EP0131215B1 - Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit - Google Patents

Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit Download PDF

Info

Publication number
EP0131215B1
EP0131215B1 EP84107505A EP84107505A EP0131215B1 EP 0131215 B1 EP0131215 B1 EP 0131215B1 EP 84107505 A EP84107505 A EP 84107505A EP 84107505 A EP84107505 A EP 84107505A EP 0131215 B1 EP0131215 B1 EP 0131215B1
Authority
EP
European Patent Office
Prior art keywords
acetylacetonate
recording material
charge carrier
weight
electrophotographic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107505A
Other languages
English (en)
French (fr)
Other versions
EP0131215A3 (en
EP0131215A2 (de
Inventor
Gerhard Dr. Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0131215A2 publication Critical patent/EP0131215A2/de
Publication of EP0131215A3 publication Critical patent/EP0131215A3/de
Application granted granted Critical
Publication of EP0131215B1 publication Critical patent/EP0131215B1/de
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0514Organic non-macromolecular compounds not comprising cyclic groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0662Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic containing metal elements

Definitions

  • the invention relates to electrophotographic recording materials with electrically conductive supports, charge carrier-producing compounds or sensitizers, charge carrier transporting compounds and special additives.
  • Electrophotographic processes, materials required therefor and various variants for the construction of recording materials are known.
  • Advantages for use in the reproduction sector are materials made of polymeric binders that can be adapted to the special requirements of the respective field of application, low molecular weight organic compounds that are soluble in the binders even in higher concentrations and are capable of transporting charge carriers of the electrical current, and compounds , in particular dyes or pigments, which generate charge carriers of the electrical current by absorption of the actinic light radiated imagewise and which can transfer them to the charge-transporting compounds with the aid of the electrical field impressed from the outside by the electrostatic surface charge.
  • these charge carrier-producing compounds can be introduced as a separate layer within a composite structure (cf.
  • the multi-layer electrophotographic recording material described in DE-OS 22 20 408 consists of an electrically conductive carrier material, a first, dye-containing, about 0.005 to 2 1 in the thick layer which generates charge carriers of the electric current by exposure to actinic light and consists of insulating in the dark, organic materials with at least one charge-transporting compound.
  • High photosensitivity is particularly desirable in order to reduce the required process times.
  • the necessary exposure time plays an important role.
  • the existing systems are frequently criticized.
  • the object of the present invention was to develop electrophotographic recording materials, in particular for the production of electrophotographic printing forms, such as offset printing forms, which have improved photosensitivity, at the same time a low dark conductivity and good resolution.
  • metal acetylacetonates improve photosensitivity, colored metal acetylacetonates - such as copper (11) acetylacetonate (blue), chromium (III) acetylacetonate (bordorot), iron (III) acetylacetonate (red), nickel (II ) acetylacetonate (turquoise green), palladium (11) acetylacetonate - however negatively influence the effect of the sensitizer, so that overall only slight improvements in photosensitivity result.
  • colored metal acetylacetonates such as copper (11) acetylacetonate (blue), chromium (III) acetylacetonate (bordorot), iron (III) acetylacetonate (red), nickel (II ) acetylacetonate (turquoise green), palladium (11) acetylacetonate - however negatively influence the effect of the sensitizer, so that overall only slight improvements
  • the addition of the colorless metal acetylacetonates according to the invention greatly improves the photosensitivity and at the same time also significantly increases the maximum potential acceptance of the electrophotographic recording materials without changing the dark properties, so that, at the same time, an improved differentiation between exposed and unexposed areas of the loaded areas is added to the photosensitivity Surface occurs.
  • metal halides - such as zinc chloride, magnesium bromide, aluminum chloride - and ketones - such as acetophenone, benzophenone, benzil - can also improve the photosensitivity of certain organic photo semiconductor layers in small amounts (e.g. US 3,037,861, US 3,553 009, U.S. 3,620,723).
  • metal acetylacetonates are not included. It has also been confirmed that additions of metal halides and ketones do not produce the effects according to the invention. The effect of the colorless acetylacetonates achieved according to the invention cannot be derived from the known additives for the person skilled in the art.
  • the colorless metal acetylacetonates which improve the photosensitivity and are used according to the invention can advantageously be used both in single-layer and in multi-layer recording systems applied to electroconductive supports.
  • Suitable single-layer systems preferably have a layer of (a) 45 to 75 parts by weight of a binder, (b) 30 to 60, in particular 35 to 50 parts by weight of a charge carrier transporting compound, (c) optionally 5 to 25 parts by weight of another on a conductive carrier material , essentially inactive binder, (d) 0.05 to 0.8 parts by weight of a compound which generates charge carriers upon actinic exposure, in particular a suitable dye, and (e) 0.5 to 30, in particular 3 to 15% by weight, based on the binder portion, one or more of the metal acetylacetonates according to the invention on the layers are advantageously applied from an approximately 5% by weight solution in a suitable organic solvent to the cleaned conductive carrier material in such a way that a dry layer thickness of approx 0.8 to 40 1 im (depending on the intended use, in particular 0.8 to 6 ⁇ m for electrophotographic printing forms) results.
  • Suitable multilayer systems advantageously have on an electroconductive carrier material (a) a layer with compounds generating charge carriers and (b) a further layer with (b1) at least one charge carrier transporting compound, (b2) at least one organic binder and (b3) optionally further, in particular additives which improve the mechanical properties of the layer, layer (b) containing 0.5 to 30 and preferably 3 to 15% by weight, based on the proportion of binder, of one or more of the metal acetylacetonates according to the invention.
  • the layer (b) advantageously contains 30 to 60 parts by weight of (b1), 45 to 75 parts by weight of (b2) and, if appropriate, 5 to parts by weight of the additives (b3).
  • the first layer is advantageously applied to the carrier material in a thickness of 0.005 to 5, in particular 0.1 to 0.9) from solution in a suitable solvent.
  • the second layer is advantageously applied in a thickness that results in a layer thickness of 5 to 25, in particular 7 to 15 ⁇ m, after drying the composite structure.
  • all conductive carrier materials can be used as electrically conductive carriers, insofar as they are suitable for the area of application.
  • aluminum, zinc, magnesium, copper or multi-metal plates for. B. raw or pretreated, e.g. B. roughened and / or anodized aluminum sheets, aluminum foils, polymer films with a metallized surface such as aluminum-coated polyethylene terephthalate films or electrically conductive special papers.
  • Carriers for printing forms advantageously have a thickness of 0.08 to approximately 0.6 mm.
  • suitable organic binders for the layers depends on the intended use of the recording materials.
  • their film-forming and electrical properties, their adhesive strength on the carrier material and their solubility properties play a special role.
  • Particularly suitable for recording materials for the production of electrophotographic printing plates, and especially for those for offset printing are those which are soluble in basic, aqueous or alcoholic solvents.
  • binders especially those with high acid numbers, which are readily soluble in basic aqueous-alcoholic solvent systems and have an average molecular weight (weight average) of 800 to 150,000 and in particular 1,200 and 80,000.
  • binders with free carboxyl groups are known to undesirably increase the dark conductivity of the electrophotographic layers and thereby lead to poor stressing results, such binders can easily be adapted to the charge transport compounds used. It has been shown that copolymers of styrene, maleic anhydride and acrylic or methacrylic acid, the proportion of copolymerized maleic anhydride from 5 to 50 wt .-% and a proportion of copolymerized acrylic or methacrylic acid from 5 to 35 and in particular 10 to 30 wt .-% have satisfactory electrophotographic layers with sufficient dark conductivity. They have excellent solubility in washing-out agents consisting of 75% by weight of water, 23% by weight of isobutanol and 2% by weight of soda, but are insoluble in offset-typical wiping water.
  • Suitable charge carrier-producing compounds or sensitizers are e.g. B. for single-layer systems, such as those used for the production of electrophotographic printing forms, dyes from the triarylmethane series, xanthene dyes and cyanine dyes. Very good results were obtained with rhodamine B (C.I. 45170), rhodamine 6 G (C.I. 45160), malachite green (C.I. 42000), methyl violet (C.I. 42535) and crystal violet (C.1.42555). In systems applied in multiple layers, the dye or pigment is present in a separate layer which generates charge carriers.
  • Azo dyes, phthalocyanines, isoindoline dyes and perylene tetracarboxylic acid derivatives are particularly effective here. Good results are achieved with perylene-3,4: 9,10-tetracarboxylic acid diimide derivatives, as described in DE-OS 31 10 954 and 3110 960.
  • Suitable compounds carrying electrical charge carriers are known to the person skilled in the art. Mention may be made of oxazole derivatives (DBP 11 20 875), oxdiazole derivatives (DBP 10 58 836), triazole derivatives (DBP 10 60 260), azomethines (US 3 041 165), pyrazoline derivatives (DBP 10 60 714) and imidazole derivatives (DBP 11 06 599). Benztriazole derivatives (German patent application P 32 15 968.4) and hydrazone derivatives (German patent application P 32 01 202.0) are preferred. These are usually low molecular weight compounds which are well compatible with the organic binders in the required amount. However, polymeric charge transport compounds can also be used, e.g. B. Poly (N-vinyl carbazole).
  • the electrophotographic recording material according to the invention may contain conventional additives, e.g. B. leveling agents and plasticizers in the photoconductive layer or adhesion promoter between carrier and layer.
  • conventional additives e.g. B. leveling agents and plasticizers in the photoconductive layer or adhesion promoter between carrier and layer.
  • the electrophotographic recording materials according to the invention are distinguished by a combination of very good properties, in particular a high photoconductivity with a very low dark conductivity, so that the layers are very suitable for copying technology.
  • the high sensitivity to light allows the exposure time during processing in the repro camera to be reduced by up to half compared to conventional materials.
  • a good resolution results from a very sharp image reproduction. Thanks to a high charge contrast, even fine halftone dots in the light tonal ranges can be reproduced well.
  • the exposure of the layers leads to very low residual stresses and the images obtained during the concreting are characterized by good basic freedom in the non-image areas.
  • the spectral sensitivity drops sharply at 600 nm, so that the layers can be handled under red light without image loss.
  • the production of electrophotographic offset printing forms is carried out by electrostatically charging the electrophotographic recording material using a high-voltage corona, immediately following image-wise exposure, developing the electrostatic latent charge image present using a dry or liquid toner, fixing the toner by means of a subsequent melting process and removing it the unstressed, photo-semiconducting layer by means of a suitable washout solvent.
  • the printing form thus obtained can still be prepared in a known manner for offset printing, e.g. B. by hydrophilizing and gumming the water-bearing surface.
  • the layers are covered with a DC corona of - 8.5 kV at a distance of 1 cm evenly charged to a surface potential of - 600 volts and then exposed with the white light of a xenon high-pressure lamp with an illuminance of 10 ⁇ W.cm -2 in the layer plane.
  • the photo-induced potential drop during the exposure is tracked over time until the surface potential has fallen below 5% of the originally present value. Then the time is determined which elapses before the surface potential drops by half, corrected by the amount of the dark drop.
  • the half-value photosensitivity as the product of half-life and illuminance in the plate plane is given in ⁇ J.cm -2 .
  • Example 3 The procedure is as in Example 1, but the zinc acetylacetonate is replaced by bis [pentandionato (2,4)] magnesium (magnesium acetylacetonate, Example 2) or tetrakis [pentandionato (2,4)] zirconium (IV) (Zirconium acetylacetonate, Example 3) replaced.
  • the half photosensitivities amount to 22.4 and 23.5 ⁇ J.cm -2 J.cm- p. 2
  • the printing plate After the treatment with the alkaline liquid, the printing plate is rinsed with water and the hydrophilicity of the support surface is further increased by wiping with dilute phosphoric acid solution. After inking with bold ink, it is used to print in a known manner in offset printing machines.
  • a layer of 60 parts of a chlorinated perylene-3,4: 9,1-tetracarboxylic acid diimide bisbenzimidazole with a chlorine content of about 38% and 50 parts of a commercially available copolymer is formed on a polyethylene terephthalate film with a vapor-deposited, conductive aluminum layer in a thickness of approximately 300 ⁇ Vinyl chloride, acrylic acid and a maleic acid diester applied in a thickness of about 0.55 microns as a charge-generating layer.
  • a charge transport layer consisting of 45 parts of a commercially available polycarbonate binder with a melting range of 220 to 230 ° C, 10 parts of a polyester with an acid number of about 40 and a molecular weight of about 4,500, 40 is made from a solution in ethyl acetate onto this layer which generates charge carriers Parts of p-diethylaminobenzaldehyde diphenylhydrazone and 4 parts of bis [pentandionato- (2,4)] - zinc applied in such a way that after drying off the solvent and drying for 30 minutes at 80 ° C., a dry layer thickness of 12 ⁇ m results.
  • a half-value photosensitivity of 2.8 ⁇ J.cm -2 is determined on this layer.
  • the same layer without zinc acetylacetonate has a half-value photosensitivity of about 4.8 ⁇ J.cm -2 . If the layer of Example 7 is used as a copy film in a commercially available copier with dry toner, copies of good quality and in large numbers can be produced with it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

  • Die Erfindung betrifft elektrophotographische Aufzeichnungsmaterialien mit elektrisch leitenden Trägern, Ladungsträger erzeugenden Verbindungen bzw. Sensibilisatoren, Ladungsträger transportierenden Verbindungen und speziellen Zusätzen.
  • Elektrophotographische Verfahren, dafür benötigte Materialien und verschiedene Varianten für den Aufbau von Aufzeichnungsmaterialien sind bekannt. Vorteilhaft für den Einsatz im Reproduktionssektor sind Materialien aus polymeren Bindemitteln, die an spezielle Anforderungen des jeweiligen Einsatzgebietes angepaßt werden können, niedermolekularen organischen Verbindungen, die in den Bindemitteln auch in höherer Konzentrationen löslich und zu einem Transport von Ladungsträgern des elektrischen Stromes befähigt sind, sowie Verbindungen, insbesondere Farbstoffe oder Pigmente, die durch Absorption des bildmäßig eingestrahlten, aktinischen Lichts Ladungsträger des elektrischen Stromes erzeugen und diese unter Mithilfe des von außen durch die elektrostatische Oberflächenladung aufgeprägten elektrischen Feldes auf die Ladung transportierenden Verbindungen übertragen können. Diese Ladungsträger erzeugenden Verbindungen können je nach Einsatzgebiet des Aufzeichnungsmaterials als eigene Schicht innerhalb einer Kompositstruktur eingebracht werden (vgl. DE-OS 22 20 408) oder in Form monodispers gelöster Farbstoffmoleküle in der Mischung aus Bindemittel und Ladungsträger transportierende Verbindungen vorhanden sein (vgl. DE-PS 1 058 836). Das in der DE-OS 22 20 408 beschriebene mehrlagige elektrophotographische Aufzeichnungsmaterial besteht aus einem elektrisch leitfähigen Trägermaterial, einer ersten, Farbstoff enthaltenden, etwa 0,005 bis 21im dicken, durch Belichtung mit aktinischem Licht Ladungsträger des elektrischen Stromes erzeugenden Schicht aus im Dunkeln isolierenden, organischen Materialien mit mindestens einer Ladungen transportierenden Verbindung.
  • Es ist auch bekannt, photohalbleitende organische Verbindungen zur Herstellung von elektrophotographischen Druckformen und insbesondere elektrophotographischen Offsetdruckformen zu verwenden (vgl. DE-PS 1 117 391 und 1 120 875, DE-AS 15 22 497 und 27 26 116).
  • Die gestiegenen Anforderungen an Reproduktionssysteme verlangen eine Vielfalt von Aufzeichnungsmaterialien und -systemen, um für spezielle Probleme optimale Lösungen aussuchen zu können. Gewünscht sind eine gute Auflösung und eine gute Betonerung. Die oft beanstandete ungenügende Betonerung, die auf eine ungünstige Feldstärkedifferenzierung zwischen belichteten und unbelichteten Flächen hinweist, ist hierbei oft auf eine zu hohe Dunkelleitfähigkeit des Aufzeichnungsmaterials im beladenen Zustand zurückzuführen, so daß eine ungenügende Oberflächenladungsdichte vor der aktinischen bildmäßigen Belichtung vorliegt.
  • Ganz besonders erwünscht ist eine hohe Photoempfindlichkeit, um die erforderlichen Prozeßzeiten zu verringern. Insbesondere bei der Herstellung von elektrophotographischen Offsetdruckplatten spielt die notwendige Belichtungszeit eine wichtige Rolle. Hier werden aber die bestehenden Systeme häufig kritisiert.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, elektrophotographische Aufzeichnungsmaterialien insbesondere für die Herstellung von elektrophotographischen Druckformen, wie Offsetdruckformen, zu entwickeln, die eine verbesserte Photoempfindlicheit, gleichzeitig ein geringes Dunkelleitvermögen und eine gute Auflösung aufweisen.
  • Es wurde nun gefunden, daß man so verbesserte elektrophotographische Aufzeichnungsmaterialien bestehend aus einem elektrisch leitenden Träger und einer oder mehreren Schicht(en) aus, Ladungsträger erzeugenden Verbindungen bzw. Sensibilisatoren, Ladungsträger transportierenden Verbindungen, Bindemitteln und Zusätzen erhält, wenn sie als Zusätze 0,5 bis 30 Gew.-%, vorzugsweise aber 3 bis 15 Gew.-%, bezogen auf den Bindemittelanteil in der Ladungsträger transportierende Verbindungen enthaltenden Schicht an in Lösung und in der
    • Mischung farblosem enthalten.
      • Cadmiumacetylacetonat
      • (Bis[pentandionato-(2,4)]-cadmium(11)),
      • Natriumacetylacetonat
      • (Pentandionato-(2,4)-natrium),
      • Magnesiumacetylacetonat
      • (Bis[pentandionato-(2,4)]-magnesium),
      • Zinkacetylacetonat
      • (Bis[pentandionato-(2,4)]-zink(ll)),
      • Zirkonacetylacetonat
      • (Tetrakis[pentandionato-(2,4)]-zirkonium(V))
    • oder
      • Titanylacetylacetonat
      • (Bis[pentandionato-(2,4)]-titanyl(IV)
  • Es hat sich gezeigt, daß ganz besonders verbesserte Photoempfindlichkeiten der Aufzeichnungsmaterialien erhalten werden, wenn Metallacetylacetonate als spezielle Zusätze eingesetzt werden, die in Lösung und in der Mischung farblos sind, also nicht im sichtbaren Spektralbereich und in Absorptionsbereich des Sensibilisators absorbieren. Es hat sicn nämlich ergeben, daß zwar alle Metallacetylacetonate die Photoempfindlichkeit verbessern, farbige Metallacetylacetonate - wie Kupfer(11)acetylacetonat (blau), Chrom(III)-acetylacetonat (bordorot), Eisen(III)-acetylacetonat (rot), Nickel(ll)acetylacetonat (türkisgrün), Palladium(11)acetylacetonat - jedoch die Wirkung des Sensibilisators negativ beeinflussen, so daß insgesamt nur geringfügige Verbesserungen der Photoempfindlichkeit resultieren.
  • Diese Acetylacetonate sind auch in ausreichender Menge in geeigneten organischen Lösungsmitteln löslich.
  • Ganz besonders überraschend ist, daß der Zusatz der erfindungsgemäßen farblosen Metallacetylacetonate die Photoempfindlichkeit stark verbessert und gleichzeitig auch die maximale Potentialakzeptanz der elektrophotographischen Aufzeichnungsmaterialien deutlich erhöht, ohne die Dunkeleigenschaften zu verändern, so daß auch gleichzeitig zur Photoempfindlichkeit eine verbesserte Differenzierung zwischen belichteten und unbelichteten Flächen der beladenen Oberfläche auftritt.
  • Es ist dem Fachmann bekannt, daß Metallhalogenide - wie Zinkchlorid, Magnesiumbromid, Aluminiumchlorid - und Ketone - wie Acetophenon, Benzophenon, Benzil - auch in geringen Mengen die Photoempfindlichkeit gewisser organischer Photohalbleiterschichten verbessern können (z. B. US 3 037 861, US 3 553 009, US 3 620 723). Metallacetylacetonate gehören jedoch nicht dazu. Es hat sich auch bestätigt, daß Zusätze von Metallhalogeniden und Ketonen nicht die erfindungsgemäßen Wirkungen erbringen. Der erfindungsgemäß erzielte Effekt der farblosen Acetylacetonate ist aus den bekannten Zusätzen für den Fachmann nicht ableitbar. Auch das aus Chemical Abstracts, Band 80, Nummer 18, Seite 446, Referat 102 292 r bekannte elektrophotographische Aufzeichnungsmaterial konnte dem Fachmann nicht die Anregung vermitteln, farblose Metallacetylacetonate für die Lösung der erfindungsgemäßen Aufgabe auszuwählen, weil in dem betreffenden Aufzeichnungsmateriel das intensiv gefärbte, bordorote Crom(III)acetylacetonat verwendet wird, welches die Wirkung des Sensibilisators negativ beeinflußt.
  • Die erfindungsgemäß verwendeten, die Photoempfindlichkeit verbessernden farblosen Metallacetylacetonate können mit Vorteil sowohl in einschichtig als auch in mehrschichtig auf elektroleitfähige Träger aufgebrachten Aufzeichnungssystemen verwendet werden.
  • Geeignete einschichtige Systeme weisen bevorzugt auf einem leitfähigen Trägermaterial eine Schicht aus (a) 45 bis 75 Gewichtsteilen eines Bindemittels, (b) 30 bis 60, insbesondere 35 bis 50 Gewichtsteilen einer Ladungsträger transportierenden Verbindungen, (c) ggf. 5 bis 25 Gewichtsteilen eines weiteren, im wesentlichen inaktiven Bindemittels, (d) 0,05 bis 0,8 Gewichtsteilen einer bei aktinischer Belichtung Ladungsträger erzeugenden Verbindung, insbesondere eines geeigneten Farbstoffs und (e) 0,5 bis 30, insbesondere 3 bis 15 Gew.-%, bezogen auf den Bindemittelanteil, eines oder mehrerer der erfindungsgemäßen Metallacetylacetonate auf die Schichten werden mit Vorteil aus einer ca. 5 gew.-%-igen Lösung in einem geeigneten organischen Lösungsmittel auf das gereinigte leitfähige Trägermaterial so aufgebracht, daß nach dem Ablüften des Lösungsmittels eine Trockenschichtdicke von ca. 0,8 bis 401im (je nach Verwendungszweck, bei elektrophotographischen Druckformen insbesondere 0,8 bis 6um) resultiert.
  • Geeignete Mehrschichtsysteme haben mit Vorteil auf einem elektroleitfähigen Trägermaterial (a) eine Schicht mit Ladungsträger erzeugenden Verbindungen und (b) eine weitere Schicht mit (b1) mindestens einer Ladungsträger transportierenden Verbindung, (b2) mindestens einem organischen Bindemittel und (b3) ggf. weiteren, insbesondere die mechanischen Eigenschaften der Schicht verbessernden Zusätzen, wobei die Schicht (b) 0,5 bis 30 und bevorzugt 3 bis 15 Gew.-%, bezogen auf den Bindemittelanteil, eines oder mehrere der erfindungsgemäßen Metallacetylacetonate enthält. Mit Vorteil enthält die Schicht (b) 30 bis 60 Gewichtsteile von (b1), 45 bis 75 Gewichtsteile von (b2) und ggf. 5 bis Gewichtsteile der Zusätze (b3).
  • Die erste Schicht wird vorteilhaft in einer Dicke von 0,005 bis 5, insbesondere 0,1 bis 0,9)im aus Lösung in einem geeigneten Lösungsmittel auf das Trägermaterial aufgetragen. Nach dem Auftrag erfolgt mit Vorteil der Auftrag der zweiten Schicht in einer Dicke, daß nach dem Trocknen der Kompositstruktur eine Schichtdicke von 5 bis 25, insbesondere 7 bis 15µm resultiert.
  • Als elektrisch leitende Träger sind prinzipiell alle leitfähigen Trägermaterialien verwendbar, soweit sie für das Einsatzgebiet geeignet sind. Bevorzugt sind je nach Einsatzgebiet der Aufzeichnungsmaterialien Aluminium-, Zink-, Magnesium-, Kupfer- oder Mehrmetallplatten, z. B. rohe oder vorbehandelte, z. B. aufgerauhte und/oder anodisierte Aluminiumbleche, Aluminiumfolien, Polymerfilme mit metallisierter Oberfläche wie aluminiumbedampfte Polyethylenterephthalatfilme oder auch elektrisch leitende Spezialpapiere. Träger für Druckformen haben vorteilhaft eine Dicke von 0,08 bis ca. 0,6 mm.
  • Die Art der geeigneten organischen Bindemittel für die Schichten richtet sich nach dem beabsichtigten Verwendungszweck der Aufzeichnungsmaterialien. Für den Kopiersektor eignen sich z. B. Celluloseether, Polyesterharze, Polyvinylchloride, Polycarbonate, Copolymere, wie Styrol-Maleinsäureanhydrid-Copolymere oder Vinylchlorid-Maleinsäureanhydrid-Copolymere oder Mischungen solcher Bindemittel. Bei ihrer Auswahl spielen ihre filmbildenden und elektrischen Eigenschaften, ihre Haftfestigkeit auf dem Trägermaterial und ihre Löslichkeitseigenschaften eine besondere Rolle. Insbesondere bei Aufzeichnungsmaterialien für die Herstellung elektrophotographischer Druckplatten, und besonders bei denen für den Offsetdruck, sind solche besonders geeignet, die in basischen, wäßrigen oder alkoholischen Lösungsmitteln löslich sind. Dies sind vor allen Substanzen mit alkalilöslich machenden Gruppen wie Anhydrid-, Carboxyl-, Sulfonsäure-, Phenol- oder Sulfonimid-Gruppierungen. Bevorzugt sind Bindemittel, insbesondere solche mit hohen Säurezahlen, die in basischen wäßrig-alkoholischen Lösungsmittelsystemen leicht löslich sind und ein mittleres Molekulargewicht (Gewichtsmittel), von 800 bis 150 000 und insbesondere 1 200 und 80 000 aufweisen. Geeignet sind z. B. Copolymerisate aus Methacrylsäure und Methacrylsäureestern, besonders Copolymerisate aus Styrol und Maleinsäureanhydrid und aus Styrol, Methacrylsäure und Methacrylsäureester, soweit sie die vorstehende Löslichkeitsbedingung aufweisen. Obwohl bekanntermaßen Bindemittel mit freien Carboxylgruppen die Dunkelleitfähigkeit der elektrophotographischen Schichten in unerwünschter Weise erhöhen und dadurch zu schlechten Betonerungsergebnissen führen, lassen sich solche Bindemittel leicht an die verwendeten Ladungstransportverbindungen anpassen. So hat sich gezeigt, daß Copolymerisate aus Styrol, Maleinsäureanhydrid und Acryl- oder Methacrylsäure, die einen Anteil von einpolymerisiertem Maleinsäureanhydrid von 5 bis 50 Gew.-% und einen Anteil von einpolymerisierter Acryl- oder Methacrylsäure von 5 bis 35 und insbesondere 10 bis 30 Gew.-% aufweisen, befriedigende elektrophotographische Schichten mit hinreichender Dunkelleitfähigkeit ergeben. Sie weisen eine hervorragende Löslichkeit in Auswaschmitteln aus 75 Gew.-% Wasser, 23 Gew.-% Isobutanol und 2 Gew.-% Soda auf, sind aber in offsettypischem Wischwasser unlöslich.
  • Geeignete Ladungsträger erzeugende Verbindungen bzw. Sensibilisatoren sind z. B. für einschichtig aufgetragene Systeme, wie sie auch zur Herstellung elektrophotographischer Druckformen dienen, Farbstoffe aus der Triarylmethanreihe, Xanthenfarbstoffe und Cyaninfarbstoffe. Sehr gute Ergebnisse wurden mit Rhodamin B (C.l. 45170), Rhodamin 6 G (C.I. 45160), Malachitgrün (C.I. 42000), Methylviolett (C.I. 42535) und Kristallviolett (C.1.42555) erhalten. Bei mehrschichtig aufgetragenen Systemen liegt der Farbstoff oder das Pigment in einer separaten Ladungsträger erzeugenden Schicht vor. Hier sind Azofarbstoffe, Phthalocyanine, lsoindolinfarbstoffe und Perylentetracarbonsäurederivate besonders wirksam. Gute Ergebnisse werden mit Perylen-3,4:9,10-tetracarbonsäurediimidderivaten erzielt, wie sie in den DE-OS 31 10 954 und 3110 960 beschrieben sind.
  • Geeignete Ladungsträger des elektrischen Stromes transportierende Verbindungen sind dem Fachmann bekannt. Erwähnt seien Oxazolderivate (DBP 11 20 875), Oxdiazolderivate (DBP 10 58 836), Triazolderivate (DBP 10 60 260), Azomethine (US 3 041 165), Pyrazolinderivate (DBP 10 60 714) und Imidazolderivate (DBP 11 06 599). Bevorzugt sind Benztriazolderivate (deutsche Patentanmeldung P 32 15 968.4) und Hydrazonderivate (deutsche Patentanmeldung P 32 01 202.0). Es handelt sich meist um niedermolekulare, mit den organischen Bindemitteln in der erforderlichen Menge gut verträgliche Verbindungen. Es sind aber auch polymere Ladungstransportverbindungen einsetzbar, z. B. Poly(N-vinylcarbazol).
  • Für die jeweilige Verwendung kann das erfindungsgemäße elektrophotographische Aufzeichnungsmaterial übliche Zusätze enthalten, z. B. Verlaufmittel und Weichmacher in der photoleitfähigen Schicht oder Haftvermittler zwischen Träger und Schicht.
  • Die erfindungsgemäßen elektrophotographischen Aufzeichnungsmaterialien zeichnen sich durch eine Kombination sehr guter Eigenschaften, insbesondere einer hohen Photoleitfähigkeit bei gleichzeitig sehr niedriger Dunkelleitfähigkeit aus, so daß die Schichten für die Kopiertechnik sehr geeignet sind.
  • Deutliche Vorteile weisen sie bei der Verwendung für die Herstellung von elektrophotographischen Druckformen auf und genügen hierbei hohen Ansprüchen im Hinblick auf das Auflösungsvermögen und die Druckauflage. Die hohe Lichtempfindlichkeit erlaubt eine Senkung der Belichtungszeit bei der Verarbeitung in der Reprokamera gegenüber handelsüblichen Materialien bis etwa um die Hälfte. Aus einer sehr randscharfen Bildwiedergabe resultiert eine gute Auflösung. Durch einen hohen Ladungskontrast können auch feine Rasterpunkte in den lichten Tonwertbereichen gut wiedergegeben werden. Ferner führt die Belichtung der Schichten zu sehr geringen Restspannungen und die bei der Betonerung erhaltenen Bilder zeichnen sich durch gute Grundfreiheit in den Nichtbildbereichen aus. Die spektrale Empfindlichkeit sinkt bei 600 nm stark ab, so daß die Schichten bei Rotlicht gehandhabt werden können, ohne daß Bildverluste auftreten.
  • Die Herstellung elektrophotographischer Offsetdruckformen erfolgt wie üblich durch eine elektrostatische Aufladung des elektrophotographischen Aufzeichnungsmaterials mittels einer Hochspannungscorona, eine direkt nachfolgende bildmäßige Belichtung, die Entwicklung des vorliegenden elektrostatischen, latenten Ladungsbildes mittels eines Trocken-oder Flüssigtoners, die Fixierung des Toners durch einen nachgeschalteten Schmelzvorgang und die Entfernung der unbetonerten, photohalbleitenden Schicht mittels eines geeigneten Auswaschlösemittels. Die so erhaltene Druckform kann in bekannter Weise für den Offsetdruck noch vorbereitet werden, z. B. durch eine Hydrophilierung und Gummierung der wasserführenden Oberfläche.
  • Die folgenden Beispiele sollen die Erfindung zusätzlich erläutern. Die genannten Teile und Prozente beziehen sich auf das Gewicht.
  • Die Schichten werden mit einer Gleichspannungscorona von - 8,5 kV in 1 cm Abstand gleichmäßig auf ein Oberflächenpotential von - 600 Volt aufgeladen und dann mit dem weißen Licht einer Xenonhochdrucklampe mit einer Beleuchtungsstärke von 10µW.cm-2 in der Schichtebene belichtet. Der photoinduzierte Potentialabfall während der Belichtung wird zeitlich solange verfolgt, bis das Oberflächenpotential auf unter 5 % des ursprünglich vorhandenen Wertes gefallen ist. Dann wird die Zeit ermittelt, die bis zum Abfall des Oberflächenpotentials um die Hälfte, berichtigt um den Betrag des Dunkelabfalls, verstreicht. Die Halbwertsphotoempfindlichkeit als Produkt aus Halbwertszeit und Beleuchtungsstärke in Plattenebene wird in µJ.cm-2 angegeben. Weiterhin werden gegebenenfalls nach der xerographischen Methode die maximale Potentialakzeptanz in Volt, die Zeit bis zur Aufladung der Aufzeichnungsmaterialien auf -500 Volt bei einer Coronaspannung von -8,5 kV in 10 mm Abstand, der Potentialabfall in Dunkeln in 20 Sekunden und der gesamte photoinduzierte Potentialabfall in % bei einer eingestrahlten Energie von 1 mJ.cm-2 ermittelt.
  • Beispiel 1
  • 55 Teile eines Copolymerisats aus 70 % Styrol, 6 % Maleinsäureanhydrid und 24 % Acrylsäure mit einem mittleren Molekulargewicht Mw von etwa 2000,45 Teile 2-(N,N-Diethylphenyl)-6-methoxybenztriazol-1,2,3, 0,6 Teile Methylviolett (C.I. 42535) und 5 Teile Bis[pentandionato-(2,4)]-zink (II) (Zinkacetylacetonat) werden in einem Gemisch aus Tetrahydrofuran und Essigsäureethylester gelöst, die Lösung wird auf einen elektrisch leitfähigen Träger aus einem elektolytisch aufgerauhten und danach anodisch oxidierten Aluminiumblech von 0,15 mm Dicke so aufgetragen, daß nach dem Abflüften des Lösungsmittels und 30minütigem Trocknen bei 85° C eine Trockenschichtdicke von 4µm resultiert. Die xerographische Prüfung ergibt eine Halbwertsphotoempfindlichkeit von 19,6 µJ.cm-2.
  • Vergleichebeispiel 1
  • Es wird wie in Beispiel 1 verfahren, jedoch wird der Zusatz des Zinkacetylacetonats unterlassen. Es wird eine Halbwertsphotoempfindlichkeit von 35,4 µJ.cm-2 gemessen.
  • Vergleichsbeispiel 2
  • Es wird wie in Beispiel 1 verfahren, jedoch wird anstelle des Zinkacetylacetonats die gleiche Menge an reinem Acetylaceton (1,3-Diketon) eingesetzt. Die Halbwertsphotoempfindlichkeit beträgt 33,6 µJ.cm-2.
  • Vergleichsbeispiel 3
  • Es wird wie in Beispiel verfahren, jedoch wird das Zinkacetylacetonat durch die gleiche Menge an Zinkchlorid (vorgelöst in wenig Wasser) ersetzt. Es wird eine Halbwertsphotoempfindlichkeit von 31,4 µJ.cm-2 ermittelt.
  • Beispiele 2 und 3
  • Es wird wie in Beispiel 1 verfahren, jedoch wird das Zinkacetylacetonat durch Bis[pentandionato-(2,4)]-magnesium (Magnesiumacetylacetonat, Beispiel 2), bzw. Tetrakis[pentandionato-(2,4)]-zirkonium-(IV) (Zirkonacetylacetonat, Beispiel 3) ersetzt. Die Halbwertsphotoempfindlichkeiten betragen 22,4 µJ.cm-2 und 23,5 pJ.cm-2.
  • Beispiel 4
  • 60 Teile eines Copolymerisats aus 80 % Styrol und 20 % Acrylsäure mit einem mittleren Molekulargewicht von 1600, 36 Teile p-Diethylaminobenzaldehyddiphenylhydrazon, 1 Teil Rhodamin 6 G (C.I. 45160) und 8 Teile Bis[pentandionato-(2,4)]-zink werden in Tetrahydrofuran/Methylglykol 1 : 1 gelöst und in einer Trockenschichtdicke von 5,5 µm auf ein feingebürstetes Aluminiumblech aufgetragen. An diesem elektrophotographischen Aufzeichnungsmaterial wird eine Halbwertsphotoempfindlichkeit von 9,6 µJ.cm-2 ermittelt.
  • Vergleichsbeispiel 4
  • Es wird wie in Beispiel 4 verfahren, jedoch wird das Zinkacetylacetonat weggelassen. Die Halbwertsphotoempfindlichkeit beträgt nun 16,2 µJ.cm-2.
  • Beispiel 5
  • 50 Teile eines Copcolymerisats aus 60 % Styrol und 40 % einer mit Methanol halbveresterten Maleinsäure mit einem mittleren Molekulargewicht Mw von 10 000, 50 Teile 2-(4'-Diethylaminophenyl)-benztriazol-1,2,3, 0,2 Teile Kristallviolett (C.I. 42555) und 4 Teile Bis[pentandionato-(2,4))-zirkonium-(IV) werden aus einer 5 %-igen Lösung in Tetrahydrofuran auf eine elektrolytisch aufgerauhte und anodisierte Aluminiumfolie von 0,15 mm Dicke in einer Trockenschichtdicke von etwa 4 µm aufgebracht. Diese Druckplatte wird nach einer Aufladung mittels einer Hochspannungscorona in einer Kamera bildmäßig 12 Sekunden belichtet. Danach wird mit einem Pulvertoner entwickelt, der bei 160°C abriebfest eingebrannt wird. Die unbetonerte Schicht wird mit einem Gemisch aus 0,5 % Soda, 25 % Isopropanol und 74,5 % Wasser abgewaschen, wodurch die Aluminiumoberfläche freigelegt wird. Die Lösungen werden mit einem Wattebausch über die Schicht gestrichen. Man erhält die im Offsetdruck erwünschte Differenzierung in hydrophile und oleophile Bereiche, wobei die Trägeroberfläche die hydrophilen Bereiche liefert.
  • Anschließend an die Behandlung mit der alkalischen Flüssigkeit wird die Druckplatte mit Wasser nachgespült und durch Überwischen mit verdünnter Phosphorsäurelösung die Hydrophilie der Trägeroberfläche weiter erhöht. Nach Einfärben mit fetter Farbe wird auf bekannte Weise in Offsetdruckmaschinen damit gedruckt.
  • Beispiel 6 und Vergleichsbeispiel 5
  • 55 Teile eines Copolymerisats aus 55 % Styrol, 30 % Acrylsäure und 15 % Maleinsäureanhydrid mit einem mittleren Molekulargewicht Mw von 35 000, 45 Teile 2-(N,N-Diethylaminophenyl)-benztriazol-1,2,3, 0,6 Teile Methylviolett (C.I. 42535) und 6 Teile Bis[pentandionato-(2,4)]-zink werden in einem Gemisch aus Tetrahydrofuran und Methylglykolacetat gelöst und als Schicht mit einer Trockenschichtdicke von 3,5 µm auf ein feingebürstetes Aluminiumblech aufgebracht. Die Vergleichsschicht 5 ist wie Beispiel 6 aber ohne das Zinkacetylacetonat hergestellt.
  • Nach der xerographischen Methode werden an den beiden Schichten (Vergleichsbeispiel in Klammern) folgende Kenndaten gemessen:
    • a) Zeit bis zur Aufladung auf -500 V (-8,5 kV, 10 mm): 1,8 s (2,2 s);
    • b) maximale Potentialakzeptanz: 1700 V (1380 V);
    • c) Dunkelabfall (20 s, -600 V): 17 % (16 %);
    • d) photoinduzierter Potentialabfall (1 mJ.cm-2): 96,5 % (87,0 %).
    Beispiel 7 und Vergleichsbeispiel 6
  • Auf einer Polyethylenterephthalatfolie mit einer aufgedampften, leitfähigen Aluminiumschicht in einer Dicke von etwa 300 A wird eine Schicht aus 60 Teilen eines chlorierten Perylen-3,4:9,1 0-tetracarbonsäurediimidbisbenzimidazols mit einem Chlorgehalt von etwa 38 % und 50 Teilen eines handelsüblichen Copolymerisats aus Vinylchlorid, Acrylsäure und einem Maleinsäurediester in einer Dicke von etwa 0,55 µm als Ladungsträger erzeugende Schicht aufgebracht.
  • Auf diese Ladungsträger erzeugende Schicht wird aus einer Lösung in Essigsäureethylester eine Ladungstransportschicht aus 45 Teilen eines handelsüblichen Polycarbonat-Bindemittels mit einem Schmelzbereich von 220 bis 230°C, 10 Teile eines Polyesters mit einer Säurezahl von etwa 40 und einem Molekulargewicht von ca. 4.500, 40 Teilen p-Diethylaminobenzaldehyddiphenylhydrazon und 4 Teilen Bis[pentandionato-(2,4)]-zink so aufgebracht, daß nach dem Ablüften des Lösungsmittels und 30minütigem Trocknen bei 80°C eine Trockenschichtdicke von 12 µm resultiert.
  • An dieser Schicht wird eine Halbwertsphotoempfindlichkeit von 2,8 µJ.cm-2 ermittelt. Die gleiche Schicht ohne Zinkacetylacetonat hat eine Halbwertsphotoempfindlichkeit von etwa 4,8 µJ.cm-2. Wird die Schicht des Beispiels 7 als Kopierfolie in einem handelsüblichen Kopiergerät mit Trockentoner verwendet, so können damit Kopien von guter Qualität und in hoher Anzahl hergestellt werden.

Claims (8)

1. Elektrophotographische Aufzeichnungsmaterialien, bestehend aus einem elektrisch leitenden Träger und einer oder mehreren Schicht(en) aus Bindemitteln, Ladungsträger erzeugenden Verbindungen bzw. Sensibilisatoren, Ladungsträger transportierenden Verbindungen und Zusätzen, dadurch gekennzeichnet, daß sie als Zusatz 0,5 bis 30 Gew.-%, bezogen auf den Bindemittelanteil in der Ladungsträger transportierende Verbindungen enthaltenden Schicht, an in Lösung und in der Mischung farblosem Cadmium-, Natrium-, Magnesium-, Zink-, Zirkon- oder Titanylacetylacetonat enthalten.
2. Elektrophotographische Aufzeichnungsmaterialien nach Anspruch 1, dadurch gekennzeichnet, daß sie das Metallacetylacetonat in einer Menge von 3 bis 15 Gew.-% enthalten.
3. Elektrophotographische Aufzeichnungsmaterialien nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie eine Schicht mit Ladungsträger erzeugenden Verbindungen und eine weitere Schicht mit Ladungsträger transportierenden Verbindungen aufweisen.
4. Elektrophotographische Aufzeichnungsmaterialien gemäß einem der Ansprüche 1 bis 3 zur Herstellung von Druckformen, dadurch gekennzeichnet, daß sie ein für Druckformen geeignetes Trägermaterial einer Dicke von 0,08 bis 0,6 mm und eine photohalbleitende Schicht aufweisen, die
a) mindestens ein Bindemittel,
b) mindestens eine Ladungsträger transportierende Verbindung,
c) mindestens einen Farbstoff als Sensibilisator,
d) mindestens ein Metallacetylacetonat gemäß Anspruch 1 und
e) ggf. weitere Zusätze enthält.
5. Aufzeichnungsmaterialien gemäß Anspruch 4, dadurch gekennzeichnet, daß das Bindemittel in basischen wäßrigen oder wäßrig-alkoholischen Lösungsmitteln löslich ist.
6. Aufzeichnungsmaterialien gemäß einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß das Bindemittel ein Copolymerisat aus Styrol, Maleinsäureanhydrid und Acryl- und/oder Methacrylsäure mit einem Anteil an einpolymerisierten Maleinsäureanhydrid-Gruppen von 5 bis 50 Gew.-% und einem Anteil an einpolymerisierten Acryl- und/oder Methacrylsäure-Gruppen von 5 bis 35 Gew.-% ist.
7. Verwendung der elektrophotographischen Aufzeichnungsmaterialien gemäß den Ansprüchen 1 bis 3 für reprographische Zwecke.
8. Verwendung der elektrophotographischen Aufzeichnungsmaterialien gemäß einem der Ansprüche 1 oder 2 oder 4 bis 6 zur Herstellung elektrophotographischer Druckformer, insbesondere Offsetdruckformen.
EP84107505A 1983-07-05 1984-06-28 Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit Expired EP0131215B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3324090 1983-07-05
DE3324090A DE3324090A1 (de) 1983-07-05 1983-07-05 Elektrophotographische aufzeichnungsmaterialien mit verbesserter photoempfindlichkeit

Publications (3)

Publication Number Publication Date
EP0131215A2 EP0131215A2 (de) 1985-01-16
EP0131215A3 EP0131215A3 (en) 1985-11-27
EP0131215B1 true EP0131215B1 (de) 1988-05-18

Family

ID=6203117

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107505A Expired EP0131215B1 (de) 1983-07-05 1984-06-28 Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit

Country Status (4)

Country Link
US (1) US4559285A (de)
EP (1) EP0131215B1 (de)
JP (1) JPS6064355A (de)
DE (2) DE3324090A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741981A (en) * 1985-07-30 1988-05-03 Ricoh Co., Ltd. Photosensitive material for electrophotography contains organic phosphite compounds
JPS63220161A (ja) * 1987-03-10 1988-09-13 Canon Inc 電子写真感光体
US4895783A (en) * 1989-01-03 1990-01-23 Xerox Corporation Overcoated electrophotographic photoreceptor contains metal acetyl acetonate in polymer layer
DE3906245A1 (de) * 1989-02-28 1990-09-06 Basf Ag Seitenstaendige carbazolyl-gruppen enthaltende poly(meth)acrylate und elektrophotographische aufzeichnungselemente, enthaltend dieselben
JP2680560B2 (ja) * 1995-06-22 1997-11-19 三菱電機株式会社 機関制御用信号発生装置
DE19903002A1 (de) * 1998-01-28 1999-07-29 Fuji Electric Co Ltd Elektrofotografischer fotoempfindlicher Körper und Verfahren zur Herstellung desselben
JP2002362053A (ja) * 2001-06-08 2002-12-18 Fuji Photo Film Co Ltd 直描型平版印刷用原版及び製造方法
US7045262B2 (en) * 2004-01-22 2006-05-16 Xerox Corporation Photoconductive imaging members

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL217825A (de) * 1956-06-04
NO95057A (de) * 1957-09-07
NL126440C (de) * 1958-08-20
DE1117391B (de) * 1959-03-18 1961-11-16 Kalle Ag Elektrophotographisches Verfahren zur Herstellung von Druckformen
GB1150435A (en) * 1965-04-28 1969-04-30 Rank Xerox Ltd Electrophotographic Material
DE1522497C3 (de) * 1966-05-13 1974-09-19 Kalle Ag, 6202 Wiesbaden-Biebrich Verfahren zum Herstellen von Druckformen
US3620723A (en) * 1967-05-29 1971-11-16 Ricoh Kk Electrophotographic copying material containing assistant sensitizers and its manufacturing method
JPS4881940A (de) * 1972-02-07 1973-11-01
DE2237680C3 (de) * 1972-07-31 1981-09-10 Hoechst Ag, 6000 Frankfurt Elektrophotographisches Aufzeichnungsmaterial
DE2220408C3 (de) * 1972-04-26 1978-10-26 Hoechst Ag, 6000 Frankfurt Elektrophotographisches Aufzeichnungsmaterial und Verfahren zu seiner Herstellung
US4315981A (en) * 1972-07-31 1982-02-16 Hoechst Aktiengesellschaft Organic double layer electrophotographic recording material
DE2625116C2 (de) * 1976-06-04 1984-01-26 Gödecke AG, 1000 Berlin Verfahren zur Herstellung von 4-Hydroxy-aporphin-Derivaten
GB2106659B (en) * 1981-07-28 1985-02-20 Fuji Xerox Co Ltd Electrophotographic photosensitive materials

Also Published As

Publication number Publication date
DE3471378D1 (en) 1988-06-23
EP0131215A3 (en) 1985-11-27
JPS6064355A (ja) 1985-04-12
US4559285A (en) 1985-12-17
EP0131215A2 (de) 1985-01-16
DE3324090A1 (de) 1985-01-17
JPH0416107B2 (de) 1992-03-23

Similar Documents

Publication Publication Date Title
DE1908345A1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE3004339A1 (de) Aufzeichnungsvorrichtung
DE1908343A1 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0198488B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2801913A1 (de) Lichtempfindliches schichtmaterial fuer die elektrophotographie
EP0131215B1 (de) Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit
EP0137217B1 (de) Elektrophotographisches Aufzeichnungsmaterial und Verfahren zu seiner Herstellung
DE3140571A1 (de) Lichtempfindliches elektrophotographisches element
EP0093330B1 (de) Elektrographische Aufzeichnungsmaterialien mit speziellen Ladungsträger transportierenden Verbindungen
DE2904183B2 (de) Elektrophotographisches Aufzeichnungsmaterial und Verwendung desselben zur Herstellung einer Druckform
EP0324180B1 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0089603B1 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0093329B1 (de) Elektrographische Aufzeichnungsmaterialien mit speziellen Ladungsträger transportierenden Verbindungen
EP0133469B1 (de) Elektrophotographische Aufzeichnungsmaterialien mit verbesserter Photoempfindlichkeit
EP0125481B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE69414183T2 (de) Elektrophotographisches, lichtempfindliches Element und elektrophotographischer Apparat unter Verwendung desselben
DE3310804A1 (de) Verfahren und lichtempfindliche materialien zur herstellung von flachdruckformen
DE19620020A1 (de) Photoleiter für Elektrophotographie
DE4028519C2 (de) Elektrofotografisches Aufzeichnungsmaterial
DE2832859C2 (de)
DE3338903C2 (de)
DE1797137A1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE69023907T2 (de) Laminiertes organisches lichtempfindliches Material.
DE3324641A1 (de) Neue benztriazolverbindungen und deren verwendung
DE3148760C2 (de) Elektrophotographisches Aufzeichnungsmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19851125

17Q First examination report despatched

Effective date: 19861120

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3471378

Country of ref document: DE

Date of ref document: 19880623

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930513

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930608

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940630

Ref country code: CH

Effective date: 19940630

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST