EP0125374A2 - Übergangslager für hochradioaktiven Abfall - Google Patents

Übergangslager für hochradioaktiven Abfall Download PDF

Info

Publication number
EP0125374A2
EP0125374A2 EP84100544A EP84100544A EP0125374A2 EP 0125374 A2 EP0125374 A2 EP 0125374A2 EP 84100544 A EP84100544 A EP 84100544A EP 84100544 A EP84100544 A EP 84100544A EP 0125374 A2 EP0125374 A2 EP 0125374A2
Authority
EP
European Patent Office
Prior art keywords
storage
storage container
cooling air
transitional
bearing according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84100544A
Other languages
English (en)
French (fr)
Other versions
EP0125374B1 (de
EP0125374A3 (en
Inventor
Kurt Prof. Dr. Kugeler
Ulrich Jaroni
Wieland Kelm
Peter-W. Dr. Phlippen
Peter Dr. Schmidtlein
Manfred Dr. Kugeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to AT84100544T priority Critical patent/ATE44838T1/de
Publication of EP0125374A2 publication Critical patent/EP0125374A2/de
Publication of EP0125374A3 publication Critical patent/EP0125374A3/de
Application granted granted Critical
Publication of EP0125374B1 publication Critical patent/EP0125374B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F7/00Shielded cells or rooms
    • G21F7/015Room atmosphere, temperature or pressure control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/22Disposal of liquid waste by storage in a tank or other container

Definitions

  • the invention relates to a temporary storage facility for highly radioactive waste.
  • the transition camp has containers for holding the waste and a cooling system for removing the heat generated during the storage of the waste.
  • the cooling system includes a cooling air duct,
  • Transitional storage facilities are used to store processed high-level radioactive waste until it is reused or until it is brought into a final storage facility. Such waste arises from the reprocessing of nuclear fuel elements after their use in a nuclear reactor. Radioactive waste must also be disposed of when manufacturing radioactive phosphors or from isotope laboratories.
  • the highly radioactive substances are concentrated before they are stored. They are stored in suitable carrier substances or as calcine, which is obtained during reprocessing. Borosilicate glass, for example, is suitable as a carrier substance. It is known to use the highly radioactive materials in rustproof gas tight Include steel containers.
  • the highly radioactive waste is to be transferred to storage facilities that act as radiation shielding. In addition, care must also be taken to ensure that the heat generated during storage due to the decay of the radioactive substances, which is referred to as "post-decay heat", is dissipated so that the containers containing the radioactive waste and, if appropriate, the carrier substance itself containing the radioactive waste is not overheated by the heat. The warehouse is therefore cooled.
  • US Pat. No. 3,866,424 describes a storage facility for radioactive waste, in which the waste containers containing the waste are placed in storage tubes which are filled with a cooling liquid and also penetrate a cooling bath.
  • the cooling medium of the cooling bath is conducted in a primary cooling circuit via a heat exchanger, which is arranged outside the storage room. In the heat exchanger, the cooling medium transfers its heat to a working fluid circuit with a compressor and turbine.
  • additional secondary cooling devices are provided for the cooling bath itself, but also for the cooling liquid that is located in the bearing tubes.
  • the functionality and safety of this known cooling system primarily depends on the cooling of the waste via the cooling liquid in the storage tubes themselves. In the event of leaks within the bearing tubes, considerable disruptions must therefore be expected.
  • U.S. Patent 3,911,684 Another warehouse for radioactive waste is known from U.S. Patent 3,911,684.
  • storage tubes filled with waste are flushed with cooling air.
  • the cooling air is circulated for economic use, the heat carried along, for example, being able to be released via a heat exchanger to a working medium of a working medium circuit with a turbine. Redundancy of the system is not only achieved by arranging further heat exchangers in the cooling air circuit, but care is also taken to ensure that cooling air can flow into the storage space in the event of a malfunction using natural convection.
  • the disadvantage is that the cooling air in the storage room is difficult to guide so that local overheating is avoided. If a storage tube breaks, the highly radioactive waste is located directly in the cooling air flow.
  • the object of the invention is to provide a transition camp, in which, in addition to using the heat generated during operation, uniform heat dissipation is ensured even when emergency cooling is required. At the same time, even if the high-level radioactive waste is not overheated, it should be securely enclosed with the coolants of the cooling system. In addition, the transit camp should be as compact as possible without compromising its security.
  • a separate storage container is used in the storage room for filling of waste has suitable storage shafts.
  • the storage shafts are arranged in the storage container in an area which is surrounded by coolant lines which lead to the cooling medium flowing in the circuit for decoupling the heat between the storage space and the heat sink.
  • coolant lines By arranging the coolant lines directly in the storage container itself, there is a high heat transfer between the storage shafts and coolant lines.
  • the storage container is surrounded by a cooling jacket with cooling air channels, in which the cooling air is guided directly along the outer wall surface of the storage container.
  • the cooling air is used for emergency cooling of the system and can flow in forced or free convection. With free convection, the amount of air required to cool the storage room is set automatically. The airflow increases the warmer the storage container gets.
  • the cooling air ducts are closed during normal operation.
  • the storage container can be made polygonal or circular in cross section.
  • a very compact design is achieved according to claim 2 by designing the storage container in a cylindrical shape, filling openings for the highly radioactive waste in storage shafts running parallel to the container axis being provided on one of the end faces of the storage container.
  • the coolant lines are arranged in areas of the outer wall surface of the cylindrical storage container. These areas enclose the storage shafts.
  • the storage container preferably consists of parts that can be centered one inside the other, joints between the parts being radiation-shielding. Claim 3. The production of such segments is associated with increased effort. It is therefore expedient, according to claim 4, to provide cylindrical sections which can be assembled on the end face. Seals can be used in the ring grooves on the end faces.
  • the storage container In order to achieve a uniform temperature in the storage container and to avoid local overheating in the inner region of the storage shafts, the storage container also has coolant lines in the wall region of a central channel ; on, claim 5.
  • the channel also serves to guide cooling air that flows through the channel under the action of free convection.
  • the storage shafts are preferably sealed by lining the storage shafts with liners. Claim 6.
  • the liners lie flush against the shaft wall in order to achieve good heat transfer.
  • the coolant lines are also rolled into recesses in the storage container provided for this purpose.
  • the coolant lines preferably consist of double pipes, the connections for the coolant lines to the inlet and return for the coolant are to be made only on one side of the storage container.
  • the inner area of the double pipes serves as the coolant inlet to the other end of the coolant line, in the outer ring area of the double pipe, the warming coolant flows back, claim 8. This results in a favorable heat transfer.
  • a high heat conduction and radiation shielding is achieved according to claims 9 to 12 by forming the storage container from gray cast iron, nodular cast iron or cast steel. If the storage container is assembled from sections of gray cast iron, nodular cast iron or cast steel, these are clamped by means of tensioning cables which, in the case of cylindrical sections, run parallel to the container axis. To save space, the tensioning cables are laid in the storage container in tubular recesses which run parallel to and between the coolant lines. To seal the braced sections, the joints between them are made gas-tight. For this purpose, seals can be inserted in the joints. The joints are preferably welded.
  • the storage room has heat-resistant or overheating-protected storage walls.
  • the bearing walls can expediently be cooled by cooling air.
  • additional cooling air ducts run in an intermediate space between the cooling jacket and the storage container. Claims 13 to 15.
  • cooling air lines run in the bearing walls, which are at the bottom of the bearing room open into a distribution chamber from which the cooling air reaches the individual cooling air ducts.
  • the cooling air ducts are connected to the distribution chamber and, in order to discharge the heated cooling air, lead to a cooling air collecting space, in the ceiling of which at least one exhaust opening for the cooling air is provided.
  • the storage container and the cooling jacket rest on supports which are arranged in the distribution chamber so that cooling air can flow around them.
  • the cooling air channels expediently consist of elements which are open towards the storage container.
  • the legs of these elements point to the outer wall surface of the storage container, cooling air flowing in the remaining space between the element and the outer wall surface.
  • the transition camp consists of a storage room 1, the bearing walls 2 of which are embedded in the ground about two thirds.
  • a surface edge of the ground is given the reference number 3.
  • the part of the bearing walls 2 protruding above the surface of the ground has inflow openings 4 for cooling air, which can flow in via blockable cooling air lines 5 in the bearing walls 2 to the floor 6 of the storage room 1.
  • a storage container 7 which, for ease of assembly, consists of a large number of cylindrical sections 8, each of which is centered with its end faces placed on one another.
  • storage container 7 run parallel to the container axis 9 storage wells 10 into which waste containers 11 can be lowered via filler openings 12 on the upper end face of the cylindrical storage container 7 arranged vertically in the transition bearing in the exemplary embodiment.
  • Each filling opening 12 can be closed with a removable gas-tight cover system, the gas tightness of which can be checked.
  • the waste bins 11 are highly radioactive Waste filled.
  • the waste containers contain radioactive substances embedded in borosilicate glass.
  • the waste container itself is made of stainless steel. Instead of glazed radioactive waste, waste produced as calcine can also be introduced into the storage shafts 10.
  • the storage shafts are lined with a stainless steel liner 13. Joints 14 formed between the sections 8 are radiation shielding.
  • the end faces of the sections have annular shoulders that prevent direct beam passage.
  • the liner lies flush against the shaft wall and thus improves the heat transfer between waste containers 11 and storage shafts 10.
  • the lid system on the filling openings 12 is also gas-tight and radiation-shielding.
  • the storage shafts 10 are arranged in the storage container 7 within an area which is surrounded by coolant lines 15.
  • the coolant lines run in the storage container 7 both on its outer cylinder wall and in the wall area of a central channel 16 parallel to the container axis 9 and thus enclose the area of the storage container 7 in which the storage shafts 10 are located.
  • a coolant flows in the coolant lines 15 and is circulated, which is shown schematically in FIG. 2.
  • the coolant flows through coolant lines 15 via an inlet 17 and heats up in the coolant lines by absorbing the heat emitted by the radioactive waste in the storage shafts.
  • the heated cooling medium is via an outlet 18 led to a heat sink 19.
  • a heat exchanger for example, can be used as a heat sink, in which the cooling medium again releases its entrained heat.
  • the heat can also be transferred to the working medium of a working medium circuit with a turbine or can be fed directly to a consumer.
  • cooling with air is provided as an emergency cooling system.
  • the storage container 7 is surrounded by a cooling jacket 20 which has cooling air channels 21 in which the cooling air flows along the outer wall surface of the storage container 7 in free convection.
  • the cooling air channels 21 are connected to the bottom 6 of the storage room 1 at a distribution chamber 22, into which the cooling air from the free environment of the intermediate storage after opening
  • Cooling air lines 5 can flow into the bearing wall 2.
  • the cooling air channels 21 are open to the outer wall surface of the storage container 7, as can be seen from FIGS. 1 and 2. They consist of a cross-sectionally U-shaped element 23, the legs 24 of which point towards the outer wall surface of the storage container 7. An intermediate space is thus created between the outer wall surface of the storage container and inner wall surfaces of the U-shaped element 23, which space serves to guide the cooling air.
  • the cooling air flows through the cooling air channels 21 from bottom to top, is heated while absorbing the heat generated in the storage container and exits into a cooling air collecting space 25, in the ceiling 26 of which a discharge opening 27 is provided for the exit of the heated cooling air.
  • the storage container 7 is also supplied with cooling air from the distribution chamber 22 through the central duct 16.
  • the duct 16 like the other cooling air ducts 21, extends from the distribution chamber 22 to the cooling air collecting space 25.
  • the heated cooling air flowing out of the central duct 16 is also discharged into the open via the exhaust air chimneys 28.
  • the coolant lines 15 are rolled into recesses provided in the sections 8 after assembly of the sections.
  • the coolant lines thus have good heat-conducting contact in the storage container 7.
  • the coolant lines are designed as double pipes, which at their lower end 31 apart from a gap between the inner pipe space 32 and the annular space 33
  • the inlet 17 for the cooling medium opens into the inner tube space 32, the outlet 18 is connected to the annular space 33.
  • the coolant thus flows through the coolant line first in the inner tube space 32, is deflected at the lower end 31 and is guided to the outlet 18 in the annular space 33.
  • the heat absorption takes place essentially in the annular space 33 of the coolant line.
  • the sections 8 are made of cast steel in order to ensure high thermal conductivity between the storage shafts 10 and coolant lines 15 and to the outer wall surface of the storage container 7 to reach, along which the cooling air flows.
  • the sections 8 are clamped together by means of tensioning cables 34.
  • the tensioning cables run in tubular recesses 35, which are arranged in the outer wall area of the storage container between the coolant lines 15. This results in a compact, space-saving design of the storage container 7.
  • the bracing of the sections 8 is necessary in order to ensure the cohesion of the sections, in particular in the event of faults.
  • the radioactive waste introduced into the storage shafts 10 thus always remains safely enclosed.
  • the sections 8 are welded at their joints 14 from the inside and outside. Instead of welding the parts, can be 'insert seals in annular grooves on the end face of the sections.
  • the bearing walls 2 of the storage room 1 either consist of heat-resistant material, for example gray cast iron, or, as in the exemplary embodiment, they are protected against overheating.
  • an overheating protection 36 made of fireclay brick is used in the areas of concrete bearing walls that delimit storage space 1.
  • outer cooling air channels 37 are provided in the wall area.
  • the cooling air channels are formed by cooling ring segments 38 which are arranged in the space between the cooling jacket 20 of the storage container 7 and the bearing walls 2.
  • the outer cooling air channels 37 are designed open to the cooling jacket 20.
  • the bearing wall has flow ribs 39 which overheat due to the swirling of the cooling air flow counteract the bearing wall.
  • cooling air ducts In the area of the cooling air ducts, water cooling is additionally provided, which is not shown in the drawing.
  • the heat absorbed by the cooling water is used in the exemplary embodiment for preheating hot water that can be dissipated to consumers.
  • supports 40 are arranged on which the storage container 7 rests.
  • Supports 40a are also provided for the cooling jacket 20 and the outer cooling air channels 37.
  • the supports 40 and 40a can be flowed around by the cooling air that can be introduced into the distribution chamber 22, so that the cooling air can penetrate unhindered into all channels of the cooling air system. It is also provided for cooling the foundation on the floor 6 of the storage room 1 and for cooling the supports 40, 40a themselves.
  • the central channel 16 is filled with trickle bodies 41, on which a liquid coolant can flow, which can be introduced into the storage space 1 via a feed line 42.
  • the supply line 42 opens at the upper end of the central channel 16 and is opened in an emergency if, in addition to the emergency cooling of the transition camp by means of cooling air or instead of this air cooling, a further temperature reduction of the storage tank 7 is to be carried out.
  • the coolant flowing in via the supply line 42 can also be sprayed onto the outer wall surface of the storage container 7.
  • coolant lines 43 are inserted in the cooling air channels 21, of which, for the sake of clarity, in FIG. 2 only one of the coolant lines is located.
  • the coolant lines 43 have spray nozzles distributed over their length, through which the coolant is distributed over the outer wall surface of the storage container 7. During the heat absorption, the coolant evaporates on the outer wall surface of the storage container and on the trickle bodies, which are also heated.
  • connection tunnels 44 and entrance locks 45 required for introducing the radioactive waste are also shown schematically in FIG.
  • the highly radioactive waste is moved into the storage room 1 in transport containers 46 via the entrance lock 45.
  • In the storage room 1 there is a loading platform 47 with crane systems.
  • the waste containers 11 filled with waste are filled into the storage shafts 10 of the storage containers 7.
  • the gas transfer storage facility has a total height of approximately 40 m. Around 23 m of this are surrounded by soil, 17 m protrude from its surface 3.
  • the outer diameter of the transition camp is about 15 m.
  • the storage room has a room diameter of approximately 9 m, the storage container is designed with an outer diameter of approximately 6 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Refuse Collection And Transfer (AREA)

Abstract

Für ein Übergansglager für hochradioaktiven Abfall ist zur Netzung der Wärme des Abfalls ein redundantes Kühlsystem vorgesehen. Im Übergangslager sind Behälter zur Aufnahme des Abfalls untergebracht, dessen Wärme, die bei der Lagerung des Abfalls entsteht, abzuführen ist. Zur Kühlung dient neben Kühlluft ein weiteres Kühlmedium, das im Kreislauf zwischen Kühlmittelleitungen, die den Lagerraum durchziehen, und einer außerhalb des Lagerraums angeordneten Wärmesenke geführt ist. Um bei sicherem Einschluß des Abfalls neben einer Nutzung der entstehenden Wärme im Betriebsfall auch eine gleichmäßige Wärmeabfuhr bei erforderlicher Notkühlung des Lagers zu gewährleisten, ist im Lagerraum ein Lagerbehälter eingesetzt, der zum Einfüllen des Abfalls geeignete Lagerschächte aufweist. Die Lagerschächte sind von den Kühlmitteleitungen des Kühlmediums umschlossen. Zusätzlich ist der Lagerbehälter zur Führung der Kühlluft von einem Kühlmantel umgeben, dessen Kühlluftkanäle zur äußeren Wandfläche des Lagerbehälters hin offen sind. Der Lagerbehälter kann z.B. aus Stahl oder Beton ausgeführt sein.

Description

  • Die Erfindung bezieht sich auf ein Übergangslager für hochradioaktiven Abfall. Das Übergangslager weist Behälter zur Aufnahme des Abfalls und ein Kühlsystem zum Abführen der bei der Lagerung des Abfalls entstehenden Wärme auf. Zum Kühlsystem gehören sowohl eine Kühlluftführung,
  • als auch ein Kühlmittelkreislauf für ein Kühlmedium, das im Kreislauf zwischen im Lagerraum erzeugte Wärme abführenden Kühlmittelleitungen und einer außerhalb des Lagerraums angeordneten Wärmesenke geführt ist.
  • Übergangslager dienen zur Aufbewahrung aufbereiteten hochradioaktiven Abfalls bis zu dessen Wiederverwendung oder bis zum Einbringen in ein Endlager. Solche Abfälle entstehen bei der Wiederaufarbeitung von Kernbrennelementen nach ihrer Nutzung in einem Kernreaktor. Radioaktive Abfälle sind aber auch beim Herstellen radioaktiver Leuchtstoffe oder aus Isotopenlaboratorien zu beseitigen.
  • Vor ihrer Lagerung werden die hochradioaktiven Stoffe konzentriert. Sie werden in geeigneten Trägersubstanzen oder als Kalzinat, das bei der Wiederaufarbeitung anfällt, eingelagert. Als Trägersubstanz eignet sich beispielsweise Borosilicatglas. Es ist bekannt, die hochradioaktiven Stoffe in nicht rostenden gasdichten Stahlbehältern einzuschließen. Der hochradioaktive Abfall ist nach seinem Einschluß in Lager zu überführen, die strahlenabschirmend wirken. Darüberhinaus ist aber auch dafür Sorge zu tragen, daß die bei der Lagerung infolge des Zerfalls der radioaktiven Stoffe entstehende Wärme, die als "Nachzerfallswärme" bezeichnet ist, abgeführt wird, damit die den radioaktiven Abfall enthaltenden Behälter und gegebenenfalls die den radioaktiven Abfall enthaltende Trägersubstanz selbst nicht durch die Wärmeentwicklung überhitzt wird. Das Lager wird deshalb gekühlt.
  • In der US-PS 3 866 424 wird ein Lager für radioaktiven Abfall beschrieben, bei dem die den Abfall enthaltenden Abfallbehälter in Lagerrohre eingebracht sind, die mit einer Kühlflüssigkeit gefüllt sind und darüberhinaus ein Kühlbad durchdringen. Das Kühlmedium des Kühlbades wird in einem Primärkühlkreislauf über einen Wärmetauscher geführt, der außerhalb des Lagerraumes angeordnet ist. Im Wärmetauscher gibt das Kühlmedium seine mitgeführte Wärme an einen Arbeitsmittelkreislauf mit Kompressor und Turbine ab. Zum Schutze gegen Überhitzung und zur Redundanz des Systems sind für das Kühlbad selbst, aber auch für die Kühlflüssigkeit, die sich in den Lagerrohren befindet, zusätzliche sekundäre Kühleinrichtungen vorgesehen. Die Funktionstüchtigkeit und Sicherheit dieses bekannten Kühlsystems hängt vor allem von der Kühlung des Abfalls über die Kühlflüssigkeit in den Lagerrohren selbst ab. Bei Leckagen innerhalb der Lagerrohre muß deshalb mit erheblichen Störungen gerechnet werden.
  • Ein weiteres Lager für radioaktiven Abfall ist aus US-PS 3 911 684 bekannt. Bei diesem Lager werden mit Abfall gefüllte Lagerrohre von Kühlluft umspült. Die Kühlluft wird zur wirtschaftlichen Nutzung im Kreislauf geführt, wobei beispielsweise die mitgeführte Wärme über einen Wärmetauscher an ein Arbeitsmittel eines Arbeitsmittelkreislaufs mit Turbine abgegeben werden kann. Eine Redundanz des Systems wird nicht nur durch Anordnung weiterer Wärmetauscher im Kreislauf der Kühlluft erreicht, sondern es ist auch dafür Sorge getragen, daß im Störfall unter Ausnutzung natürlicher Konvektion Kühlluft in den Lagerraum einströmen kann. Nachteilig ist, daß die Kühlluft im Lagerraum nur schwierig so zu führen ist, daß örtliche Überhitzungen vermieden werden. Tritt ein Bruch eines Lagerrohres auf, befindet sich der hochradioaktive Abfall unmittelbar im Kühlluftstrom.
  • Aufgabe der Erfindung ist es, ein übergangs lager zu schaffen, bei dem neben einer Nutzung der entstehenden Wärme im Betriebsfall eine gleichmäßige Wärmeabfuhr auch bei erforderlicher Notkühlung gewährleistet ist. Zugleich soll selbst bei einer nicht gewünschten Überhitzung des hochradioaktiven Abfalls dessen sicherer Einschluß gegenüber den Kühlmitteln des Kühlsystems gegeben sein. Darüberhinaus soll das übergangslager ohne Beeinträchtigung seiner Sicherheit möglichst kompakt gestaltet sein.
  • Diese Aufgabe wird bei einem Übergangslager der eingangs erwähnten Art gemäß der Erfindung durch die in Patentanspruch 1 angegebenen Merkmale gelöst. In den Lagerraum ist ein gesonderter Lagerbehälter eingesetzt, der zum Einfüllen des Abfalls geeignete Lagerschächte aufweist. Die Lagerschächte sind im Lagerbehälter in einem Bereich angeordnet, der von Kühlmittelleitungen umschlossen ist, die das zur Auskopplung der Wärme zwischen Lagerraum und Wärmesenke im Kreislauf strömende Kühlmedium führen. Durch Anordnung der Kühlmittelleitungen unmittelbar im Lagerbehälter selbst ist ein hoher Wärmeübergang zwischen Lagerschächten und Kühlmittelleitungen gegeben. Darüberhinaus ist der Lagerbehälter von einem Kühlmantel mit Kühlluftkanälen umgeben, in denen die Kühlluft unmittelbar an der äußeren Wandfläche des Lagerbehälters entlanggeführt wird. Die Kühlluft dient der Notkühlung des Systems und kann in erzwungener oder freier Konvektion strömen. Bei freier Konvektion stellt sich die zur Kühlung des Lagerraumes erforderliche Luftmenge selbsttätig ein. Der Luftstrom verstärkt sich, je wärmer der Lagerbehälter wird. Während des Normalbetriebes sind die Kühlluftkanäle geschlossen.
  • Der Lagerbehälter läßt sich im Querschnitt vieleckig oder kreisförmig ausführen. Eine sehr kompakte Ausführung wird gemäß Patentanspruch 2 durch Ausbilden des Lagerbehälters in zylindrischer Form erreicht, wobei an einer der Stirnseiten des Lagerbehälters Einfüllöffnungen für den hochradioaktiven Abfall in parallel zur Behälterachse verlaufende Lagerschächte vorgesehen sind.
  • Die Kühlmittelleitungen sind in Bereichen der äußeren Wandfläche des zylindrischen Lagerbehälters angeordnet. Diese Bereiche umschließen die Lagerschächte.
  • Um Herstellung und Montage des Lagerbehälters zu vereinfachen und um dessen Volumen der jeweils erforderlichen Lagerkapizität anpassen zu können, besteht der Lagerbehälter bevorzugt aus zentrierbar ineinanderfügbaren Teilstücken, wobei Fugen zwischen den Teilstücken strahlenabschirmend ausgebildet sind, Patentanspruch 3. Bei zylinderförmigen Lagerbehältern können die Teilstücke die Form von Zylindersegmenten aufweisen, in denen die Lagerschächte und Kühlmittelleitungen verlaufen. Die Fertigung solcher Segmente ist mit erhöhtem Aufwand verbunden. Zweckmäßig sind deshalb nach Patentanspruch 4 zylinderförmige Teilstücke vorgesehen, die stirnseitig zusammensetzbar sind. Auf den Stirnseiten sind in Ringnuten Dichtungen einsetzbar.
  • Um eine gleichmäßige Temperatur im Lagerbehälter zu erreichen und um örtliche Überhitzungen im inneren Bereich der Lagerschächte zu vermeiden, weist der Lagerbehälter im Wandbereich eines zentralen Kanals ebenfalls Kühlmittelleitungen ; auf, Patentanspruch 5. Der Kanal dient zugleich der Führung von Kühlluft, die den Kanal unter Einwirkung freier Konvektion durchströmt.
  • Das Abdichten der Lagerschächte erfolgt bevorzugt durch ein Auskleiden der Lagerschächte mit Linern, ; Patentanspruch 6. Die Liner liegen an der Schachtwand bündig an, um einen guten Wärmeübergang zu erreichen. Mit gleichem Ziel werden auch die Kühlmittelleitungen in dafür vorgesehenen Ausnehmungen im Lagerbehälter eingewalzt. Bevorzugt bestehen die Kühlmittelleitungen aus Doppel- rohren, die Anschlüsse für die Kühlmittelleitungen an Zulauf und Rücklauf für das Kühlmedium nur an einer Seite des Lagerbehälters vorzunehmen sind. Der innere Bereich der Doppelrohre dient als Zulauf des Kühlmittels bis zum anderen Ende der Kühlmittelleitung, im äußeren Ringbereich des Doppelrohres fließt das sich erwärmende Kühlmittel zurück, Patentanspruch 8. Dabei ergibt sich ein günstiger Wärmeübergang.
  • Eine hohe Wärmeleitung und Strahlenabschirmung wird nach Patentansprüchen 9 bis 12 durch Ausbildung des Lagerbehälters aus Grauguß, Sphäroguß oder Stahlguß erreicht. Wird der Lagerbehälter aus Teilstücken aus Grauguß, Sphäroguß oder Stahlguß zusammengesetzt, sind diese mittels Spannkabeln verspannt, die bei zylinderförmigen Teilstücken parallel zur Behälterachse verlaufen. Raumsparend sind die Spannkabeln nach Patentanspruch 11 im Lagerbehälter in rohrförmigen Ausnehmungen verlegt, die parallel zu den Kühlmittelleitungen und zwischen diesen verlaufen. Zum Abdichten der verspannten Teilstücke werden die Fugen zwischen ihnen gasdicht ausgebildet. Hierzu lassen sich in den Fugen Dichtungen einlegen. Bevorzugt werden die Fugen verschweißt.
  • Aus Sicherheitsgründen weist der Lagerraum hitzebeständige oder gegen Überhitzung geschützte Lagerwände auf. Zweckmäßig sind die Lagerwände von Kühlluft kühlbar. Hierzu verlaufen in einem Zwischenraum zwischen Kühlmantel und Lagerbehälter zusätzliche Kühlluftkanäle. Patentansprüche 13 bis 15.
  • Die gewünschte freie Konvektion der Kühlluft ergibt sich nach Patentanspruch 16 optimal bei senkrechter Anordnung des Lagerbehälters im Lagerraum, wobei der Lagerbehälter zum Einfüllen des Abfalls von oben zugänglich ist. Zur Einleitung der Kühlluft verlaufen in den Lagerwänden Kühlluftleitungen, die am Boden des Lagerraums in einer Verteilerkammer münden, von der aus die Kühlluft zu den einzelnen Kühlluftkanälen gelangt. Die Kühlluftkanäle sind an der Verteilerkammer angeschlossen und zur Ableitung der erwärmten Kühlluft zu einem Kühlluftsammelraum geführt, in dessen Decke zumindest eine Abzugsöffnung für die Kühlluft vorgesehen ist. Um der Kühlluft ungehindert Zugang zu den Kühlluftkanälen zu verschaffen, ruhen der Lagerbehälter und der Kühlmantel auf Auflagern, die in der Verteilerkammer von Kühlluft umströmbar angeordnet sind. Zweckmäßig bestehen die Kühlluftkanäle aus zum Lagerbehälter hin offenen Elementen. Die Schenkel dieser Elemente weisen auf die äußere Wandoberfläche des Lagerbehälters hin, wobei im verbleibenden Zwischenraum zwischen Element und äußerer Wandoberfläche Kühlluft strömt. Mit dieser Ausbildung der Kühlluftkanäle wird nicht nur für eine für den Wärmeübergang günstige Führung der Kühlluft an der äußeren Wandoberfläche des Lagerbehälters entlang, sondern auch für eine gute Wärmeableitung mit großer Wärmeübergangsfläche gesorgt, da die gesamte Oberfläche des Kühlkanals, die mit der äußeren Wandfläche des Lagerbehälters im Wärmeaustausch steht, zur Wärmeabgabe an die Kühlluft genutzt wird.
  • Die Erfindung und weitere Ausbildungen der Erfindung werden nachfolgend anhand eines Ausführungsbeispieles näher erläutert. Die Figuren zeigen im einzelnen:
    • Figur 1 übergangslager im Schnitt in-dimetrischer Ansicht
    • Figur 2 Längsschnitt eines übergangslagers nach Figur 1
    • Figur 3 Querschnitt eines übergangslagers nach Figur 2 gemäß Schnittlinie III/III
    • Figur 4 Querschnitt eines Übergangslagers nach Figur 2 gemäß Schnittlinie IV/IV
    • Figur 5 Querschnitt eines Ubergangslagers nach Figur 2 gemäß Schnittlinie V/V
  • Wie aus der Zeichnung ersichtlich ist, besteht das Übergangslager aus einem Lagerraum 1, dessen Lagerwände 2 zu etwa zwei Dritteln im Erdboden eingebettet sind. In Figuren 1 und 2 ist eine Oberflächenkante des Erdbodens mit Bezugsziffer 3 angegeben. Der über der Oberfläche des Erdbodens hinausragende Teil der Lagerwände 2 weist Einströmöffnungen 4 für Kühlluft auf, die über absperrbare Kühlluftleitungen 5 in den Lagerwänden 2 zum Boden 6 des Lagerraumes 1 einströmen kann.
  • Im Lagerraum 1 befindet sich ein Lagerbehälter 7, der zur Montageerleichterung aus einer Vielzahl zylindrischer Teilstücke 8 besteht, die jeweils zentrierbar mit ihren Stirnseiten aufeinandergesetzt sind. Im Lagerbehälter 7 verlaufen parallel zur Behälterachse 9 Lagerschächte 10, in die Abfallbehälter 11 über Einfüllöffnungen 12 an der oberen Stirnseite des im Ausführungsbeispiel senkrecht im übergangslager angeordneten zylindrischen Lagerbehälters 7 absenkbar sind. Jede Einfüllöffnung 12 ist mit einem abhebbaren gasdichten Deckelsystem verschließbar, dessen Gasdichtheit kontrollierbar ist.
  • Die Abfallbehälter 11 sind mit hochradioaktivem Abfall gefüllt. Im Ausführungsbeispiel enthalten die Abfallbehälter in Borosilikatglas eingebettete radioaktive Stoffe. Der Abfallbehälter selbst besteht aus rostfreiem Edelstahl. In den Lagerschächten 10 läßt sich statt verglastem radioaktivem Abfall auch als Kalzinat anfallender Abfall einbringen. Zum gasdichten Abschluß sind die Lagerschächte mit einem Liner 13 aus Edelstahl ausgekleidet. Zwischen den Teilstücken 8 gebildete Fugen 14 sind strahlenabschirmend ausgebildet. Die Stirnflächen der Teilstücke weisen hierzu ringförmig verlaufende Absätze auf, die einen direkten Strahlendurchgang verhindern. Der Liner liegt bündig an der Schachtwand an und verbessert so den Wärmeübergang zwischen Abfallbehältern 11 und Lagerschächten 10. Gasdicht und strahlenabschirmend ist auch das Deckelsystem auf den Einfüllöffnungen 12 ausgeführt.
  • Die Lagerschächte 10 sind im Lagerbehälter 7 innerhalb eines Bereiches angeordnet, der von Kühlmittelleitungen 15 umgeben ist. Die Kühlmittelleitungen verlaufen im Lagerbehälter 7 sowohl an dessen äußerer Zylinderwand als auch im Wandbereich eines zentralen Kanales 16 parallel zur Behälterachse 9 und umschließen somit den Bereich des Lagerbehälters 7, in dem sich die Lagerschächte 10 befinden. In den Kühlmittelleitungen 15 fließt ein Kühlmedium, das im Kreislauf geführt ist, was in Figur 2 schematisch dargestellt ist. Das Kühlmedium strömt üen Kühlmittelleitungen 15 über einen Zulauf 17 zu und erhitzt sich in den Kühlmittelleitungen durch Aufnahme der in den Lagerschächten entstehenden, vom radioaktiven Abfall abgegebenen Wärme. über einen Ablauf 18 wird das erhitzte Kühlmedium zu einer Wärmesenke 19 geführt. Als Wärmesenke ist beispielsweise ein Wärmetauscher einsetzbar, in dem das Kühlmedium seine mitgeführte Wärme wieder abgibt. Die Wärme kann auch auf das Arbeitsmedium eines Arbeitsmittelkreislaufs mit Turbine übertragen werden oder unmittelbar einem Verbraucher zugeführt werden. Neben der Kühlung des Lagerbehälters 7 durch das im Kreislauf geführte Kühlmedium ist als Notkühlsystem eine Kühlung mit Luft vorgesehen. Zur Führung der Kühlluft ist der Lagerbehälter 7 von einem Kühlmantel 20 umgeben, der Kühlluftkanäle 21 aufweist, in denen die Kühlluft in freier Konvektion an der äußeren Wandfläche des Lagerbehälters 7 entlangströmt. Die Kühlluftkanäle 21 sind am Boden 6 des Lagerraumes 1 an einer Verteilerkammer 22 angeschlossen, in die die Kühlluft aus der freien Umgebung des Zwischenlagers nach öffnen der
  • Kühlluftleitungen 5 in der Lagerwand 2 einströmen kann. Die Kühlluftkanäle 21 sind zur äußeren Wandfläche des Lagerbehälters 7 offen ausgebildet, wie aus Figuren 1 und 2 ersichtlich ist. Sie bestehen aus einem im Querschnitt U-förmigen Element 23, dessen Schenkel 24 zur äußeren Wandfläche des Lagerbehälters 7 weisen. Zwischen der äußeren Wandfläche des Lagerbehälters und inneren Wandoberflächen des U-förmigen Elementes 23 entsteht so ein Zwischenraum, der zur Kühlluftführung dient. Die Kühlluft durchströmt die Kühlluftkanäle 21 von unten nach oben, wird unter Aufnahme der im Lagerbehälter entstehenden Wärme erhitzt und tritt in einen Kühlluftsammelraum 25 aus, in dessen Decke 26 eine Abzugsöffnung 27 für den Austritt der erhitzten Kühlluft vorgesehen ist. Über Abluftkamine 28 in Entlüftungstürmen 29, die, eine Vielzahl von Luftaustrittsschlitzen 30 aufweisen, wird die Kühlluft in die freie Umgebung abgeführt und abgeleitet.
  • Dem Lagerbehälter 7 wird auch durch den zentralen Kanal 16 Kühlluft aus der Verteilerkammer 22 zugeführt. Der Kanal 16 verläuft wie auch die übrigen Kühlluftkanäle 21 von der Verteilerkammer 22 bis zum Kühlluftsammelraum 25. Auch die aus dem zentralen Kanal 16 strömende erwärmte Kühlluft wird über die Abluftkamine 28 ins Freie abgeführt.
  • Im Lagerbehälter 7 werden die Kühlmittelleitungen 15 in dafür vorgesehenen Ausnehmungen in den Teilstücken 8 nach Montage der Teilstücke eingewalzt. Die Kühlmittelleitungen weisen so einen guten wärmeleitenden Kontakt im Lagerbehälter 7 auf. Die Kühlmittelleitungen sind im Ausführungsbeispiel als Doppelrohre ausgeführt, die an ihrem unteren Ende 31 bis auf einen Spalt zwischen inneren Rohrraum 32 und Ringraum 33
  • verschlossen sind. Am oberen Ende des Doppelrohres mündet der Zulauf 17 für das Kühlmedium im inneren Rohrraum 32, der Ablauf 18 ist am Ringraum 33 angeschlossen. Das Kühlmedium durchströmt somit die Kühlmittelleitung zunächst im inneren Rohrraum 32, wird am unteren Ende 31 umgelenkt und im Ringraum 33 zum Ablauf 18 geführt. Die Wärmeaufnahme erfolgt dabei im wesentlichen im Ringraum 33 der Kühlmittelleitung.
  • Im Ausführungsbeispiel bestehen die Teilstücke 8 aus Stahlguß, um eine hohe Wärmeleitfähigkeit zwischen Lagerschächten 10 und Kühlmittelleitungen 15 sowie zur äußeren Wandfläche des Lagerbehälters 7 zu erreichen, an der die Kühlluft entlangströmt. Die Teilstücke 8 sind mittels Spannkabeln 34 miteinander verspannt. Die Spannkabel verlaufen in rohrförmigen Ausnehmungen 35, die im äußeren Wandbereich des Lagerbehälters zwischen den Kühlmittelleitungen 15 angeordnet sind. Damit ergibt sich eine kompakte raumsparende Ausbildung des Lagerbehälters 7. Das Verspannen der Teilstücke 8 ist erforderlich, um den Zusammenhalt der Teilstücke, insbesondere in Störfällen zu gewährleisten. Der in den Lagerschächten 10 eingebrachte radioaktive Abfall verbleibt somit stets in sicherem Einschluß. Zur Verhinderung von Gasaustritt sind die Teilstücke 8 an ihren Fugen 14 von innen und außen verschweißt. Statt die Teilstücke zu verschweißen, lassen sich auch in Ringnuten auf der Stirnseite der Teilstücke Dichtungen' einlegen.
  • Die Lagerwände 2 des Lagerraumes 1 bestehen entweder aus hitzebeständigem Material, beispielsweise aus Grauguß, oder sie sind, wie im Ausführungsbeispiel, gegen Überhitzung geschützt. Hierzu ist in den Bereichen aus Beton bestehender Lagerwände, die den Lagerraum 1 begrenzen, ein Überhitzungsschutz 36 aus Schamottstein eingesetzt. Darüberhinaus sind im Wandbereich äußere Kühlluftkanäle 37 vorgesehen. Die-Kühlluftkanäle werden durch Kühlringsegmente 38 gebildet, die im Zwischenraum zwischen Kühlmantel 20 des Lagerbehälters 7 und Lagerwänden 2 angeordnet sind. Die äußeren Kühlluftkanäle 37 sind zum Kühlmantel 20 hin offen gestaltet. Die Lagerwand weist Strömungsrippen 39 auf, die durch Verwirbelung der Kühlluftströmung einer Überhitzung der Lagerwand entgegenwirken.
  • Im Bereich der Kühlluftkanäle ist zusätzlich eine Wasserkühlung vorgesehen,die in der Zeichnung nicht dargestellt ist. Die vom Kühlwasser aufgenommene Wärme dient im Ausführungsbeispiel zur vorwarmung von an Verbraucher abführbarem Warmwasser.
  • In der Verteilerkammer 22 sind Auflager 40 angeordnet, auf denen der Lagerbehälter 7 ruht. Für den Kühlmantel 20 sowie die äußeren Kühlluftkanäle 37 sind ebenfalls Auflager 40a vorgesehen. Die Auflager 40 und 40a sind von der in die Verteilerkammer 22 einleitbaren Kühlluft umströmbar, so daß die Kühlluft in alle Kanäle des Kühlluftsystems ungehindert vordringen kann. Dabei wird auch für die Kühlung des Fundaments am Boden 6 des Lagerraumes 1 sowie für die Kühlung der Auflager 40, 40a selbst gesorgt.
  • Im Ausführungsbeispiel ist der zentrale Kanal 16 mit Rieselkörpern 41 gefüllt, an denen ein flüssiges Kühlmittel herabfließen kann, das über eine Zuleitung 42 in den Lagerraum 1 einführbar ist. Die Zuleitung 42 mündet am oberen Ende des zentralen Kanals 16 und wird im Notfall dann geöffnet, wenn neben der Notkühlung des Übergangslagers mittels Kühlluft oder statt dieser Luftkühlung eine weitere Temperaturabsenkung des Lagerbenälters 7 vorzunehmen ist. Das über die Zuleitung 42 einströmende Kühlmittel ist auch auf die äußere Wandfläche des Lagerbehälters 7 aufspritzbar. Hierzu dienen in den Kühlluftkanälen 21 eingeführte Kühlmittelleitungen 43, von denen der Übersichtlichkeit halber in Figur 2 nur eine der Kühlmittelleitungen eingezeichnet ist. Die Kühlmittelleitungen 43 weisen über ihre Länge verteilte Sprühdüsen auf, durch die das Kühlmittel über die äußere Wandfläche des Lagerbehälters 7 verteilt wird. Während der Wärmeaufnahme verdampft das Kühlmittel auf der äußeren Wandfläche des Lagerbehälters und auf den ebenfalls erhitzten Rieselkörpern.
  • In Figur 2 sind schematisch auch die für das Einbringen des radioaktiven Abfalls erforderlichen Verbindungsstollen 44 und Eingangsschleusen 45 dargestellt. Der hochradioaktive Abfall wird in Transportbehältern 46 über die Eingangsschleuse 45 in den Lagerraum 1 eingefahren. Im Lagerraum 1 befindet sich eine Beschickungsbühne 47 mit Krananlagen. Die mit Abfall gefüllten Abfallbehälter 11 werden in die Lagerschächte 10 der Lagerbehälter 7 eingefüllt.jGas Übergangslager weist im Ausführungsbeispiel eine gesamte Höhe von etwa 40 m auf. Davon sind etwa 23 m von Erdboden umgeben, 17 m überragen dessen Oberfläche 3. Der äußere Durchmesser des Übergangslagers beträgt etwa 15 m. Der Lagerraum weist einen Raumdurchmesser von etwa 9 m auf, der Lagerbehälter ist mit einem äußeren Durchmesser von ca. 6 m ausgelegt. Im beschriebenen Übergangslager lassen sich etwa 450 Abfallbehälter mit einem Durchmesser von 0,4 m und eine Höhe von 1,3 m lagern. Kühlung und Sicherheit des Übergangslagers sind so ausgelegt, daß der hochradioaktive Abfall über lange Zeiträume hinweg in sicherem Einschluß aufbewahrt werden kann.

Claims (21)

1. Übergangslager für hochradioaktiven Abfall mit Behältern zur Aufnahme des Abfalls und mit einem die bei der Lagerung des Abfalls entstehende Wärme abführenden Kühlsystem, das sowohl eine Kühlluftführung
als auch einen Kühlmittelkreislauf für ein Kühlmedium aufweist, das im Kreislauf zwischen im Lagerraum erzeugte Wärme abführenden Kühlmittelleitungen und einer außerhalb des Lagerraums angeordneten Wärmesenke geführt ist, dadurch gekennzeichnet , daß in den Lagerraum (1) ein Lagerbehälter (7) mit zum Einfüllen des Abfalls geeigneten Lagerschächten (10) eingesetzt ist, die im Lagerbehälter (7) innerhalb eines von den Kühlmittelleitungen (15) umschlossenen Bereiches angeordnet sind, und daß der Lagerbehälter (7) zusätzlich von einem Kühlmantel (20) umgeben ist, der zur äußeren Wandfläche des Lagerbehälters hin offene Kühlluftkanäle (21) aufweist.
2. Übergangslager nach Patentanspruch 1, dadurch gekennzeichnet , daß der Lagerbehälter (7) zylindrisch ausgeführt ist und an einer seiner Stirnseiten verschließbare Einfüllöffnungen (12) für parallel zur Behälterachse (9) verlaufende Lagerschächte (10) aufweist, und daß die Kühlmittelleitungen (15) in Wandbereichen des Lagerbehälters (7) angeordnet sind, die die Lagerschächte (10) umschließen.
3. Ubergangslager nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß der Lagerbehälter (7) aus zentrierbar ineinanderfügbaren Teilstücken (8) besteht, wobei Fugen (4) zwischen den Teilstücken (8) strahlenabschirmend ausgebildet sind.
4. übergangslager nach Patentanspruch 3, dadurch gekennzeichnet , daß die Teilstücke (8) zylinderförmig ausgebildet und stirnseitig zusammensetzbar sind.
5. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Lagerbehälter (7) einen zentralen, von Kühlluft durchströmbaren Kanal (16) aufweist, und daß im Lagerbehälter (7) im Wandbereich dieses Kanals (16) Kühlmittelleitungen (15) angeordnet sind.
6. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß die Lagerschächte (7) mit an ihrer Schachtwand bündig anliegenden Linern (13) ausgekleidet sind.
7. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß die Kühlmittelleitungen (10) im Lagerbehälter (7) in dafür vorgesehenen Ausnehmungen eingewalzt sind.
8. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß die Kühlmittelleitungen (15) aus Doppelrohren bestehen, von denen das äußere Rohr an einem seiner Enden (31) geschlossen ist und daß am anderen Ende ein zum inneren Rohrraum (32) geführter Zulauf (17) für Kühlmedium und ein mit dem Ringraum (33) des Doppelrohres verbundenen Ablauf (18) für das Kühlmedium angeschlossen sind.
9. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Lagerbehälter (7) aus Grauguß, Sphäroguß oder Stahlguß besteht.
10. Übergangslager nach Anspruch 9, dadurch gekennzeichnet , daß aus Grauguß, Sphäroguß oder Stahlguß bestehende Teilstücke (8) mittels Spannkabeln (34) miteinander verspannt sind.
11. Übergangslager nach Anspruch 10, dadurch gekennzeichnet , daß zur Aufnahme der Spannkabel (34) rohrförmige Ausnehmungen (35) vorgesehen sind, die parallel zu den Kühlmittelleitungen (15) und zwischen diesen verlaufen.
12. Übergangslager nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß die Teilstücke (8) an ihren Fugen (14) gasdicht verschweißt sind.
13. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Lagerraum (1) hitzebeständige oder gegen überhitzung geschützte Lagerwände (2) aufweist.
14. Übergangslager nach Anspruch 13, dadurch gekennzeichnet , daß die Lagerwände (2) von Kühlluft kühlbar sind.
15. Übergangslager nach Anspruch 14, dadurch gekennzeichnet , daß in einem zwischen Kühlmantel (20) des Lagerbehälters (7) und den Lagerwänden (2) gebildeten Zwischenraum Kühlluftkanäle (37) verlaufen.
16. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Lagerbehälter (7) im Lagerraum (1) senkrecht angeordnet und zum Einfüllen des Abfalls von oben zugänglich ist.
17. Übergangsbehälter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß in den Lagerwänden (2) Kühlluftleitungen (5) vorgesehen sind, die in einer am Boden des Lagerraumes (7) angeordneten Verteilerkammer (22) münden.
18. Ubergangslager nach Anspruch 17, dadurch gekennzeichnet , daß die Kühlluftkanäle (16, 21, 37) an die Verteilerkammer (22) angeschlossen sind und in einem Kühlluftsammelraum (25) münden, der in seiner Decke (26) Abzugsöffnungen (27) für die erwärmte Kühlluft aufweist.
19. Ubergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der Lagerbehälter (7) und der Kühlmantel (20) auf Auflagern (40) ruhen, die in der Verteilerkammer (22) von eingeführter Kühlluft umströmbar angeordnet sind.
20. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß die Kühlluftkanäle (21) des Kühlmantels (20) aus zur äußeren Wandoberfläche des Lagerbehälters (7) hin offenen Elementen (23) ausgebildet sind, die mit ihren freien Schenkeln (24) zur Oberfläche des Lagerbehälters (7) weisen und im verbleibenden Zwischenraum zwischen Element (23) und äußerer Wandoberfläche des Lagerbehälters (7) von Kühlluft durchströmt sind.
21. Übergangslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , daß der zentrale Kanal (16) im Lagerbehälter mit von einem Kühlmittel benetzbaren Rieselkörpern (41) gefüllt ist.
EP84100544A 1983-01-20 1984-01-19 Übergangslager für hochradioaktiven Abfall Expired EP0125374B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84100544T ATE44838T1 (de) 1983-01-20 1984-01-19 Uebergangslager fuer hochradioaktiven abfall.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3301735A DE3301735C2 (de) 1983-01-20 1983-01-20 Übergangslager für hochradioaktiven Abfall
DE3301735 1983-01-20

Publications (3)

Publication Number Publication Date
EP0125374A2 true EP0125374A2 (de) 1984-11-21
EP0125374A3 EP0125374A3 (en) 1986-11-05
EP0125374B1 EP0125374B1 (de) 1989-07-19

Family

ID=6188706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84100544A Expired EP0125374B1 (de) 1983-01-20 1984-01-19 Übergangslager für hochradioaktiven Abfall

Country Status (5)

Country Link
US (1) US4634875A (de)
EP (1) EP0125374B1 (de)
JP (1) JPS59193000A (de)
AT (1) ATE44838T1 (de)
DE (1) DE3301735C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500989A1 (de) * 1985-01-14 1986-07-17 Kraftwerk Union AG, 4330 Mülheim Lager zur aufnahme radioaktiver abfallstoffe
RU2530538C2 (ru) * 2012-06-08 2014-10-10 Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" . Способ временного хранения радиоактивных отходов
CN109859873A (zh) * 2019-01-14 2019-06-07 国核工程有限公司 一种乏燃料干式贮存模块的冷却装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126499A (ja) * 1984-11-26 1986-06-13 財団法人 電力中央研究所 キヤスク貯蔵庫
US4780269A (en) * 1985-03-12 1988-10-25 Nutech, Inc. Horizontal modular dry irradiated fuel storage system
US4905346A (en) * 1987-11-02 1990-03-06 Best Industries, Inc. Handle mechanism
US4847505A (en) * 1987-11-02 1989-07-11 Best Industries, Inc. Storage and transport containers for radioactive medical materials
FR2724756B1 (fr) * 1994-09-16 1996-12-27 Robatel Slpi Dispositif pour le refroidissement d'enceintes de confinement, notamment de silos de stockage de combustibles nucleaires irradies
SE509491C2 (sv) * 1995-01-10 1999-02-01 Hydro Betong Ab Sätt och anordning för lagring av riskavfall
GB2337722B (en) * 1998-05-29 2002-01-09 Gec Alsthom Ltd Dry storage vault
SE516262C2 (sv) * 2000-04-11 2001-12-10 Oyster Int Nv Sätt för framställning av förvaringsbehållare för kärnbränsle och anläggning för utförande av sättet
SE521224C2 (sv) * 2001-01-29 2003-10-14 Hans Georgii Anordning för förvaring av värmeproducerande riskmaterial, i synnerhet kärnbränsle, och för en sådan anordning avsett kärl
JP3600535B2 (ja) * 2001-02-26 2004-12-15 三菱重工業株式会社 キャスク
FR2835090B1 (fr) * 2002-01-23 2005-08-05 Commissariat Energie Atomique Installation d'entreposage de tres longue duree de produits emettant un flux thermique eleve
US6718000B2 (en) * 2002-02-06 2004-04-06 Holtec International, Inc. Ventilated vertical overpack
US8098790B2 (en) 2004-03-18 2012-01-17 Holtec International, Inc. Systems and methods for storing spent nuclear fuel
US7068748B2 (en) * 2004-03-18 2006-06-27 Holtec International, Inx. Underground system and apparatus for storing spent nuclear fuel
US7590213B1 (en) 2004-03-18 2009-09-15 Holtec International, Inc. Systems and methods for storing spent nuclear fuel having protection design
US20050220256A1 (en) * 2004-03-18 2005-10-06 Singh Krishna P Systems and methods for storing spent nuclear fuel having a low heat load
EP1794761B1 (de) * 2004-09-15 2013-02-27 Pebble Bed Modular Reactor (Proprietary) Limited Lagerbehälter für kernbrennstoff
WO2006086766A2 (en) * 2005-02-11 2006-08-17 Holtec International, Inc. Manifold system for a ventilated storage for high level nuclear waste
US8718220B2 (en) 2005-02-11 2014-05-06 Holtec International, Inc. Manifold system for the ventilated storage of high level waste and a method of using the same to store high level waste in a below-grade environment
US9443625B2 (en) * 2005-03-25 2016-09-13 Holtec International, Inc. Method of storing high level radioactive waste
US7330526B2 (en) * 2005-03-25 2008-02-12 Holtec International, Inc. System and method of storing high level waste
US8576976B2 (en) * 2007-10-29 2013-11-05 Holtec International, Inc. Apparatus for supporting radioactive fuel assemblies and methods of manufacturing the same
WO2008097381A2 (en) 2006-10-11 2008-08-14 Holtec International, Inc. Apparatus and method for transporting and/or storing radioactive materials
US20090108216A1 (en) * 2007-10-31 2009-04-30 Paceco Corp. Relocatable radiation shield for a container scanner
WO2009117037A2 (en) 2007-12-22 2009-09-24 Holtec International, Inc. System and method for the ventilated storage of high level radioactive waste in a clustered arrangement
US9001958B2 (en) 2010-04-21 2015-04-07 Holtec International, Inc. System and method for reclaiming energy from heat emanating from spent nuclear fuel
US11569001B2 (en) 2008-04-29 2023-01-31 Holtec International Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials
US8798224B2 (en) * 2009-05-06 2014-08-05 Holtec International, Inc. Apparatus for storing and/or transporting high level radioactive waste, and method for manufacturing the same
US8995604B2 (en) 2009-11-05 2015-03-31 Holtec International, Inc. System, method and apparatus for providing additional radiation shielding to high level radioactive materials
WO2013115881A2 (en) * 2011-11-14 2013-08-08 Holtec International, Inc. Method for storing radioactive waste, and system for implementing the same
US9514853B2 (en) 2010-08-12 2016-12-06 Holtec International System for storing high level radioactive waste
US11373774B2 (en) * 2010-08-12 2022-06-28 Holtec International Ventilated transfer cask
US8905259B2 (en) 2010-08-12 2014-12-09 Holtec International, Inc. Ventilated system for storing high level radioactive waste
US10811154B2 (en) 2010-08-12 2020-10-20 Holtec International Container for radioactive waste
US11887744B2 (en) 2011-08-12 2024-01-30 Holtec International Container for radioactive waste
WO2013085638A1 (en) 2011-10-28 2013-06-13 Holtec International, Inc. Method for controlling temperature of a radioactive waste storage system
WO2013082720A1 (en) 2011-12-08 2013-06-13 Atomic Energy Of Canada Limited / Énergie Atomique Du Canada Limitée Apparatus for holding radioactive objects
BR112014017807B1 (pt) 2012-01-19 2021-10-13 Tn Americas Llc Tambor para transporte e armazenamento de conjuntos de combustíveis nucleares
KR20140146204A (ko) 2012-04-18 2014-12-24 홀텍 인터내셔날, 인크. 고준위방사성폐기물 저장 및/또는 이송
FR3034246B1 (fr) * 2015-03-25 2017-04-28 Tn Int Dispositif de support d'un emballage de transport / entreposage de matieres radioactives, comprenant un carenage de guidage d'air de refroidissement de l'emballage par convection naturelle
US11715575B2 (en) 2015-05-04 2023-08-01 Holtec International Nuclear materials apparatus and implementing the same
US11796255B2 (en) 2017-02-24 2023-10-24 Holtec International Air-cooled condenser with deflection limiter beams
US11676736B2 (en) * 2017-10-30 2023-06-13 Nac International Inc. Ventilated metal storage overpack (VMSO)
ES2959951T3 (es) 2017-11-03 2024-02-29 Holtec International Método de almacenamiento de desechos radiactivos de alto nivel
CN108461167B (zh) * 2018-01-31 2021-08-24 中广核工程有限公司 核电厂乏燃料干式贮存用立式筒仓
EP3924981B1 (de) * 2019-02-15 2024-04-24 Holtec International Kühlsystem für fässer mit hochradioaktivem nuklearabfall
US20210407697A1 (en) * 2020-06-25 2021-12-30 Holtec International Cask with ventilation control for spent nuclear fuel storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1290757A (fr) * 1960-06-08 1962-04-13 Atomic Energy Commission Container de transport pour matière radio-active
US3111586A (en) * 1961-08-25 1963-11-19 Baldwin Lima Hamilton Corp Air-cooled shipping container for nuclear fuel elements
GB2009657A (en) * 1977-12-09 1979-06-20 Steag Kernenergie Gmbh Shielded transport or storage container for radioactive wastes
DE3131126A1 (de) * 1981-08-06 1983-02-24 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen "abschirmanordnung fuer die lagerung, insbesondere zwischenlagerung, und den transport von bestrahlten kernreaktorbrennelementen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046403A (en) * 1959-04-17 1962-07-24 Babcock & Wilcox Co Device for the storage of a heat evolving material
US3113215A (en) * 1961-02-27 1963-12-03 Stanray Corp Cask construction for radioactive material
GB1265290A (de) * 1971-02-02 1972-03-01
US3911685A (en) * 1974-04-12 1975-10-14 Gen Electric Automatic rollover marine turbine control
US3866424A (en) * 1974-05-03 1975-02-18 Atomic Energy Commission Heat source containing radioactive nuclear waste
US3911684A (en) * 1974-08-29 1975-10-14 Us Energy Method for utilizing decay heat from radioactive nuclear wastes
DE7727690U1 (de) * 1977-09-07 1977-12-22 Steag Kernenergie Gmbh, 4300 Essen Abschirmtransport- und/oder abschirmlagerbehaelter fuer radioaktive abfaelle
DE2740933C2 (de) * 1977-09-10 1982-11-25 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen Transport- bzw. Lagerbehälter für radioaktive Stoffe, insbesondere bestrahlte Kernreaktorbrennelemente
WO1981000642A1 (en) * 1979-08-20 1981-03-05 Elektrowatt Ing Ag Container for carrying radioactive materials
HU179174B (en) * 1979-09-14 1982-08-28 Eroemue Es Halozattervezoe Process and apparatus for transferring and housing radioactive and/or other dangerous materials
DE3143351A1 (de) * 1980-10-31 1982-09-02 Nuclear Power Co. Ltd., London Aufnahmebehaelter und aufnahmeanordnung fuer nukleare brennelemente
JPS5879A (ja) * 1981-06-25 1983-01-05 雪印乳業株式会社 凍結乾燥法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1290757A (fr) * 1960-06-08 1962-04-13 Atomic Energy Commission Container de transport pour matière radio-active
US3111586A (en) * 1961-08-25 1963-11-19 Baldwin Lima Hamilton Corp Air-cooled shipping container for nuclear fuel elements
GB2009657A (en) * 1977-12-09 1979-06-20 Steag Kernenergie Gmbh Shielded transport or storage container for radioactive wastes
DE3131126A1 (de) * 1981-08-06 1983-02-24 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen "abschirmanordnung fuer die lagerung, insbesondere zwischenlagerung, und den transport von bestrahlten kernreaktorbrennelementen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3500989A1 (de) * 1985-01-14 1986-07-17 Kraftwerk Union AG, 4330 Mülheim Lager zur aufnahme radioaktiver abfallstoffe
RU2530538C2 (ru) * 2012-06-08 2014-10-10 Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" . Способ временного хранения радиоактивных отходов
CN109859873A (zh) * 2019-01-14 2019-06-07 国核工程有限公司 一种乏燃料干式贮存模块的冷却装置
CN109859873B (zh) * 2019-01-14 2020-12-01 国核工程有限公司 一种乏燃料干式贮存模块的冷却装置

Also Published As

Publication number Publication date
EP0125374B1 (de) 1989-07-19
DE3301735C2 (de) 1986-04-10
EP0125374A3 (en) 1986-11-05
ATE44838T1 (de) 1989-08-15
US4634875A (en) 1987-01-06
JPS59193000A (ja) 1984-11-01
DE3301735A1 (de) 1984-08-16

Similar Documents

Publication Publication Date Title
EP0125374B1 (de) Übergangslager für hochradioaktiven Abfall
EP0563118B1 (de) Kernrückhaltevorrichtung für kernreaktoranlage und notkühlung bei kernschmelze
EP0174380B1 (de) Anlage mit einem nuklearen Heizreaktor
DE2614187A1 (de) Auffangvorrichtung fuer abgeschmolzenes material des reaktorkerns im falle eines zu einer reaktorkernabschmelzung fuehrenden reaktorunfalls
DE2821780A1 (de) Transport- und lagereinrichtung fuer radioaktive stoffe
DE3515871A1 (de) Transport- und lagerbehaelter fuer brennelemente
DE3518968C2 (de)
DE2321179A1 (de) Kernreaktor
JPH0318792A (ja) 受動形冷却装置
DE2220486C3 (de) Druckwasserreaktor
DE3141892C2 (de) Kernreaktoranlage
DE2411039C2 (de) Kernkraftwerk mit geschlossenem Gaskühlkreislauf zur Erzeugung von Prozeßwärme
DE3603090A1 (de) Reaktordruckbehaelter aus beton fuer einen gasgekuehlten kernreaktor niedriger leistung
DE2625357C3 (de) Atomkernreaktor in einer ihn einschließenden, gekühlten Sicherheitshülle
DE1589848B1 (de) Atomkernreaktor mit Spannbeton-Druckbehaelter
DE3228422A1 (de) In einem reaktorschutzgebaeude angeordnete kernreaktoranlage
DE3513019A1 (de) Kernreaktor
EP0028222B1 (de) Verfahren zum transport und zur lagerung von radioaktiven materialien
DE2455507A1 (de) Prozesswaermeanlage mit einer anzahl von mittels des kuehlgases eines hochtemperaturreaktors beheizten reaktionskammern
DE2742009A1 (de) Kernreaktoranlage
DE3814860C2 (de) Siedewasser-Kernreaktor mit Natur-Umlauf
EP0792508B1 (de) Ausbreitungsraum zur aufnahme eines abschmelzenden reaktorkerns sowie verfahren zur wärmeabfuhr aus dem ausbreitungsraum
DE2439224C3 (de) Gasführungssystem für Gase hoher Temperatur und hohen Druckes
DE2506293A1 (de) Hochtemperaturreaktor mit geschlossenem gaskuehlkreislauf
DE2505532C2 (de) Kernreaktor-Kraftwerksanlage mit Kühlflüssigkeitszufuhr bei unfallbedingtem Verlust an Reaktorkühlmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB IT LI NL

17P Request for examination filed

Effective date: 19861125

17Q First examination report despatched

Effective date: 19881025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890719

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890719

REF Corresponds to:

Ref document number: 44838

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900119

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910204

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910218

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

Ref country code: BE

Effective date: 19920131

BERE Be: lapsed

Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H.

Effective date: 19920131

REG Reference to a national code

Ref country code: GB

Ref legal event code: PCNP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST