EP1554777B1 - Mehrfachstrahlantenne mit photonischem bandlückenmaterial - Google Patents

Mehrfachstrahlantenne mit photonischem bandlückenmaterial Download PDF

Info

Publication number
EP1554777B1
EP1554777B1 EP03778447A EP03778447A EP1554777B1 EP 1554777 B1 EP1554777 B1 EP 1554777B1 EP 03778447 A EP03778447 A EP 03778447A EP 03778447 A EP03778447 A EP 03778447A EP 1554777 B1 EP1554777 B1 EP 1554777B1
Authority
EP
European Patent Office
Prior art keywords
excitation
radiating
antenna
radiant
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03778447A
Other languages
English (en)
French (fr)
Other versions
EP1554777A1 (de
Inventor
Marc Thevenot
Régis CHANTALAT
Bernard Jecko
Ludovic Leger
Thierry Monediere
Patrick Dumon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0213326A external-priority patent/FR2854737A1/fr
Priority claimed from FR0309473A external-priority patent/FR2854735B1/fr
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS filed Critical Centre National dEtudes Spatiales CNES
Publication of EP1554777A1 publication Critical patent/EP1554777A1/de
Application granted granted Critical
Publication of EP1554777B1 publication Critical patent/EP1554777B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • Multi-beam antennas are widely used in space applications and especially in geostationary satellites to transmit to the earth's surface and / or receive information from the Earth's surface. They comprise for this purpose several radiating elements each generating a beam of electromagnetic waves spaced from the other beams. These radiating elements are, for example, placed near the focus of a parabola forming reflector of electromagnetic wave beams, the parabola and the multi-beam antenna being housed in a geostationary satellite. The parabola is intended to direct each beam on a corresponding area of the earth's surface. Each area of the Earth's surface illuminated by a beam of the multi-beam antenna is commonly referred to as a coverage area. Thus, each coverage area corresponds to a radiating element.
  • each horn produces a substantially circular radiating spot forming the base of a conical beam radiated emission or reception.
  • These horns are arranged next to each other so as to bring as close as possible the radiant spots of each other.
  • FIG. 1A diagrammatically represents a multi-beam antenna with cornets in front view in which seven squares F1 to F7 indicate the bulk of seven cones arranged contiguously to one another. Seven circles S1 to S7, each inscribed in one of the squares F1 to F7, represent the radiating spots produced by the corresponding horns.
  • the antenna of FIG. 1A is placed at the focus of a parabola of a geostationary satellite intended to transmit information on the French territory.
  • Figure 1B shows areas C1 to C7 of coverage at -3 dB, each corresponding to a radiating spot of the antenna of Figure 1A.
  • the center of each circle corresponds to a point on the earth's surface where the power received is maximum.
  • the perimeter of each circle delimits an area within which the power received on the earth's surface is greater than half the maximum power received at the center of the circle.
  • the radiating spots S1 to S7 are substantially contiguous, they produce cover areas at -3 dB disjoined from each other.
  • the regions between the -3 dB coverage areas are referred to here as receiving holes.
  • Each receiving hole therefore corresponds to a region of the earth's surface where the received power is less than half of the maximum power received. In these receiving holes, the received power may be insufficient for a receiver floor to function properly.
  • FIG. 2A A partial front view of such a multi-beam antenna having a plurality of overlapping radiating spots is illustrated in Figure 2A.
  • the radiating spot SR1 is formed from the SdR1 to SdR7 radiation sources arranged contiguously next to one another.
  • a radiating spot SR2 is produced from SdR1, SdR2, SdR3 and SdR7 radiation sources and from SdR8 to SdR10 radiation sources.
  • the SdR1 to SdR7 radiation sources are suitable for working at a first working frequency for creating a first substantially uniform electromagnetic wave beam at this first frequency.
  • the sources of radiation SdR1 to SdR3 and SdR7 to SdR10 are adapted to work at a second working frequency so as to create a second electromagnetic wave beam, substantially uniform at this second working frequency.
  • the sources of radiation SdR1 to SdR3 and SdR7 are able to work simultaneously at the first and second working frequencies.
  • the first and second working frequencies are different from each other so as to limit interference between the first and second beams produced.
  • radiation sources such as SdR1-3 radiation sources, are used both to create the SR1 radiating spot and the SR2 radiating spot, thereby producing an overlap of these two.
  • An illustration of the arrangement of the -3 dB coverage areas created by a multi-beam antenna with overlapping radiating spots is shown in Figure 2B.
  • Such an antenna can significantly reduce the receiving holes, or even make them disappear.
  • this multi-beam antenna is more complex to order than conventional horn antennas.
  • the aim of the invention is to remedy this drawback by proposing a simpler overlapping multi-beam antenna with radiating spots.
  • each excitation element produces a single radiating spot forming the base or cross-section at the origin of an electromagnetic wave beam.
  • this antenna is comparable with conventional horn antennas where a horn produces a single radiating spot.
  • the control of this antenna is therefore similar to that of a conventional horn antenna.
  • the excitation elements are placed so as to overlap the radiating spots. This antenna thus has the advantages of a multi-beam antenna with overlapping radiating spots without the complexity of the control of the excitation elements has been increased compared to that of multi-beam horn antennas.
  • FIG. 3 represents a multi-beam antenna 4.
  • This antenna 4 is formed of a photonic ban band material or BIP material associated with a metallic plane 22 reflecting electromagnetic waves:
  • the BIP materials are known and the design of a BIP material such as the material 20 is, for example, described in the patent application FR 99 14521. Thus, only the specific characteristics of the antenna 4 with respect to this state of the art. the technique will be described here in detail.
  • a BIP material is a material which has the property of absorbing certain frequency ranges, that is to say of prohibiting any transmission in said aforementioned frequency ranges. These frequency ranges form what is called here a non-conducting band.
  • FIG. 4 represents a curve representing the variations of the transmission coefficient expressed in decibels as a function of the frequency of the emitted or received electromagnetic wave: this transmission coefficient is representative of the energy transmitted on one side of the BIP material with respect to the energy received on the other side.
  • the non-conducting band B or absorption band B extends substantially from 7 GHz to 17 GHz.
  • This non-conducting band B depends solely on the properties and characteristics of the BIP material.
  • the BIP material generally consists of a periodic arrangement of dielectric permittivity and / or variable permeability.
  • the material 20 is formed from two blades 30, 32 made of a first magnetic material such as alumina and two blades 34 and 36 formed in a second magnetic material such as air.
  • the blade 34 is interposed between the blades 30 and 32, while the blade 36 is interposed between the blade 32 and the reflector plane 22.
  • the blade 30 is disposed at one end of this stack of blades. It has an outer surface 38 opposite its surface in contact with the blade 34. This surface 38 forms a radiating surface in emission and / or reception.
  • the median frequency f m is substantially equal to 12 GHz.
  • the radius R is substantially equal to 2.15 ⁇ .
  • Such a parallelepiped resonant cavity has several families of resonant frequencies. Each family of resonance frequencies is formed by a fundamental frequency and its harmonics or integer multiples of the fundamental frequency. Each resonance frequency of the same family excites the same mode of resonance of the cavity. These resonance modes are known under the terms resonance modes TM 0 , TM 1 ,..., TM i , .... These modes of resonance are described in more detail in the document by F. Cardiol, "Electromagnetism, Electricity, Electronics and Electrical Engineering ", Ed. Dunod, 1987.
  • each resonance mode corresponds to a radiation pattern of the particular antenna and to a radiating spot in emission and / or reception formed on the outer surface 38.
  • the radiating spot is here the area of the outer surface 38 containing the entire points where the radiated power in emission and / or in reception is greater than or equal to half of the maximum power radiated from this external surface by the antenna 4.
  • Each radiating spot has a geometrical center corresponding to the point where the power radiated is substantially equal to the maximum radiated power.
  • this radiating spot is part of a circle whose diameter ⁇ is given by the formula (1).
  • the radiation pattern is here highly directional along a direction perpendicular to the outer surface 38 and passing through the geometric center of the radiating spot.
  • the radiation pattern corresponding to the TM 0 resonance mode is illustrated in FIG. 5.
  • the frequencies f mi are placed inside the narrow bandwidth E.
  • excitation elements 40 to 43 are placed next to one another in the cavity 36 on the reflector plane 22.
  • the geometric centers of these excitation elements are placed at the four angles a rhombus whose dimensions of the sides are strictly smaller than 2R.
  • Each of these excitation elements is able to emit and / or receive an electromagnetic wave at a working frequency f Ti different from that of the other excitation elements.
  • the frequency f Ti of each excitation element is close to f mo so as to excite the resonance mode TM 0 of the cavity 36.
  • These excitation elements 40 to 43 are connected to a conventional generator / receiver 45 of FIG. electrical signals to be transformed by each excitation element into an electromagnetic wave and vice versa.
  • excitation elements are, for example, constituted by a radiating dipole, a radiating slot, a plate probe or a radiating patch.
  • the lateral bulk of each radiating element that is to say in a plane parallel to the outer surface 38, is strictly smaller than the surface of the radiating spot to which it gives rise.
  • the excitation element 40 In transmission, the excitation element 40, activated by the generator / receiver 45, emits an electromagnetic wave at a working frequency f T0 and excites the resonance mode TM 0 of the cavity 36.
  • radiating elements 41 to 43 are, for example, simultaneously activated by the generator / receiver 45 and likewise respectively at the working frequencies f T1 , f T2 and f T3 .
  • the radiating spot and the corresponding radiation pattern are independent of the lateral dimensions of the cavity 36.
  • the resonance mode TM 0 is only a function of the thickness and the nature of the materials of each of the blades 30 to 36 and is established independently of the lateral dimensions of the cavity 36 when they are several times greater than the radius R defined above.
  • several TM 0 resonance modes can be established simultaneously next to each other and thus simultaneously generate several radiating spots arranged next to each other. This is what happens when the excitation elements 40 to 43 excite, each at different points of space, the same mode of resonance.
  • the excitation by the excitation element 40 of the resonance mode TM 0 results in the appearance of a radiant spot 46 that is substantially circular and whose geometric center is placed vertically above the geometric center of the element 40.
  • excitation by the elements 41 to 43 of the TM 0 resonance mode results in the appearance, at the vertical of the geometric center of each of these elements, respectively of radiating spots 47 to 49.
  • geometric center of the element 40 being at a distance strictly less than 2R of the geometric center of the elements 41 and 43, the radiating spot 46 partially overlaps the radiating spots 47 and 49 respectively corresponding to the radiating elements 41 and 43.
  • the radiating spot 49 partially overlaps the radiating spots 46 and 48
  • the radiating spot 48 partly overlaps the radiating spots 49 and 47
  • the radiating spot 47 overlaps with the radiating spots 49 and 47 n part radiant spots 46 and 48.
  • Each radiating spot corresponds to the base or cross section at the origin of a radiated electromagnetic wave beam.
  • this antenna operates in a manner similar to the known overlapping multi-beam radiating beam antennas.
  • the operation of the antenna in reception follows from that described in emission. So, for example, if an electromagnetic wave is emitted towards the radiating spot 46, it is received in the surface corresponding to the spot 46. If the received wave is at a frequency in the narrow bandwidth E, it is not absorbed by the BIP material 20 and is received by the excitation element 40. Each electromagnetic wave received by an excitation element is transmitted in the form of an electrical signal to the generator / receiver 45.
  • FIG. 6 represents an antenna 70 made from a BIP material 72 and a reflector 74 of electromagnetic waves
  • FIG. 7 shows the evolution of the transmission coefficient of this antenna as a function of frequency.
  • the BIP material 72 is, for example, identical to the BIP material 20 and has the same non-conducting band B (FIG. 7).
  • the blades forming this BIP material already described with reference to FIG. 3 bear the same numerical references.
  • the reflector 74 is formed, for example, from the reflective plane 22 deformed so as to divide the cavity 36 into two resonant cavities 76 and 78 of different heights.
  • the constant height H 1 of the cavity 76 is determined so as to place, within the non-conducting band B, a narrow bandwidth E 1 (FIG. 7), for example, around the frequency of 10 GHz.
  • the height H 2 of the resonant cavity 78 is determined so as to place, within the same non-conducting band B, a narrow bandwidth E 2 (FIG. 7), for example centered around 14 GHz.
  • the reflector 74 is composed here of two reflective half-planes 80 and 82 arranged in steps and electrically connected to one another.
  • the reflective half-plane 80 is parallel to the blade 32 and spaced therefrom by the height H 1 .
  • the half-plane 82 is parallel to the blade 32 and spaced therefrom from the constant height H 2 .
  • an excitation element 84 is disposed in the cavity 76 and an excitation element 86 is disposed in the cavity 78.
  • These excitation elements 84, 86 are, for example, identical to the excitation elements 40 to 43. with the exception that the excitation element 84 is able to excite the resonance mode TM 0 of the cavity 76, while the excitation element 86 is able to excite the resonance mode TM 0 of the cavity 78.
  • the horizontal distance that is to say parallel to the blade 32, separating the geometric center of the elements of excitation 84 and 86, is strictly less than the sum of the radii of two radiating spots produced respectively by the elements 84 and 86.
  • this antenna 70 is identical to that of the antenna of FIG. 3.
  • the working frequencies of the excitation elements 84 and 86 are located in narrow bandwidths E 1 , E 2 respective. So; unlike the antenna 4 of FIG. 3, the working frequencies of each of these excitation elements are separated from each other by a large frequency interval, for example here 4 GHz.
  • the positions of the pass bands E 1 , E 2 are chosen so as to be able to use imposed working frequencies.
  • FIG. 8 represents a multi-beam antenna 100.
  • This antenna 100 is similar to the antenna 4 except that the single-defective BIP material 20 of the radiating device 4 is replaced by a multi-fault BIP material 102.
  • the elements already described with reference to FIG. 4 bear the same numerical references.
  • the antenna 100 is shown in section along a section plane perpendicular to the reflector plane 22 and passing through the excitation elements 41 and 43.
  • the BIP material 102 comprises two successive groups 104 and 106 of blades made of a first dielectric material.
  • the groups 104 and 106 are superimposed in the direction perpendicular to the reflective plane 22.
  • Each group 104, 106 is formed, by way of non-limiting example, respectively by two blades 110, 112 and 114, 116 parallel to the reflector plane 22.
  • Each blade of a group has the same thickness as the other blades of this same grouping.
  • each blade of the BIP 102 material is interposed a blade of a second dielectric material, such as air.
  • the thickness of these blades separating the blades 110, 112, 114 and 116 is equal to ⁇ / 4.
  • the first blade 116 is disposed vis-à-vis the reflector plane 22 and separated from this plane by a blade of second dielectric material thickness ⁇ / 2 so as to form a parallelepiped cavity resonant leak.
  • the thickness e i of the blades of dielectric material, consecutive to each group of blades of dielectric material, is in geometric progression of reason q in the direction of successive groups 104, 106.
  • the number of superimposed groups is equal to 2 so as not to overload the drawing, and the geometric progression reason is also taken equal to 2.
  • This radiating device 100 derives directly from that of the antenna 4.
  • each excitation element is polarized in a direction different from that used by the neighboring excitation elements.
  • the polarization of each excitation element is orthogonal to that used by neighboring excitation elements.
  • the same excitation element is adapted to operate successively or simultaneously at several different working frequencies.
  • Such an element makes it possible to create a coverage area in which, for example, transmission and reception are done at wavelengths different.
  • Such an excitation element is also able to make frequency switching.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Claims (8)

  1. Mehrstrahlige Antenne, enthaltend:
    - ein BIP-Material (20, 142, 172) (Bande d'Interdiction Photonique - Photonensperrband), das geeignet ist, räumlich und frequenzbezogen elektromagnetische Wellen zu filtern, wobei dieses BIP-Material wenigstens ein nicht durchlässiges Band aufweist und eine Außenfläche (38; 158) ausbildet, die beim Senden und/oder Empfangen ausstrahlt,
    - wenigstens einen Periodizitätsdefekt (36, 76, 78, 156, 180) des BIP-Materials, so dass in dem wenigstens einen nicht durchlässigen Band dieses BIP-Materials wenigstens ein schmales durchlässiges Band erzeugt wird,
    - wobei der oder jeder Periodizitätsdefekt (36, 76, 78) des BIP-Materials einen Resonanz-Hohlraum (36, 76, 78) mit Leckstellen ausbildet, der eine konstante Höhe in einer Richtung, die orthogonal zu der ausstrahlenden Außenfläche (38) verläuft, und bestimmte seitliche Abmessungen aufweist, die parallel zu der ausstrahlenden Außenfläche verlaufen; und
    - eine Erregervorrichtung (40 bis 43, 84, 86, 160, 162, 190), die geeignet ist, elektromagnetische Wellen in dem wenigstens einen schmalen durchlässigen Band zu senden und/oder zu empfangen, das durch den wenigstens einen Defekt erzeugt wird,
    dadurch gekennzeichnet, dass:
    - die Erregervorrichtung geeignet ist, gleichzeitig wenigstens auf einer ersten und einer zweiten unterschiedlichen Arbeitsfrequenz zu arbeiten;
    - die Erregervorrichtung ein erstes und ein zweites Erregerelement (40 bis 43, 84, 86) aufweist, die verschieden und voneinander unabhängig sind, die geeignet sind, elektromagnetische Wellen zu senden und/oder zu empfangen, wobei das erste Erregerelement geeignet ist, auf der ersten Arbeitsfrequenz zu arbeiten, und das zweite Erregerelement geeignet ist, auf der zweiten Arbeitsfrequenz zu arbeiten;
    - die erste und die zweite Arbeitsfrequenz geeignet sind, den gleichen Resonanzmodus eines Resonanz-Hohlraums mit Leckstellen (36, 76, 78) zu erregen, wobei dieser Resonanzmodus in identischer Weise hergestellt wird, ungeachtet der seitlichen Abmessungen des Hohlraums, so dass auf der Außenseite jeweils ein erster und ein zweiter ausstrahlender Fleck (46 bis 49) erzeugt wird, wobei jeder dieser ausstrahlenden Flecke den Ursprung eines Bündels von elektromagnetischen Wellen darstellt, die beim Senden und/oder Empfang durch die Antenne ausgestrahlt werden,
    - wobei jeder der ausstrahlenden Flecke (46 bis 49) eine geometrische Mitte aufweist, deren Position eine Funktion der Position des Erregerelements ist, das zu ihrer Entstehung führt, und deren Oberfläche größer als diejenige des ausstrahlenden Elements ist, das zu ihrer Entstehung führt, und
    - das erste und das zweite Erregerelement (40 bis 43, 84, 86) in Bezug aufeinander so positioniert sind, dass der erste und der zweite ausstrahlende Fleck (46 bis 49) auf der Außenfläche (38) des Materials BIP nebeneinander und sich teilweise überlappend angeordnet sind.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass:
    - jeder ausstrahlende Fleck (46 bis 49) im Wesentlichen kreisförmig ist, wobei die geometrische Mitte einer maximalen gesendeten und/oder empfangenen Leistung entspricht und der Umfang einer gesendeten und/oder empfangenen Leistung entspricht, die gleich einem Bruchteil der maximalen, in seiner Mitte gesendeten und/oder empfangenen Leistung ist, und
    - in einer zur Außenfläche parallelen Ebene der Abstand, der die geometrischen Mitten der zwei Erregerelemente (40 bis 43, 84, 66) trennt, deutlich kleiner ist als die Strahlung des ausstrahlenden Flecks, der durch das erste Erregerelement erzeugt wird, angefügt an die Strahlung des ausstrahlenden Flecks, der durch das zweite Erregerelement erzeugt wird.
  3. Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die geometrische Mitte jedes ausstrahlenden Flecks (46 bis 49) auf der Linie positioniert ist, die zu der ausstrahlenden Außenfläche (38) orthogonal verläuft und die die geometrische Mitte des Erregerelements (40 bis 43) durchquert, das zu seiner Entstehung führt.
  4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste und das zweite Erregerelement (40 bis 43) im Inneren des selben Hohlraums (36) positioniert sind.
  5. Antenne nach Anspruch 4, dadurch gekennzeichnet, dass die erste und die zweite Arbeitsfrequenz sich in dem gleichen schmalen durchlässigen Band befinden, das durch diesen selben Hohlraum (36) erzeugt wird.
  6. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste und das zweite Erregerelement (84, 86) jeweils im Inneren von verschiedenen Resonanz-Fiohlräumen (76, 78) positioniert sind, und dadurch, dass die erste und die zweite Arbeitsfrequenz geeignet sind, jeweils einen von den seitlichen Abmessungen ihres jeweiligen Hohlraums unabhängigen Resonanzmodus zu erregen.
  7. Antenne nach Anspruch 6, dadurch gekennzeichnet, dass sie eine Reflektorebene (74) für elektromagnetische Strahlung aufweist, die mit dem BIP-Material (72) verbunden ist, wobei diese Reflektorebene so verformt ist, dass sie die verschiedenen Hohlräume bildet.
  8. Antenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der oder jeder Hohlraum in Parallelflachform ausgebildet wird.
EP03778447A 2002-10-24 2003-10-23 Mehrfachstrahlantenne mit photonischem bandlückenmaterial Expired - Lifetime EP1554777B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0213326A FR2854737A1 (fr) 2002-10-24 2002-10-24 Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
FR0213326 2002-10-24
FR0309473A FR2854735B1 (fr) 2003-07-31 2003-07-31 Antenne a materiau bip multi-faisceaux
FR0309473 2003-07-31
PCT/FR2003/003147 WO2004040696A1 (fr) 2002-10-24 2003-10-23 Antenne a materiau bip multi-faisceaux

Publications (2)

Publication Number Publication Date
EP1554777A1 EP1554777A1 (de) 2005-07-20
EP1554777B1 true EP1554777B1 (de) 2006-05-03

Family

ID=32232268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03778447A Expired - Lifetime EP1554777B1 (de) 2002-10-24 2003-10-23 Mehrfachstrahlantenne mit photonischem bandlückenmaterial

Country Status (8)

Country Link
US (1) US7242368B2 (de)
EP (1) EP1554777B1 (de)
JP (1) JP4181173B2 (de)
AT (1) ATE325438T1 (de)
AU (1) AU2003285446A1 (de)
DE (1) DE60305056T2 (de)
ES (1) ES2264018T3 (de)
WO (1) WO2004040696A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003285445A1 (en) * 2002-10-24 2004-05-25 Centre National D'etudes Spatiales Frequency multiband antenna with photonic bandgap material
FR2906410B1 (fr) * 2006-09-25 2008-12-05 Cnes Epic Antenne a materiau bip(bande interdite photonique), systeme et procede utilisant cette antenne
FR2914506B1 (fr) * 2007-03-29 2010-09-17 Centre Nat Rech Scient Antenne a resonateur equipe d'un revetement filtrant et systeme incorporant cette antenne.
FR2939568B1 (fr) * 2008-12-05 2010-12-17 Thales Sa Antenne a partage de sources et procede d'elaboration d'une antenne a partage de sources pour l'elaboration de multi-faisceaux
US8422967B2 (en) * 2009-06-09 2013-04-16 Broadcom Corporation Method and system for amplitude modulation utilizing a leaky wave antenna
EP2705570B1 (de) 2011-05-06 2020-07-08 Avantix Vorrichtung zum empfangen und/oder senden einer welle, system mit dieser vorrichtung und verwendung dieser vorrichtung
EP2523256B1 (de) 2011-05-13 2013-07-24 Thomson Licensing Mehrstrahl-Antennensystem
US9537208B2 (en) * 2012-11-12 2017-01-03 Raytheon Company Dual polarization current loop radiator with integrated balun
US10270524B2 (en) * 2014-04-15 2019-04-23 Space Systems/Loral, Llc Broadband satellite payload architecture
US11088467B2 (en) 2016-12-15 2021-08-10 Raytheon Company Printed wiring board with radiator and feed circuit
US10581177B2 (en) 2016-12-15 2020-03-03 Raytheon Company High frequency polymer on metal radiator
US10541461B2 (en) 2016-12-16 2020-01-21 Ratheon Company Tile for an active electronically scanned array (AESA)
US10361485B2 (en) 2017-08-04 2019-07-23 Raytheon Company Tripole current loop radiating element with integrated circularly polarized feed
US10424847B2 (en) 2017-09-08 2019-09-24 Raytheon Company Wideband dual-polarized current loop antenna element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
US6262830B1 (en) * 1997-09-16 2001-07-17 Michael Scalora Transparent metallo-dielectric photonic band gap structure
FR2801428B1 (fr) 1999-11-18 2004-10-15 Centre Nat Rech Scient Antenne pourvue d'un assemblage de materiaux filtrant
US6853350B2 (en) * 2001-08-23 2005-02-08 Broadcom Corporation Antenna with a magnetic interface
FR2830131B1 (fr) * 2001-09-24 2005-06-24 Centre Nat Rech Scient Antenne a large bande ou multi-bandes
JP4181172B2 (ja) * 2002-10-24 2008-11-12 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) フォトニックバンドギャップ材料によるマルチビームアンテナ
AU2003285445A1 (en) * 2002-10-24 2004-05-25 Centre National D'etudes Spatiales Frequency multiband antenna with photonic bandgap material
US7136028B2 (en) * 2004-08-27 2006-11-14 Freescale Semiconductor, Inc. Applications of a high impedance surface

Also Published As

Publication number Publication date
WO2004040696A1 (fr) 2004-05-13
JP2006504375A (ja) 2006-02-02
ES2264018T3 (es) 2006-12-16
AU2003285446A8 (en) 2004-05-25
JP4181173B2 (ja) 2008-11-12
ATE325438T1 (de) 2006-06-15
EP1554777A1 (de) 2005-07-20
AU2003285446A1 (en) 2004-05-25
DE60305056D1 (de) 2006-06-08
DE60305056T2 (de) 2006-12-07
US20060132378A1 (en) 2006-06-22
US7242368B2 (en) 2007-07-10

Similar Documents

Publication Publication Date Title
EP1568104B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
EP1554777B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
EP2795724B1 (de) Basisantenne und entsprechende ein-oder zweidimensionale gruppenantenne
CA2243603C (fr) Structure rayonnante
EP2194602B1 (de) Antenne mit gemeinsam benützten Elementarstrahlern und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützten Elementarstrahlern
EP1407512B1 (de) Antenne
CA2682273C (fr) Antenne a resonateur equipe d'un revetement filtrant et systeme incorporant cette antenne
EP1416586B1 (de) Antenne mit einer Filtermaterialanordnung
EP0147325B1 (de) Antenne mit zwei gekreuzten parabolisch-cylindrischen Reflektoren und Verfahren zur Herstellung derselben
FR2496347A1 (fr) Antenne de systeme de navigation omnidirectionnelle a tres haute frequence
FR2795240A1 (fr) Antenne de station de base de radiocommunication
WO2004040695A1 (fr) Antenne a materiau bip multi-bandes de frequences
FR2854737A1 (fr) Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
CA2044903C (fr) Antenne a balayage par variation de frequence
EP0045254B1 (de) Kompakter Mikrowellenerreger für zwei Frequenzbereiche
FR2854735A1 (fr) Antenne a materiau bip multi-faisceaux
CA2808511A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2684809A1 (fr) Antenne passive multifaisceaux a reflecteur(s) conforme (s).
FR2854734A1 (fr) Systeme d'emission et ou de reception d'ondes electromagnetiques equipe d'une antenne multi-faisceaux a materiau bip
EP0088681B1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
WO2001052356A1 (fr) Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
FR2842025A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions
FR2854738A1 (fr) Antenne a materiau bip multi-bandes de frequences
FR2773269A1 (fr) Dispositif large bande de detection, notamment de radars

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60305056

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2264018

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20180913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181009

Year of fee payment: 16

Ref country code: SE

Payment date: 20181022

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181022

Year of fee payment: 16

Ref country code: IT

Payment date: 20181011

Year of fee payment: 16

Ref country code: ES

Payment date: 20181126

Year of fee payment: 16

Ref country code: FR

Payment date: 20181030

Year of fee payment: 16

Ref country code: GB

Payment date: 20181017

Year of fee payment: 16

Ref country code: BE

Payment date: 20181022

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60305056

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191024

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191024