zum Empfang einer Mikrowelle, dadurch gekennzeichnet, daß das Netzwerk (1) einer Matrix zur Bildung von Strahlen zugeordnet ist, die an eine Gruppe von Empfängern angeschlossen ist.
EP84401409A 1983-07-08 1984-07-03 Doppelreflektorantenne mit fast ringflächiger Strahldeckung Expired - Lifetime EP0131512B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8311430A FR2548836B1 (fr) 1983-07-08 1983-07-08 Antenne a couverture quasi torique a deux reflecteurs
FR8311430 1983-07-08

Publications (2)

Publication Number Publication Date
EP0131512A1 EP0131512A1 (de) 1985-01-16
EP0131512B1 true EP0131512B1 (de) 1990-09-05

Family

ID=9290661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84401409A Expired - Lifetime EP0131512B1 (de) 1983-07-08 1984-07-03 Doppelreflektorantenne mit fast ringflächiger Strahldeckung

Country Status (4)

Country Link
US (1) US4740791A (de)
EP (1) EP0131512B1 (de)
DE (1) DE3483122D1 (de)
FR (1) FR2548836B1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715511B1 (fr) * 1994-01-21 1996-02-23 Thomson Csf Dispositif de compensation des erreurs de pointage causées par des pannes de déphaseurs d'antennes à balayage électronique ou de coefficients d'antennes à formation de faisceaux par le calcul.
US6094174A (en) * 1996-03-04 2000-07-25 Andrew Corporation Broadband omnidirectional microwave parabolic dish--shaped cone antenna
CA2198969A1 (en) * 1996-03-04 1997-09-04 Andrew Corporation Broadband omnidirectional microwave antenna with decreased sky radiation and with a simple means of elevation-plane pattern control
FR2775347B1 (fr) * 1998-02-24 2000-05-12 Thomson Csf Procede de determination de l'erreur de calage de la face rayonnante d'une antenne reseau a balayage electronique
GB9824800D0 (en) * 1998-11-12 1999-01-06 Marconi Electronic Syst Ltd Scanning of electromagnetic beams
EP1131856A1 (de) * 1998-11-12 2001-09-12 BAE Systems Electronics Ltd. Abtasten von elektromagnetischen strahlen
JP3801831B2 (ja) * 2000-02-04 2006-07-26 三菱電機株式会社 レーダ用アンテナ
FR2812457B1 (fr) 2000-07-28 2004-05-28 Thomson Csf Reflecteur hyperfrequence actif a bi-polarisation, notamment pour antenne a balalyage electronique
US20110102233A1 (en) * 2008-09-15 2011-05-05 Trex Enterprises Corp. Active millimeter-wave imaging system
IT1404265B1 (it) * 2011-01-28 2013-11-15 Thales Alenia Space Italia Spa Con Unico Socio Sistema d'antenna per satelliti in orbita bassa
US11881625B1 (en) * 2020-10-06 2024-01-23 Lockheed Martin Corporation Phased array feed reflector collar and paraconic ground plane

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE710087C (de) * 1935-06-08 1941-09-03 Telefunken Gmbh Reflektoranordnung zum Empfang ultrakurzer Wellen aus allen Horizontalrichtungen, insbesondere auf Fahrzeugen
US2440210A (en) * 1946-03-26 1948-04-20 Us Sec War Antenna
FR1128952A (fr) * 1955-03-17 1957-01-14 Materiel Telephonique Antenne pour ondes ultra-courtes
FR1392013A (fr) * 1964-01-31 1965-03-12 Nouveaux aériens pour micro-ondes
FR1569560A (de) * 1965-11-26 1969-06-06
FR1571407A (de) * 1968-04-10 1969-06-20
US3551676A (en) * 1968-04-19 1970-12-29 Russell W Runnels Aircraft collision warning system with panoramic viewing reflections
FR2063967B1 (de) * 1969-10-15 1973-10-19 Bony Gilbert
US3775773A (en) * 1972-07-17 1973-11-27 Itt Technique for generating planar beams from a linear doppler line source employing a circular parallel-plate waveguide
US3848255A (en) * 1973-03-22 1974-11-12 Teledyne Inc Steerable radar antenna
GB1603657A (en) * 1977-09-13 1981-11-25 Marconi Co Ltd Systems for the transmission and/or reception of electromagnetic waves
DE3027093C2 (de) * 1980-07-17 1985-04-25 Siemens AG, 1000 Berlin und 8000 München Umpolarisiereinrichtung zur Erzeugung zirkular polarisierter elektromagnetischer Wellen
US4424500A (en) * 1980-12-29 1984-01-03 Sperry Corporation Beam forming network for a multibeam antenna

Also Published As

Publication number Publication date
US4740791A (en) 1988-04-26
FR2548836A1 (fr) 1985-01-11
EP0131512A1 (de) 1985-01-16
FR2548836B1 (fr) 1986-02-21
DE3483122D1 (de) 1990-10-11

Similar Documents

Publication Publication Date Title
EP0374008B1 (de) Den vollen Raumwinkel abtastende elektronische Antenne mit räumlich zufällig verteilten, verdünnt angeordneten Strahlern
EP1568104B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
EP0131512B1 (de) Doppelreflektorantenne mit fast ringflächiger Strahldeckung
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
EP2795724A1 (de) Basisantenne und entsprechende ein-oder zweidimensionale gruppenantenne
FR2655778A1 (fr) Antenne iff aeroportee a diagrammes multiples commutables.
EP3109941B1 (de) Mikrowellen-doppelreflektorantenne
FR2685131A1 (fr) Antenne de reception a reflecteur fixe pour plusieurs faisceaux de satellite.
EP1554777B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
EP1798809B1 (de) Vorrichtung zum Ausstrahlen und/oder Empfangen von elektromagnetischen Wellen für aerodynamisch gesteuerte Luftfahrzeuge
EP0548876B1 (de) Asymmetrische Spiegelantenne mit zwei Reflektoren
EP3457489B1 (de) Drehgelenk für eine drehantenne, und ein solches gelenk umfassende drehantenne
EP3446362B1 (de) System zur ablenkung und ausrichtung eines mikrowellenstrahls
EP0045254B1 (de) Kompakter Mikrowellenerreger für zwei Frequenzbereiche
EP1900064A1 (de) Inhomogene linse mit gradientenindex des maxwellschen fischaugetyps, antennensystem und entsprechende anwendungen
FR2664747A1 (fr) Antenne a balayage par variation de frequence.
EP3844844A1 (de) Antenne zum senden und/oder empfangen einer elektromagnetischen welle und system mit dieser antenne
EP0014605B1 (de) Umgekehrte Cassegrain-Antenne für Mehrzweckradar
FR2854737A1 (fr) Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
FR3068523A1 (fr) Antenne a reseau transmetteur comportant un mecanisme de reorientation de la direction du faisceau
WO2022023126A1 (fr) Dispositif a metasurface
EP0088681B1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
EP2171799A1 (de) Antennensystem mit einem anhand von abschnitts- und richtungsstrahlungsdiagrammen rekonfigurierbaren strahlungsdiagramm sowie entsprechende sende- und/oder empfangsvorrichtung
FR2968848A1 (fr) Antenne a reflecteur parabolique
EP4189772A1 (de) Metaoberflächenvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19850618

17Q First examination report despatched

Effective date: 19861128

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900905

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3483122

Country of ref document: DE

Date of ref document: 19901011

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920615

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920617

Year of fee payment: 9

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

EUG Se: european patent has lapsed

Ref document number: 84401409.2

Effective date: 19940210