EP1568104B1 - Mehrfachstrahlantenne mit photonischem bandlückenmaterial - Google Patents

Mehrfachstrahlantenne mit photonischem bandlückenmaterial Download PDF

Info

Publication number
EP1568104B1
EP1568104B1 EP03778445A EP03778445A EP1568104B1 EP 1568104 B1 EP1568104 B1 EP 1568104B1 EP 03778445 A EP03778445 A EP 03778445A EP 03778445 A EP03778445 A EP 03778445A EP 1568104 B1 EP1568104 B1 EP 1568104B1
Authority
EP
European Patent Office
Prior art keywords
radiating
excitation
electromagnetic waves
antenna
fpb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03778445A
Other languages
English (en)
French (fr)
Other versions
EP1568104A1 (de
Inventor
Marc Thevenot
Régis CHANTALAT
Bernard Jecko
Ludovic Leger
Thierry Monediere
Patrick Dumon
Hervé Legay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0213326A external-priority patent/FR2854737A1/fr
Priority claimed from FR0309472A external-priority patent/FR2854734B1/fr
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS filed Critical Centre National dEtudes Spatiales CNES
Publication of EP1568104A1 publication Critical patent/EP1568104A1/de
Application granted granted Critical
Publication of EP1568104B1 publication Critical patent/EP1568104B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • Multi-beam antennas are widely used in space applications and especially in geostationary satellites to transmit to the earth's surface and / or receive information from the Earth's surface. They comprise for this purpose several radiating elements each generating a beam of electromagnetic waves spaced from the other beams. These radiating elements are, for example, placed near the focus of a parabola forming reflector of electromagnetic wave beams, the parabola and the multi-beam antenna being housed in a geostationary satellite. The parabola is intended to direct each beam on a corresponding area of the earth's surface. Each area of the Earth's surface illuminated by a beam of the multi-beam antenna is commonly referred to as a coverage area. Thus, each coverage area corresponds to a radiating element.
  • each horn produces a substantially circular radiating spot forming the base of a conical beam radiated emission or reception.
  • These horns are arranged next to each other so as to bring as close as possible the radiant spots of each other.
  • FIG. 1A diagrammatically represents a multi-beam antenna with cornets in front view in which seven squares F1 to F7 indicate the bulk of seven cones arranged contiguously to one another. Seven circles S1 to S7, each inscribed in one of the squares F1 to F7, represent the radiating spots produced by the corresponding horns.
  • the antenna of FIG. 1A is placed at the focus of a parabola of a geostationary satellite intended to transmit information on the French territory.
  • Figure 1B shows areas C1 to C7 of coverage at -3 dB, each corresponding to a radiating spot of the antenna of Figure 1A.
  • the center of each circle corresponds to a point on the earth's surface where the power received is maximum.
  • the perimeter of each circle delimits an area within which the power received on the earth's surface is greater than half the maximum power received at the center of the circle.
  • the radiating spots S1 to S7 are substantially contiguous, they produce cover areas at -3 dB disjoined from each other.
  • the regions between the -3 dB coverage areas are referred to here as receiving holes.
  • Each receiving hole therefore corresponds to a region of the earth's surface where the received power is less than half of the maximum power received. In these receiving holes, the received power may be insufficient for a receiver floor to function properly.
  • FIG. 2A A partial front view of such a multi-beam antenna having a plurality of overlapping radiating spots is illustrated in Figure 2A.
  • the radiating spot SR1 is formed from the SdR1 to SdR7 radiation sources arranged contiguously next to one another.
  • a radiating spot SR2 is produced from SdR1, SdR2, SdR3 and SdR7 radiation sources and from SdR8 to SdR10 radiation sources.
  • the SdR1 to SdR7 radiation sources are suitable for working at a first working frequency for creating a first substantially uniform electromagnetic wave beam at this first frequency.
  • the sources of radiation SdR1 to SdR3 and SdR7 to SdR10 are adapted to work at a second working frequency so as to create a second beam of electromagnetic waves substantially uniform at this second working frequency.
  • the sources of radiation SdR1 to SdR3 and SdR7 are able to work simultaneously at the first and second working frequencies.
  • the first and second working frequencies are different from each other so as to limit interference between the first and second beams produced.
  • radiation sources such as SdR1-3 radiation sources, are used both to create the SR1 radiating spot and the SR2 radiating spot, thereby producing an overlap of these two.
  • An illustration of the arrangement of the -3 dB coverage areas created by a multi-beam antenna with overlapping radiating spots is shown in Figure 2B.
  • Such an antenna can significantly reduce the receiving holes, or even make them disappear.
  • this multi-beam antenna is more complex to order than conventional horn antennas.
  • the aim of the invention is to remedy this drawback by proposing a simpler overlapping multi-beam antenna with radiating spots.
  • each excitation element produces a single radiating spot forming the base or cross-section at the origin of an electromagnetic wave beam.
  • this antenna is comparable with conventional horn antennas where a horn produces a single radiating spot.
  • the control of this antenna is therefore similar to that of a conventional horn antenna.
  • the excitation elements are placed so as to overlap the radiating spots. This antenna thus has the advantages of a multi-beam antenna with overlapping radiating spots without the complexity of the control of the excitation elements has been increased compared to that of multi-beam horn antennas.
  • FIG. 3 represents a multi-beam antenna 4.
  • This antenna 4 is formed of a photonic ban band material or BIP material associated with a metal plane 22 reflecting electromagnetic waves.
  • the BIP materials are known and the design of a BIP material such as the material 20 is, for example, described in the patent application FR 99 14521. Thus, only the specific characteristics of the antenna 4 with respect to this state of the art. the technique will be described here in detail.
  • a BIP material is a material which has the property of absorbing certain frequency ranges, that is to say of prohibiting any transmission in said aforementioned frequency ranges. These frequency ranges form what is called here a non-conducting band.
  • FIG. 4 represents a curve representing the variations of the transmission coefficient expressed in decibels as a function of the frequency of the electromagnetic wave emitted or received. This transmission coefficient is representative of the energy transmitted on one side of the BIP material with respect to the energy received on the other side.
  • the non-conducting band B or absorption band B extends substantially from 7 GHz to 17 GHz.
  • This non-conducting band B depends solely on the properties and characteristics of the BIP material.
  • the BIP material generally consists of a periodic arrangement of dielectric permittivity and / or variable permeability.
  • the material 20 is formed from two blades 30, 32 made of a first magnetic material such as alumina and two blades 34 and 36 formed in a second magnetic material such as air.
  • the blade 34 is interposed between the blades 30 and 32, while the blade 36 is interposed between the blade 32 and the reflector plane 22.
  • the blade 30 is disposed at one end of this stack of blades. It has an outer surface 38 opposite its surface in contact with the blade 34. This surface 38 forms a radiating surface in emission and / or reception.
  • the median frequency f m is substantially equal to 1.2 GHz.
  • the radius R is substantially equal to 2.15 ⁇ .
  • Such a parallelepiped resonant cavity has several families of resonant frequencies. Each family of resonance frequencies is formed by a fundamental frequency and its harmonics or integer multiples of the fundamental frequency. Each resonance frequency of the same family excites the same mode of resonance of the cavity. These resonance modes are known under the terms resonance modes TM 0 , TM 1 ,..., TM i , .... These modes of resonance are described in more detail in the document by F. Cardiol, "Electromagnetism, Electricity, Electronics and Electrical Engineering ", Ed. Dunod, 1987.
  • each resonance mode corresponds to a radiation pattern of the particular antenna and to a radiating spot in emission and / or reception formed on the outer surface 38.
  • the radiating spot is here the area of the outer surface 38 containing the entire points where the radiated power in emission and / or in reception is greater than or equal to half of the maximum power radiated from this external surface by the antenna 4.
  • Each radiating spot has a geometrical center corresponding to the point where the power radiated is substantially equal to the maximum radiated power.
  • this radiating spot is part of a circle whose diameter ⁇ is given by the formula (1).
  • the radiation pattern is here highly directional along a direction perpendicular to the outer surface 38 and passing through the geometric center of the radiating spot.
  • the radiation pattern corresponding to the TM 0 resonance mode is illustrated in FIG. 5.
  • the frequencies f mi are placed inside the narrow bandwidth E.
  • excitation elements 40 to 43 are placed next to one another in the cavity 36 on the reflector plane 22.
  • the geometric centers of these excitation elements are placed at the four corners of a rhombus whose sides are strictly smaller than 2R.
  • Each of these excitation elements is able to emit and / or receive an electromagnetic wave at a working frequency f Ti different from that of the other excitation elements.
  • the frequency f Ti of each excitation element is close to f m0 so as to excite the resonance mode TM 0 of the cavity 36.
  • These excitation elements 40 to 43 are connected to a conventional generator / receiver 45 of FIG. electrical signals to be transformed by each excitation element into an electromagnetic wave and vice versa.
  • excitation elements are, for example, constituted by a radiating dipole, a radiating slot, a plate probe or a radiating patch.
  • the lateral bulk of each radiating element that is to say in a plane parallel to the outer surface 38, is strictly smaller than the surface of the radiating spot to which it gives rise.
  • FIG. 6 illustrates an example of application of the antenna 4.
  • FIG. 6 represents a system 60 for transmitting and / or receiving electromagnetic waves suitable for equipping a geostationary satellite.
  • This system 60 comprises a parabola 62 forming an electromagnetic wave beam reflector and the antenna 4 placed at the focus of this dish 62.
  • the electromagnetic wave beams emitted or received by the outer surface 38 of the antenna 4 are represented on this figure by lines 64.
  • the excitation element 40 In transmission, the excitation element 40, activated by the generator / receiver 45, emits an electromagnetic wave at a working frequency f T0 and excites the resonance mode TM 0 of the cavity 36.
  • the other radiating elements 41 to 43 are, for example, simultaneously activated by the generator / receiver 45 and do the same respectively at the working frequencies f T1 , f T2 and f T3 .
  • the radiating spot and the corresponding radiation pattern are independent of the lateral dimensions of the cavity 36.
  • the TM 0 resonance mode depends only on the thickness and nature of the materials of each of the blades 30 to 36 and is established independently of the lateral dimensions of the cavity 36 when they are several times greater than the radius R defined above.
  • several TM 0 resonance modes can be established simultaneously next to each other and thus simultaneously generate several radiating spots arranged next to each other. This is what happens when the excitation elements 40 to 43 excite, each at different points of space, the same mode of resonance.
  • the excitation by the excitation element 40 of the resonance mode TM 0 results in the appearance of a radiant spot 46 that is substantially circular and whose geometric center is placed vertically above the geometric center of the element 40.
  • excitation by the elements 41 to 43 of the TM 0 resonance mode results in the appearance, at the vertical of the geometric center of each of these elements, respectively of radiating spots 47 to 49.
  • geometric center of the element 40 being at a distance strictly less than 2R of the geometric center of the elements 41 and 43, the radiating spot 46 partially overlaps the radiating spots 47 and 49 respectively corresponding to the radiating elements 41 and 43.
  • the radiating spot 49 partially overlaps the radiating spots 46 and 48
  • the radiating spot 48 partly overlaps the radiating spots 49 and 47
  • the radiating spot 47 overlaps with the radiating spots 49 and 47 n part radiant spots 46 and 48.
  • Each radiating spot corresponds to the base or cross-section at the origin of an electromagnetic wave beam radiated towards the dish 62 and reflected by this parabola 62 towards the terrestrial surface.
  • the coverage areas on the terrestrial surface corresponding to each of the emitted beams are close to each other, or even overlap, so as to eliminate or reduce the holes reception.
  • each radiating spot of the outer surface 38 corresponds to a coverage area on the earth's surface.
  • an electromagnetic wave is emitted from the coverage area corresponding to the radiating spot 46, it is received in the surface corresponding to the stain 46 after being reflected by the dish 62. If the received wave is at a frequency in the narrow bandwidth E, it is not absorbed by the BIP material 20 and is received by the excitation element 40.
  • Each electromagnetic wave received by an excitation element is transmitted in the form of an electrical signal to the generator / receiver 45.
  • FIG. 7 represents an antenna 70 made from a BIP material 72 and a reflector 74 of electromagnetic waves
  • FIG. 8 shows the evolution of the transmission coefficient of this antenna as a function of frequency.
  • the BIP material 72 is, for example, identical to the BIP material 20 and has the same non-conducting band B (FIG. 8).
  • the blades forming this BIP material already described with reference to FIG. 3 bear the same numerical references.
  • the reflector 74 is formed, for example, from the reflective plane 22 deformed so as to divide the cavity 36 into two resonant cavities 76 and 78 of different heights.
  • the constant height H 1 of the cavity 76 is determined so as to place, within the non-conducting band B, a narrow bandwidth E 1 (FIG. 8), for example, around the frequency of 10 GHz.
  • the height H 2 of the resonant cavity 78 is determined so as to place, within the same non-conducting band B, a narrow bandwidth E 2 (FIG. 8), for example centered around 14 GHz.
  • the reflector 74 is composed here of two reflective half-planes 80 and 82 arranged in steps and electrically connected to one another.
  • the reflective half-plane 80 is parallel to the blade 32 and spaced therefrom by the height H 1 .
  • the half-plane 82 is parallel to the blade 32 and spaced therefrom from the constant height H 2 .
  • an excitation element 84 is disposed in the cavity 76 and an excitation element 86 is disposed in the cavity 78.
  • These excitation elements 84, 86 are, for example, identical to the excitation elements 40 to 43. with the exception that the excitation element 84 is able to excite the resonance mode TM 0 of the cavity 76, while the excitation element 86 is able to excite the resonance mode TM 0 of the cavity 78.
  • the horizontal distance that is to say parallel to the blade 32, separating the geometric center of the elements of excitation 84 and 86, is strictly less than the sum of the radii of two radiating spots produced respectively by the elements 84 and 86.
  • this antenna 70 is identical to that of the antenna of FIG. 3.
  • the working frequencies of the excitation elements 84 and 86 are located in narrow bandwidths E 1 , E 2 respective.
  • the working frequencies of each of these excitation elements are separated from each other by a large frequency interval, for example here 4 GHz.
  • the positions of the pass bands E 1 , E 2 are chosen so as to be able to use imposed working frequencies.
  • FIG. 9 represents a multi-beam antenna 100.
  • This antenna 100 is similar to the antenna 4 except that the single-defective BIP material 20 of the radiating device 4 is replaced by a multi-fault BIP material 102.
  • the elements already described with reference to FIG. 4 bear the same numerical references.
  • the antenna 100 is shown in section along a section plane perpendicular to the reflector plane 22 and passing through the excitation elements 41 and 43.
  • the BIP material 102 comprises two successive groups 104 and 106 of blades made of a first dielectric material.
  • the groups 104 and 106 are superimposed in the direction perpendicular to the reflective plane 22.
  • Each group 104, 106 is formed, by way of non-limiting example, respectively by two blades 110, 112 and 114, 116 parallel to the reflector plane 22.
  • Each blade of a group has the same thickness as the other blades of this same grouping.
  • each blade of the BIP 102 material is interposed a blade of a second dielectric material, such as air.
  • the thickness of these blades separating the blades 110, 112, 114 and 116 is equal to ⁇ / 4.
  • the first blade 116 is disposed vis-à-vis the reflector plane 22 and separated from this plane by a blade of second dielectric material thickness ⁇ / 2 so as to form a parallelepiped cavity resonant leak.
  • the thickness e i of the blades of dielectric material, consecutive to each group of blades of dielectric material, is in geometric progression of reason q in the direction of successive groups 104, 106.
  • the number of superimposed groups is equal to 2 so as not to overload the drawing, and the geometric progression reason is also taken equal to 2.
  • This radiating device 100 derives directly from that of the antenna 4.
  • the parabola 62 is replaced by an electromagnetic lens.
  • FIG. 10 shows an antenna 200 equipped with a device 202 able to focus the electromagnetic wave beams on an antenna 204.
  • the device 202 is, for example, a metal reflector in the form of a half-cylinder.
  • the antenna 204 is placed at the focus of this device 202.
  • the antenna 204 is similar to the antenna of FIG. 3, except that the reflector plane, and the blades of the BIP material, each have a convex surface corresponding to the concave surface of the half-cylinder.
  • each excitation element is polarized in a direction different from that used by the neighboring excitation elements.
  • the polarization of each excitation element is orthogonal to that used by neighboring excitation elements.
  • the same excitation element is adapted to operate successively or simultaneously at several different working frequencies.
  • Such an element makes it possible to create a coverage area in which, for example, transmission and reception take place at different wavelengths.
  • Such an excitation element is also able to make frequency switching.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Claims (11)

  1. System zum Senden und/oder Empfangen von elektromagnetischen Wellen, umfassend:
    - eine Vorrichtung (62), die dafür geeignet ist, die von dem System gesendeten und/oder empfangenen elektromagnetischen Wellen auf einen Brennpunkt zu fokussieren, und
    - einen Sender und/oder Empfänger von elektromagnetischen Wellen, der im Wesentlichen im Brennpunkt so angeordnet ist, dass er die elektromagnetischen Wellen sendet und/oder empfängt,
    dadurch gekennzeichnet,
    - dass es eine Mehrfachstrahlantenne (4) umfasst, deren strahlende Außenfläche im Wesentlichen auf dem Brennpunkt angeordnet ist, so dass sie den Sender und/oder Empfänger von elektromagnetischen Wellen bildet,
    - dass die Antenne umfasst:
    - ein photonisches Bandlückenmaterial (20, 42, 172), das dafür geeignet ist, elektromagnetische Wellen räumlich und hinsichtlich Frequenz zu filtern, wobei dieses photonische Bandlückenmaterial mindestens eine Bandlücke aufweist und eine unter Sendung und/oder Empfang strahlende Außenfläche (38, 158) bildet,
    - mindestens einen Periodizitätsfehler (36, 76, 78, 156, 180) des photonischen Bandlückenmaterials, so dass innerhalb der mindestens einen Bandlücke des photonischen Bandlückenmaterials mindestens ein schmales Durchlassband geschaffen wird, und
    - eine Erregungsvorrichtung (40 bis 43, 84, 86, 160, 162, 190), die dafür geeignet ist, elektromagnetische Wellen innerhalb dieses mindestens einen, durch den mindestens einen Fehler geschaffenen schmalen Durchlassbands zu senden und/oder zu empfangen, wobei diese Erregungsvorrichtung dafür geeignet ist, gleichzeitig mindestens um eine erste und eine zweite Arbeitsfrequenz herum, die verschieden sind, zu arbeiten,
    - dass die Erregungsvorrichtung ein erstes und ein zweites Erregungselement (40 bis 43, 84, 86) umfasst, die verschieden und voneinander unabhängig sind und jeweils dafür geeignet sind, elektromagnetische Wellen zu senden und/oder zu empfangen, wobei das erste Erregungselement dafür geeignet ist, bei der ersten Arbeitsfrequenz zu arbeiten, und das zweite Erregungselement dafür geeignet ist, bei der zweiten Arbeitsfrequenz zu arbeiten,
    - dass der oder jeder Periodizitätsfehler (36, 76, 78) des photonischen Bandlückenmaterials einen Resonanzhohlraum (36, 76, 78) mit Austritten bildet, der eine konstante Höhe in einer zu der strahlenden Außenfläche (38) senkrechten Richtung und bestimmte zu der strahlenden Außenfläche parallele seitliche Abmessungen aufweist,
    - dass die erste und die zweite Arbeitsfrequenz dafür geeignet sind, die gleiche Resonanzmode eines Resonanzhohlraums (36, 76, 78) mit Austritten zu erregen, wobei diese Resonanzmode unabhängig von den seitlichen Abmessungen des Hohlraums auf identische Weise auftritt, so dass auf dieser Außenfläche ein erster bzw. ein zweiter strahlender Fleck (46 bis 49) erzeugt wird, deren jeder den Ursprung eines Bündels von elektromagnetischen Wellen darstellt, die unter Sendung und/oder Empfang durch die Antenne ausgestrahlt werden,
    - dass jeder der strahlenden Flecken (46 bis 49) einen geometrischen Mittelpunkt besitzt, dessen Stellung eine Funktion von der Stellung des Erregungselements ist, das ihn erzeugt und dessen Fläche größer als die des ihn erzeugenden strahlenden Elements ist, und
    - dass das erste und das zweite Erregungselement (40 bis 43, 84, 86) zueinander so angeordnet sind, dass der erste und der zweite strahlende Fleck (46 bis 49) auf der Außenfläche (38) des photonischen Bandlückenmaterials nebeneinander angeordnet sind und sich partiell überdecken.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung, die dafür geeignet ist, die elektromagnetischen Wellen zu fokussieren, ein Parabolreflektor (62) ist.
  3. System nach Anspruch 1, dadurch gekennzeichnet, dass die Vorrichtung, die dafür geeignet ist, die elektromagnetischen Wellen zu fokussieren, eine elektromagnetische Linse ist.
  4. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    - dass jeder strahlende Fleck (46 bis 49) im Wesentlichen kreisförmig ist, wobei der geometrische Mittelpunkt einem gesendeten und/oder empfangenen Leistungsmaximum entspricht und der Umfang einem gesendeten und/oder empfangenen Leistungsmaximum entspricht, das gleich einem Bruchteil der in seinem Mittelpunkt gesendeten und/oder empfangenen Leistung ist, und
    - der Abstand zwischen den geometrischen Mittelpunkten der beiden Erregungselementen (40 bis 43, 84, 86) in einer zur Außenfläche parallelen Ebene deutlich kleiner als der Radius des von dem ersten Erregungselement erzeugten strahlenden Flecks plus dem Radius des von dem zweiten Erregungselement erzeugten strahlenden Flecks ist.
  5. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der geometrische Mittelpunkt jedes strahlenden Flecks (46 bis 49) auf der Linie angeordnet ist, die zu dieser strahlenden Außenfläche (38) senkrecht ist und durch den geometrischen Mittelpunkt des ihn erzeugenden Erregungselements (40 bis 43) verläuft.
  6. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste und das zweite Erregungselement (40 bis 43) im Inneren ein und desselben Hohlraums (36) angeordnet sind.
  7. System nach Anspruch 6, dadurch gekennzeichnet, dass die erste und die zweite Arbeitsfrequenz innerhalb desselben, von demselben Hohlraum (36) erzeugten schmalen Durchlassbands gelegen sind.
  8. System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das erste und das zweite Erregungselement (84, 86) jeweils im Inneren von verschiedenen Resonanzhohlräumen (76, 78) angeordnet sind und dass die erste und die zweite Arbeitsfrequenz dafür geeignet sind, jeweils eine Resonanzmode zu erregen, die von den seitlichen Abmessungen ihres jeweiligen Resonanzhohlraums unabhängig ist.
  9. Antenne nach Anspruch 8, dadurch gekennzeichnet, dass sie eine dem photonischen Bandlückenmaterial (72) zugeordnete Reflektorebene (74) zur elektromagnetischen Strahlung umfasst, wobei diese Reflektorebene so verformt ist, dass die verschiedenen Hohlräume gebildet werden.
  10. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der oder jeder Hohlraum parallelepipedförmig ist.
  11. System nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Vorrichtung, die dafür geeignet ist, die elektromagnetischen Wellen zu fokussieren, einen Reflektor (202) in Form eines Halbzylinders umfasst und dass das photonische Bandlückenmaterial der Antenne (204) eine konvexe Fläche aufweist, die der halbzylinderförmigen Fläche des Reflektors (202) entspricht.
EP03778445A 2002-10-24 2003-10-23 Mehrfachstrahlantenne mit photonischem bandlückenmaterial Expired - Lifetime EP1568104B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0213326 2002-10-24
FR0213326A FR2854737A1 (fr) 2002-10-24 2002-10-24 Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
FR0309472 2003-07-31
FR0309472A FR2854734B1 (fr) 2003-07-31 2003-07-31 Systeme d'emission et ou de reception d'ondes electromagnetiques equipe d'une antenne multi-faisceaux a materiau bip
PCT/FR2003/003145 WO2004040694A1 (fr) 2002-10-24 2003-10-23 Antenne multi-faisceaux a materiau bip

Publications (2)

Publication Number Publication Date
EP1568104A1 EP1568104A1 (de) 2005-08-31
EP1568104B1 true EP1568104B1 (de) 2006-09-13

Family

ID=32232267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03778445A Expired - Lifetime EP1568104B1 (de) 2002-10-24 2003-10-23 Mehrfachstrahlantenne mit photonischem bandlückenmaterial

Country Status (7)

Country Link
US (1) US7233299B2 (de)
EP (1) EP1568104B1 (de)
JP (1) JP4181172B2 (de)
AT (1) ATE339782T1 (de)
AU (1) AU2003285444A1 (de)
DE (1) DE60308409T2 (de)
WO (1) WO2004040694A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1554777B1 (de) * 2002-10-24 2006-05-03 Centre National de la Recherche Scientifique - CNRS Mehrfachstrahlantenne mit photonischem bandlückenmaterial
US7411564B2 (en) * 2002-10-24 2008-08-12 Centre National De La Recherche Scientifique (C.N.R.S.) Frequency multiband antenna with photonic bandgap material
FR2870642B1 (fr) * 2004-05-19 2008-11-14 Centre Nat Rech Scient Cnrse Antenne a materiau bip (bande interdite photonique) a paroi laterale entourant un axe
US7760140B2 (en) * 2006-06-09 2010-07-20 Intel Corporation Multiband antenna array using electromagnetic bandgap structures
FR2906410B1 (fr) * 2006-09-25 2008-12-05 Cnes Epic Antenne a materiau bip(bande interdite photonique), systeme et procede utilisant cette antenne
US7586444B2 (en) * 2006-12-05 2009-09-08 Delphi Technologies, Inc. High-frequency electromagnetic bandgap device and method for making same
FR2914506B1 (fr) * 2007-03-29 2010-09-17 Centre Nat Rech Scient Antenne a resonateur equipe d'un revetement filtrant et systeme incorporant cette antenne.
US7642978B2 (en) * 2007-03-30 2010-01-05 Itt Manufacturing Enterprises, Inc. Method and apparatus for steering and stabilizing radio frequency beams utilizing photonic crystal structures
US7777690B2 (en) * 2007-03-30 2010-08-17 Itt Manufacturing Enterprises, Inc. Radio frequency lens and method of suppressing side-lobes
US7463214B2 (en) * 2007-03-30 2008-12-09 Itt Manufacturing Enterprises, Inc. Method and apparatus for steering radio frequency beams utilizing photonic crystal structures
US8614743B2 (en) * 2007-09-24 2013-12-24 Exelis Inc. Security camera system and method of steering beams to alter a field of view
US8301092B2 (en) * 2009-06-09 2012-10-30 Broadcom Corporation Method and system for a low noise amplifier utilizing a leaky wave antenna
FR2948188B1 (fr) * 2009-07-20 2011-09-09 Soletanche Freyssinet Procede de surveillance des mouvements d'un terrain
US8624788B2 (en) * 2011-04-27 2014-01-07 Blackberry Limited Antenna assembly utilizing metal-dielectric resonant structures for specific absorption rate compliance
US8816921B2 (en) 2011-04-27 2014-08-26 Blackberry Limited Multiple antenna assembly utilizing electro band gap isolation structures
US8786507B2 (en) 2011-04-27 2014-07-22 Blackberry Limited Antenna assembly utilizing metal-dielectric structures
WO2012153164A1 (en) 2011-05-06 2012-11-15 Time Reversal Communications A device for receiving and/or emitting a wave, a system comprising the device, and use of such device
US9413078B2 (en) 2013-06-16 2016-08-09 Siklu Communication ltd. Millimeter-wave system with beam direction by switching sources
US9806428B2 (en) 2013-06-16 2017-10-31 Siklu Communication ltd. Systems and methods for forming, directing, and narrowing communication beams
WO2015081327A1 (en) * 2013-11-27 2015-06-04 Chou Stephen Y Light emitting diode, photodiode, displays, and method for forming the same
US9627773B2 (en) * 2015-04-02 2017-04-18 Accton Technology Corporation Structure of a parabolic antenna
TWI678026B (zh) * 2018-06-04 2019-11-21 啓碁科技股份有限公司 天線結構

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
JPH05251928A (ja) * 1992-03-05 1993-09-28 Honda Motor Co Ltd アンテナ装置
US6262830B1 (en) * 1997-09-16 2001-07-17 Michael Scalora Transparent metallo-dielectric photonic band gap structure
JP3287309B2 (ja) * 1998-07-06 2002-06-04 株式会社村田製作所 方向性結合器、アンテナ装置及び送受信装置
US6606077B2 (en) * 1999-11-18 2003-08-12 Automotive Systems Laboratory, Inc. Multi-beam antenna
FR2801428B1 (fr) 1999-11-18 2004-10-15 Centre Nat Rech Scient Antenne pourvue d'un assemblage de materiaux filtrant
EP1236245B1 (de) * 1999-11-18 2008-05-28 Automotive Systems Laboratory Inc. Mehrkeulenantenne
JP2001320228A (ja) * 2000-03-03 2001-11-16 Anritsu Corp 誘電体漏れ波アンテナ

Also Published As

Publication number Publication date
WO2004040694A1 (fr) 2004-05-13
EP1568104A1 (de) 2005-08-31
ATE339782T1 (de) 2006-10-15
AU2003285444A8 (en) 2004-05-25
DE60308409D1 (de) 2006-10-26
US20060125713A1 (en) 2006-06-15
DE60308409T2 (de) 2007-09-20
US7233299B2 (en) 2007-06-19
AU2003285444A1 (en) 2004-05-25
JP4181172B2 (ja) 2008-11-12
JP2006504373A (ja) 2006-02-02

Similar Documents

Publication Publication Date Title
EP1568104B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
EP1554777B1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
CA2243603C (fr) Structure rayonnante
CA2682273C (fr) Antenne a resonateur equipe d'un revetement filtrant et systeme incorporant cette antenne
WO2013092928A1 (fr) Antenne élémentaire et antenne réseau mono ou bidimensionnelle correspondante
EP2194602A1 (de) Antenne mit gemeinsam benützte Elementarstrahler und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützte Elementarstrahler
FR2930079A1 (fr) Capteur de rayonnement, notamment pour radar
EP1416586A1 (de) Antenne mit einer Filtermaterialanordnung
EP0147325B1 (de) Antenne mit zwei gekreuzten parabolisch-cylindrischen Reflektoren und Verfahren zur Herstellung derselben
EP0013240B1 (de) Gemeinsame Antenne für Primär- und Sekundärradar
EP0707357B1 (de) Antennensystem mit mehreren Speisesystemen, integriert in einem rauscharmen Umsetzer (LNC)
FR2496347A1 (fr) Antenne de systeme de navigation omnidirectionnelle a tres haute frequence
WO2004040695A1 (fr) Antenne a materiau bip multi-bandes de frequences
FR2854737A1 (fr) Antenne a materiau bip multi-faisceaux et/ou multi- frequences et systeme mettant en oeuvre ces antennes.
CA2044903C (fr) Antenne a balayage par variation de frequence
EP0131512B1 (de) Doppelreflektorantenne mit fast ringflächiger Strahldeckung
EP0045254B1 (de) Kompakter Mikrowellenerreger für zwei Frequenzbereiche
FR2954858A1 (fr) Antenne rayonnant un signal dans une direction de l'espace dependant de la frequence de ce signal
WO2008037887A2 (fr) Antenne a materiau bip (bande interdite photonique) systeme
FR2684809A1 (fr) Antenne passive multifaisceaux a reflecteur(s) conforme (s).
FR2854735A1 (fr) Antenne a materiau bip multi-faisceaux
FR2854734A1 (fr) Systeme d'emission et ou de reception d'ondes electromagnetiques equipe d'une antenne multi-faisceaux a materiau bip
EP0088681B1 (de) Doppelreflektorantenne mit eingebautem Polarisationswandler
WO2001052356A1 (fr) Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060913

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60308409

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061224

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070226

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070614

BERE Be: lapsed

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

Effective date: 20061031

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110811 AND 20110817

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120209 AND 20120215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20211006

Year of fee payment: 19

Ref country code: DE

Payment date: 20211008

Year of fee payment: 19

Ref country code: GB

Payment date: 20211020

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211007

Year of fee payment: 19

Ref country code: FR

Payment date: 20211029

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60308409

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221023