EP0125157B1 - Appareil de respiration à génération chimique d'oxygène - Google Patents

Appareil de respiration à génération chimique d'oxygène Download PDF

Info

Publication number
EP0125157B1
EP0125157B1 EP84400669A EP84400669A EP0125157B1 EP 0125157 B1 EP0125157 B1 EP 0125157B1 EP 84400669 A EP84400669 A EP 84400669A EP 84400669 A EP84400669 A EP 84400669A EP 0125157 B1 EP0125157 B1 EP 0125157B1
Authority
EP
European Patent Office
Prior art keywords
radiators
housing
cartridge
perforated
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400669A
Other languages
German (de)
English (en)
Other versions
EP0125157A1 (fr
Inventor
Jean Malafosse
Gérard Varlot
Michel Pierre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9287749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0125157(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP0125157A1 publication Critical patent/EP0125157A1/fr
Application granted granted Critical
Publication of EP0125157B1 publication Critical patent/EP0125157B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B21/00Devices for producing oxygen from chemical substances for respiratory apparatus

Definitions

  • the present invention relates to a breathing apparatus with chemical generation of oxygen, of the cartridge type intended to receive an absorbent mass in the form of pellets, such as potassium superoxide possibly added with an oxide or hydroxide of alkaline earth metal or potassium. , in particular cartridges working at a high kinetic level.
  • GB-A-671 107 describes a filter for a breathing apparatus comprising several layers of peroxide compound.
  • the peroxide layers are separated by a metal grid, springs holding them in place at the bottom and the gases being introduced via a central tube.
  • US-A-3,767,367 proposes a cartridge for regenerating exhaled gases which can be incorporated into an individual breathing apparatus, which comprises at the bottom a self-supporting vault constituted by a filter maintaining the charge of regeneration.
  • FR-A-2 442 637 describes an air purification cartridge of complex structure, constituted by baskets, containing the regenerative charge, in which the gas circulates radially, said baskets being arranged on each side of a central tube which constitutes the exhaust pipe of the regenerated air.
  • the central tube is perforated along its length in contact with the baskets.
  • the entry of gases is through a non-central tube, representing the top of the cartridge.
  • the gas circulation in the cartridge is first of all horizontal in a chamber above the load baskets, then the exhaled gas enters through an opening, circulates in chimneys formed between the external wall of the cartridge and the perforated walls of the baskets, then the gas flows radially through the regenerative charge and after purification rises through the central tube.
  • US-A-4,193,966 describes a cartridge with vertical gas circulation, filled with a layer of absorbent material; the cartridge is provided with disk-shaped moisture condensers fixed by lugs to the walls thereof.
  • a device is generally designed to meet the respiratory needs of a man performing a given level of effort for a specific period of time.
  • Respirators with chemical oxygen generation are sometimes subjected to intensive regeneration conditions when the respiratory level reaches a flow rate higher than 35 liters per minute (and even 70 liters / minute, for a few minutes for carbon dioxide contents included between 4 and 5%).
  • the solid reagent particles based on potassium superoxide are the seat of the reactions of the superoxide with carbon dioxide and with water vapor. These oxygen-releasing reactions are very exothermic, subjecting the reagent particles to very high temperatures of up to 200 to 300 ° C.
  • a metallic cartridge has been found for breathing apparatuses with chemical generation of oxygen, working at high respiratory levels, provided with internal arrangements which, by promoting the partial elimination towards the outside of the heat. cleared, leads to optimal use of thick beds of pure potassium superoxide or mixtures based on potassium superoxide possibly containing calcium oxide.
  • This chemical oxygen generation breathing cartridge consists of a housing allowing vertical circulation from bottom to top of the gases to be regenerated, said housing being intended to receive an absorbent regenerative charge in the form of pellets, and said housing comprising in addition to a vertical central duct for the intake of the gases to be purified and the radiators.
  • this conduit is constituted by an end piece extended vertically through a perforated upper wall until the bottom of the housing is released at a perforated lower wall, said conduit opening at the center of this perforated lower wall to which it is fixed.
  • a series of radiators parallel to the direction of flow of the gas flows in the regenerative charge is fixed to the walls of the housing and the length of the radiators is between one third and half the spacing between the two perforated upper and lower walls.
  • this respiratory cartridge with vertical gas circulation consisting of a box having an open bottom and a closed bottom
  • the coaxial gas inlet and outlet nozzles are concentrically formed on the upper bottom of the box, l central gas inlet nozzle to be purified being extended in a vertical duct, open at its base, until the bottom of the housing is released at the level of the lower perforated wall supporting the regenerative charge, this inlet duct opening out at the center of this perforated wall to which it is fixed, by welding, stamping ...
  • the gases to be purified flow from bottom to top in the intake duct, then they are distributed in the clearance at the bottom of the housing before passing through the perforated wall carrying the regenerative charge and circulating in it from bottom to top, the regenerated gases passing through the upper perforated wall maintaining the regenerative charge, then escaping through the discharge nozzle.
  • the length of the radiators is advantageously between half and a third of the spacing between the two perforated walls supporting and maintaining the regenerative charge.
  • These internal radiators placed in the upper part of the regenerative charge, on the outlet side of the gas to be treated, are made of materials which are good conductors of heat, such as copper and brass, for example from 0. 5 to 1 mm thick.
  • endothermic transformation materials such as alloys whose melting temperatures are within the operating range of the regenerative charge can be used for the production of radiators.
  • the internal arrangement constituted by the central tube for admitting the gases to be purified is advantageously chosen from heat conductive materials, such as metals such as copper and brass.
  • Comparative figure 1 shows a body of metal case (1) on which is welded, at its upper end, a bottom (2) with a central perforation (2 '). On it is welded, on the outside and in its center, a pierced end piece (3) which can be connected to a tubing of regenerated gases, not shown. At the lower end of the housing, the bottom (4) is welded with a central perforation (4 '). On it, is welded on the outside and in its center, a pierced intake nozzle (5) or tubing d entry of the gas to be regenerated.
  • the regeneration cartridge (6) which has a lower perforated side wall (7), and an upper perforated side wall (8), between which is housed the regenerative charge. Between the bottom bottom (4) and the perforated wall (7) is a clearance from the bottom of the housing (9).
  • the gas to be regenerated is introduced through the lower manifold, passes from bottom to top the regenerative charge and after regeneration is discharged through the upper manifold.
  • Comparative Figure 2 shows a housing body (1) to which are welded, at its upper end, a bottom (2) with a central perforation (2 ') and at its lower end a closed bottom (4).
  • the gases to be purified are introduced into the upper part by the intake nozzle (5) and circulate vertically from top to bottom in the intake duct (5 '), are distributed in the clearance of the bottom of case (9) and attack the potassium superoxide bed from bottom to top, escape through the upper perforated wall (8), circulate in the upper clearance bottom (10) then the coaxial evacuation nozzle ( 3) in the direction of the regenerated gas tube, not shown.
  • Comparative Figures 3 and 3a show a housing of the type of Figure I, comprising as internal arrangement a series of parallel radiators (11) fixed by the welds (12) on the side walls of the housing.
  • the section along line AB shows in FIG. III 'the arrangement of the radiators and their points of insertion on the walls of the housing (12) and of contact between them (13), in particular for radiators in the form of fins.
  • Figure 4 shows a housing of the type of Figure II comprising, in addition, the second internal arrangement consisting of a series of parallel radiators (11) fixed as above. And, in FIG. 4 ′, according to section AB, we can see the distribution of the radiators, their fixing points on the walls of the housing (12) and of contact between them (13), as well as their fixing points ( 14) on the central duct for admitting the gases to be purified (5 ').
  • Figure 5 shows a perspective view of the housing, with the representation of the directions of the gases to be purified and after regeneration, in the case of the association of the central intake duct and the finned radiators, with outlet gas at the top of the cartridge placed in the housing.
  • a 162 cm 2 potassium superoxide bed with rectangular section is used, traversed from bottom to top on expiration by the gas to be purified.
  • the charge used weighing 1600 g, consists of biconcave pellets 9 mm in diameter and 4.5 mm thick made from a mixture based on superoxide containing 70% K0 2 , 10 % CaO, 15% KOH and 0.135% Cu ++ in the form of oxychloride.
  • 1,800 g of potassium superoxide 73.3% K0 2 , 8% CaO and 10 ppm Cu ++ are placed in a 162 cm 2 section cartridge, shown in FIG. 1.
  • the operation is carried out under the same experimental conditions as for the previous examples, but in addition, the cartridge is placed in a case similar to that used in the commercial type respiratory system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Gas Separation By Absorption (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • External Artificial Organs (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

  • La présente invention concerne un appareil de respiration à génération chimique d'oxygène, du type cartouche destinée à recevoir une masse absorbante sous forme de pastilles, comme le superoxyde de potassium éventuellement additionné d'un oxyde ou hydroxyde de métal alcalino-terreux ou de potassium, en particulier les cartouches travaillant à un niveau cinétique élevé.
  • On connaît déjà divers types de cartouches, GB-A-671 107 décrit un filtre pour un appareil de respiration comprenant plusieurs couches de composé peroxydé. Les couches de peroxyde sont séparées par une grille métallique, des ressorts les maintenant en place à la partie inférieure et les gaz étant introduits par l'intermédiaire d'un tube central.
  • US-A-3 767 367 propose une cartouche de régénération des gaz expirés incorporable dans un appareil de respiration individuel, qui comporte à la partie inférieure une voûte autopor- tante constituée par un filtre maintenant la charge de régénération.
  • FR-A-2 442 637 décrit une cartouche d'épuration de l'air de structure complexe, constituée par des paniers, contenant la charge régénératrice, dans laquelle le gaz circule radialement, lesdits paniers étant disposés de chaque côté d'un tube central qui constitue le tube d'échappement de l'air régénéré. Le tube central est perforé dans sa longueur en contact avec les paniers.
  • Selon cet enseignement antérieur, l'entrée des gaz se fait par une tubulure non centrale, représentant le dessus de la cartouche. La circulation des gaz dans la cartouche est tout d'abord horizontale dans une chambre au-dessus des paniers de charge, ensuite le gaz expiré pénètre par une ouverture, circule dans des cheminées ménagées entre la paroi externe de la cartouche et les parois perforées des paniers, puis le gaz circule radialement à travers la charge régénératrice et après purification remonte par le tube central.
  • US-A-4 193 966, décrit une cartouche avec circulation verticale des gaz, remplie d'une couche en matériau absorbant ; la cartouche est munie de condenseurs d'humidité en forme de disque fixés par des pattes aux parois de celle-ci.
  • Un appareil est généralement conçu pour répondre aux besoins respiratoires d'un homme effectuant un niveau d'effort donné pendant une durée bien déterminée.
  • On est donc conduit, pour chaque appareil, à rechercher le poids minimum de superoxyde correspondant à un taux d'utilisation maximum, ce qui implique de corréler au mieux divers paramètres, tels la réactivité du superoxyde, son comportement à la température, les grosseur et forme des pastilles de superoxyde et notamment la structure de la charge régénératrice.
  • Les appareils de respiration à génération chimique d'oxygène sont parfois soumis à des conditions de régénération intensive quand le niveau respiratoire atteint un débit supérieur à 35 litres par minute (et même 70 litres/minute, pendant quelques minutes pour des teneurs en anhydride carbonique comprises entre 4 et 5 %).
  • Dans ces conditions, les particules de réactifs solides à base de superoxyde de potassium sont le siège des réactions du superoxyde avec l'anhydride carbonique et avec la vapeur d'eau. Ces réactions qui dégagent de l'oxygène sont très exothermiques, soumettant les particules de réactifs à des températures très élevées pouvant atteindre 200 à 300 °C.
  • On sait que le superoxyde réagit plus rapidement avec l'anhydride carbonique qu'avec la vapeur d'eau, ce qui correspond à une fixation plus accélérée du CO2, alors que le superoxyde de potassium pur génère de t'oxygène à partir de la vapeur d'eau en formant des hydrates de potasse relativement fusibles.
  • Et, quand un lit de particules de régénération des atmosphères respirables est soumis à l'action d'un gaz correspondant à un niveau respiratoire élevé, on constate que la couche de produit de régénération se trouvant au front d'attaque du gaz à régénérer se carbonate rapidement et que les particules conservent leur forme et leurs propriétés mécaniques, alors qu'en aval de cette couche, les particules de régénération reçoivent une quantité importante d'eau et sont rapidement déformées et rendues déliquescentes.
  • Si on poursuit l'opération, cette dégradation évolue jusqu'à la fusion des particules, entraînant ainsi un effondrement partiel de la charge régénératrice, avec formation d'une part d'une masse fondue compacte offrant au gaz une surface réactive très diminuée et d'autre part, des cavernes vides de réactif qui constituent probablement des canaux préférentiels empruntés par le gaz à régénérer et dans lesquels l'anhydride carbonique est retenu de manière très imparfaite. Bien qu'il reste encore dans le lit de particules régénératrices, une proportion importante de produit réactif, on observe une augmentation rapide de la teneur en anhydride carbonique du gaz effluent correspondant à une forte diminution de la réactivité globale du lit ; cette diminution du taux d'épuration du gaz est souvent accompagnée d'une forte augmentation de la perte de charge du lit de particules. Il en résulte une mauvaise utilisation du potentiel réactif initialement mis en oeuvre.
  • On a cherché à pallier cet inconvénient en donnant à la cartouche une structure telle que le gaz ne traverse à faible vitesse qu'une faible épaisseur du superoxyde, ou en divisant la charge en petites fractions par de nombreuses cloisons métalliques qui viennent au contact de la paroi ; on aboutit ainsi à des structures complexes dans lesquelles le poids de matière non réactive est relativement important ; elles sont d'un prix de revient élevé et leur remplissage est assez malaisé et se prête mal à une automatisation.
  • Récemment, on a proposé un moyen permettant de supprimer l'augmentation excessive des pertes de charge du superoxyde de potassium au cours de conditions intensives de régénération. Selon FR-A-2 521 034 (publiée le 12.08.83) on incorpore au superoxyde de potassium, avant granulation ou pastillage, une certaine proportion d'oxyde alcalino-terreux à l'état pulvérulent ; on ralentit la dégradation des particules causée par la vapeur d'eau. L'oxyde de calcium est particulièrement efficace pour obtenir cet effet. Néanmoins, cette addition de chaux a une incidence sur la quantité d'oxygène potentiel générale, celle-ci étant limitée par la dilution du superoxyde.
  • Ce moyen ne donne pas pleinement satisfaction quand on veut réaliser des lits de mélanges réactifs relativement épais, pouvant atteindre une vingtaine de centimètres, qui travaillent à un niveau cinétique élevé, avec une durée de régénération prolongée et une utilisation pratiquement totale du potentiel réactif du solide.
  • On a recherché des dispositifs permettant le traitement des mélanges gazeux correspondant à des niveaux respiratoires élevés, pendant une durée dite élevée, c'est-à-dire supérieure à 90 minutes, et avec une mise en oeuvre pratiquement complète du potentiel réactif de la charge génératrice.
  • Selon l'invention, il a été trouvé une cartouche métallique pour appareils de respiration à génération chimique d'oxygène, travaillant à des niveaux respiratoires élevés, munie d'aménagements internes qui, en favorisant l'élimination partielle vers l'extérieur de la chaleur dégagée, conduit à une utilisation optimale de lits épais de superoxyde de potassium pur ou de mélanges à base de superoxyde de potassium contenant éventuellement de l'oxyde de calcium.
  • Cette cartouche de respiration à génération chimique d'oxygène est constituée d'un boîtier permettant une circulation verticale de bas en haut des gaz à régénérer, ledit boîtier étant destiné à recevoir une charge régénératrice absorbante sous forme de pastilles, et ce dit boîtier comportant en outre un conduit central vertical d'admission des gaz à épurer et des radiateurs.
  • Selon l'invention ce conduit est constitué par un embout prolongé verticalement au travers d'une paroi supérieure perforée jusqu'au dégagement du fond du boîtier au niveau d'une paroi inférieure perforée, ledit conduit débouchant au centre de cette paroi inférieure perforée à laquelle il est fixé. Et, une série de radiateurs parallèles au sens de circulation des flux gazeux dans la charge régénératrice est fixée aux parois du boîtier et la longueur des radiateurs est comprise entre le tiers et la moitié de l'espacement entre les deux parois supérieures et inférieures perforées. Ces radiateurs sont disposés à la partie supérieure de la charge régénératrice, lesdites parois supérieure et inférieure maintenant entre elles la charge régénératrice.
  • Suivant l'aménagement interne de cette cartouche respiratoire à circulation verticale des gaz constitué par un boîtier comportant un fond ouvert et un fond fermé, les embouts coaxiaux d'admission et d'évacuation des gaz sont concentriquement ménagés sur le fond supérieur du boîtier, l'embout central d'admission des gaz à épurer étant prolongé en conduit vertical, ouvert à sa base, jusqu'au dégagement du fond du boîtier au niveau de la paroi perforée inférieure supportant la charge régénératrice, ce conduit d'admission débouchant au centre de cette paroi perforée à laquelle il est fixé, par soudage, emboutissage...
  • Les gaz à épurer circulent de bas en haut dans le conduit d'admission, puis ils se répartissent dans le dégagement du fond du boîtier avant de traverser la paroi perforée supportant la charge régénératrice et de circuler dans celle-ci de bas en haut, les gaz régénérés traversant la paroi perforée supérieure maintenant la charge régénératrice, puis s'échappant par l'embout d'évacuation.
  • Il a été constaté que la longueur des radiateurs est avantageusement comprise entre la moitié et le tiers de l'espacement entre les deux parois perforées supportant et maintenant la charge régénératrice.
  • Ces radiateurs internes placés dans la partie haute de la charge régénératrice, du côté de la sortie du gaz à traiter, sont fabriqués en matériaux bons conducteurs de la chaleur, tels que le cuivre et le laiton, par exemple à partir de tôles de 0,5 à 1 mm d'épaisseur.
  • Bien que des solutions simples, économiques et facilement réalisables, tels tubes droits, tôles lisses, donnent d'excellents résultats, on peut aussi utiliser des solutions plus élaborées telles des ailettes, tôles ondulées, etc...
  • Dans certains cas, on peut utiliser pour la réalisation de radiateurs des matériaux à transformation endothermique tels des alliages dont les températures de fusion se situent dans la plage de fonctionnement de la charge régénératrice.
  • L'aménagement interne constitué par le tube central d'admission des gaz à épurer est avantageusement choisi en matériaux conducteurs de la chaleur, tels les métaux comme le cuivre et le laiton.
  • L'invention sera illustrée à l'aide de figures et d'exemples décrits ci-après.
    • La figure 1 donnée à titre comparatif représente un dispositif à fonds ouverts sans aménagement interne selon une vue en coupe.
    • La figure 2 donnée à titre comparatif représente une vue en coupe d'un appareil de régénération avec tube central d'admission des gaz à épurer, et fond supérieur ouvert.
    • Les figures 3 et 3a données à titre comparatif . montrent selon l'invention des vues en coupe d'un boîtier de cartouche à fonds ouverts, aménagé avec des radiateurs.
    • Les figures 4 et 4a sont des vues en coupe de l'association des deux aménagements internes ; tube central d'admission et radiateurs ;
    • et la figure 5 est une vue en perspective cavalière dans le cas où les radiateurs sont des ailettes.
  • La figure comparative 1 montre un corps de boîtier métallique (1) sur lequel est soudé, à son extrémité supérieure, un fond (2) avec une perforation centrale (2'). Sur lui est soudé, du côté extérieur et en son centre, un embout percé (3) pouvant se raccorder à une tubulure des gaz régénérés, non représentée. A l'extrémité inférieure du boîtier, est soudé le fond (4) avec une perforation centrale (4')..Sur lui, est soudé du côté extérieur et en son centre, un embout d'admission percé (5) ou tubulure d'entrée du gaz à régénérer.
  • A l'intérieur du corps de boîtier se trouve la cartouche de régénération (6) qui présente une paroi latérale perforée inférieure (7), et une paroi latérale perforée supérieure (8), entre lesquelles est logée la charge régénératrice. Entre le fond inférieur (4) et la paroi perforée (7) se situe un dégagement du fond du boîtier (9).
  • Dans cet appareil de régénération, le gaz à régénérer est introduit par la tubulure inférieure, traverse de bas en haut la charge régénératrice et après régénération est évacué par la tubulure supérieure.
  • La figure comparative 2 montre un corps de boîtier (1) auquel sont soudés, à son extrémité supérieure, un fond (2) avec une perforation centrale (2') et à son extrémité inférieure un fond fermé (4).
  • Sur le fond (2) sont soudés les embouts coaxiaux d'admission de gaz à épurer (5) et d'évacuation de gaz régénéré (3) ; l'embout central ouvert se prolonge en un conduit d'admission (5') débouchant au centre de la paroi inférieure perforée (7).
  • Comme précédemment, à l'intérieur du corps de boîtier, se trouve la cartouche de régénération (6) avec les deux parois (7) et (8) et se situe un fond inférieur de dégagement (9).
  • Dans ce dispositif de régénération, les gaz à épurer sont introduits à la partie supérieure par l'embout d'admission (5) et circulent verticalement de haut en bas dans le conduit d'admission (5'), se répartissent dans le dégagement du fond de boîtier (9) et attaquent le lit de superoxyde de potassium de bas en haut, s'échappent par la paroi perforée supérieure (8), circulent dans le fond supérieur de dégagement (10) puis l'embout coaxial d'évacuation (3) en direction de la tubulure de gaz régénérés, non représentée.
  • Les figures comparatives 3 et 3a montrent un boîtier du type de la figure I, comportant comme aménagement interne une série de radiateurs parallèles (11) fixés par les soudures (12) sur les parois latérales du boîtier. La coupe selon la ligne AB montre sur la figure III' la disposition des radiateurs et leurs points d'insertion sur les parois du boîtier (12) et de contact entre-eux (13), notamment pour des radiateurs en forme d'ailettes.
  • La figure 4 selon l'invention montre un boîtier du type de la figure Il comportant, en plus, le second aménagement interne constitué par une série de radiateurs parallèles (11) fixés comme précédemment. Et, sur la figure 4', selon la coupe AB, on peut voir la distribution des radiateurs, leurs points de fixation sur les parois du boîtier (12) et de contact entre-eux (13), ainsi que leurs points de fixation (14) sur le conduit central d'admission des gaz à épurer (5').
  • La figure 5 selon l'invention montre une vue en perspective cavalière du boîtier, avec la figuration des sens des gaz à épurer et après régénération, dans le cas de l'association du conduit central d'admission et des radiateurs à ailettes, avec sortie du gaz à la partie supérieure de la cartouche placée dans le boîtier.
  • Pour évaluer l'amélioration des performances des appareils de respiration à génération chimique d'oxygène, on utilise le dispositif expérimental succinctement décrit ci-dessous :
    • Il comprend un générateur de gaz pulsé à vingt pulsations par minute et à un débit moyen de 35 litres par minutes à 20 °C. Ce générateur reçoit à chaque pulsation un volume constant d'anhydride carbonique correspondant à un débit moyen de 1,57 litre/minute (4,5 % de 35 I/mn). Ce gaz porté à 37 °C, saturé d'eau à cette température est envoyé sur un lit de superoxyde de potassium, puis recueilli dans un sac respiratoire et aspiré dans le générateur où il est remis au titre en anhydride carbonique et vapeur d'eau. L'ensemble fonctionne ainsi en circuit semi-fermé ; le générateur de gaz rejette à l'atmosphère un volume de gaz épuré équivalent au volume d'anhydride carbonique introduit ; une soupape tarée sur le sac respiratoire élimine l'excès d'oxygène éventuellement fourni par la charge respiratoire de superoxyde de potassium. Des analyseurs d'oxygène et d'anhydride carbonique donnent en continu la composition du gaz épuré ; on mesure aussi la variation de perte de charge de l'ensemble : lit de superoxyde-sac respiratoire, à l'expiration et à l'inspiration.
  • On appelle autonomie de la cartouche le temps au bout duquel l'une des limites suivantes est atteinte, à savoir : la teneur en C02 du gaz épuré est supérieure à 1,5 %; l'augmentation de la perte de charge à l'expiration est supérieure à 5 millibars (ceci mesure l'augmentation de perte de charge du lit de superoxyde due à un colmatage partiel) ; la variation de perte de charge à l'inspiration augmente brutalement et le sac respiratoire est plat (ceci traduit une génération d'oxygène nulle ou fortement diminuée qui ne compense plus le besoin respiratoire):
    • Dans les conditions expérimentales ci-dessus décrites, on trouve, ci-dessous, la description de quelques uns des essais réalisés.
    Exemples 1 à 4 :
  • On utilise un lit de superoxyde de potassium à section rectangulaire de 162 cm2, traversé de bas en haut à l'expiration par le gaz à épurer. La charge utilisée, d'un poids de 1 600 g, est constituée de pastilles biconcaves de 9 mm de diamètre et 4,5 mm d'épaisseur fabriquées à partir d'un mélange à base de superoxyde contenant 70 % de K02, 10 % de CaO, 15 % KOH et 0,135 % Cu++ sous forme d'oxychlorure.
  • Avec le dispositif de la figure comparative 1, sans aménagement interne la teneur en C02 du gaz épuré dépasse 1,5 % après 78 minutes de fonctionnement.
  • Avec celui de la figure comparative 2 à tube central d'admission, cette limite est atteinte en 88 minutes.
  • Avec les radiateurs schématisés sur la figure comparative 3, cette teneur en CO2 de l'effluent n'est atteinte qu'après 97 minutes de fonctionnement.
  • Avec le dispositif, selon la figure comparative 4, combinant le tube central d'admission et les radiateurs, l'autonomie mesurée vis-à-vis du C02 est alors de 102 minutes.
  • Dans tous les cas, l'augmentation de perte de charge reste très en-dessous de la limite fixée.
  • Exemple 5 :
  • On place dans une cartouche de 162 cm2 de section, représentée sur la figure 1, 1 800 g de superoxyde de potassium à 73,3 % K02, 8 %CaO et 10 ppm Cu++. On opère dans les mêmes conditions expérimentales que pour les exemples précédents, mais en outre, la cartouche est placée dans un boîtier analogue à celui utilisé dans l'appareil respiratoire type commercial.
  • On constate que la perte de charge à l'expiration reste pratiquement constante, après stabilisation en quelques minutes au début de l'opération. La teneur en anhydride carbonique du gaz effluent passe par un maximum de 0,8 % de la 72e minute, puis décroît rapidement et n'est que de 0,2 % à la 978 minute.
  • La génération d'oxygène s'arrête après 97 minutes de fonctionnement, le sac respiratoire est alors plat et la perte de charge à l'inspiration augmente brutalement.

Claims (5)

1. Cartouche de respiration à génération chimique d'oxygène (6), constituée d'un boîtier (1) permettant une circulation verticale de bas en haut des gaz à régénérer, ledit boîtier (1) étant destiné à recevoir une charge régénératrice absorbante sous forme de pastilles, ledit boîtier (1) comportant en outre un conduit central vertical d'admission des gaz à épurer (5) et des radiateurs (11), caractérisée en ce que le conduit (5) est constitué par un embout prolongé verticalement au travers d'une paroi supérieure perforée (8) jusqu'au dégagement du fond (9) du boîtier (1) au niveau d'une paroi inférieure perforée (7), ledit conduit (5) débouchant au centre de cette paroi inférieure perforée (7) à laquelle il est fixé, et en ce que une série de radiateurs (11) parallèles au sens de circulation des flux gazeux dans la charge régénératrice est fixée aux parois du boîtier (1) et la longueur des radiateurs (11) étant comprise entre le tiers et la moitié de l'espacement entre les deux parois supérieure et inférieure perforées (7, 8), ces radiateurs (11) étant disposés à la partie supérieure de la charge régénératrice, lesdites parois supérieure et inférieure (7, 8) maintenant entre elles la charge régénératrice.
2. Cartouche de respiration à génération chimique d'oxygène selon la revendication 1, caractérisée en ce que les radiateurs (11) sont en matériau bon conducteur de la chaleur.
3. Cartouche de respiration à génération chimique d'oxygène selon la revendication 1, caractérisée en ce que les radiateurs (11) sont en forme d'ailettes.
4. Cartouche de respiration à génération chimique d'oxygène, selon la revendication 1, caractérisée en ce que les radiateurs contiennent un matériau à transformation endothermique.
5. Cartouche de respiration à génération chimique d'oxygène, selon la revendication 1, caractérisée en ce que le tube central d'admission des gaz à épurer (5 et 5') est en matériau conducteur de la chaleur.
EP84400669A 1983-04-12 1984-04-05 Appareil de respiration à génération chimique d'oxygène Expired EP0125157B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8305922A FR2544204B1 (fr) 1983-04-12 1983-04-12 Appareil de respiration a generation chimique d'oxygene
FR8305922 1983-04-12

Publications (2)

Publication Number Publication Date
EP0125157A1 EP0125157A1 (fr) 1984-11-14
EP0125157B1 true EP0125157B1 (fr) 1987-09-30

Family

ID=9287749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400669A Expired EP0125157B1 (fr) 1983-04-12 1984-04-05 Appareil de respiration à génération chimique d'oxygène

Country Status (6)

Country Link
US (1) US4717549A (fr)
EP (1) EP0125157B1 (fr)
JP (1) JPS59197258A (fr)
DE (1) DE3466480D1 (fr)
ES (1) ES286975Y (fr)
FR (1) FR2544204B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612924A1 (de) * 1986-04-17 1987-10-22 Draegerwerk Ag Patrone zur aufbereitung von atemgas
US4963327A (en) * 1988-03-23 1990-10-16 Z-Gard, Inc. Oxygen generating module
DE4437895C1 (de) * 1994-10-22 1996-05-09 Draegerwerk Ag Vorrichtung zur Erzeugung von Sauerstoff
US6099805A (en) * 1997-07-09 2000-08-08 Trw Inc. Singlet-delta oxygen generator
KR20050121966A (ko) * 2004-06-23 2005-12-28 주식회사 제이씨테크놀로지스 산소발생제 조성물
EP2491997B1 (fr) * 2011-02-25 2017-05-10 CareFusion Corporation Boîtier pour une substance solide ou fluide pour éliminer un composant indésirable du gaz respiratoire d'un flux de gaz respiratoire et agencement pour ventiler les poumons d'un sujet
EP2679279B1 (fr) * 2012-06-28 2018-07-25 Zodiac Aerotechnics Dispositif d'inhalation d'oxygène et procédé de maintien d'un système d'oxygène d'urgence
DE102016217325B4 (de) * 2016-09-12 2020-01-02 Msa Europe Gmbh Patrone und diese enthaltendes Atemschutzgerät

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB671107A (en) * 1950-04-20 1952-04-30 Mine Safety Appliances Co Improvements in or relating to canisters for self-contained breathing apparatus
US2679844A (en) * 1952-03-19 1954-06-01 Mine Safety Appliances Co Breathing apparatus slide valve
US3403981A (en) * 1964-09-22 1968-10-01 Auergesellschaft Gmbh Oxygen producing canister
US3819334A (en) * 1970-10-27 1974-06-25 Mitsui Mining & Smelting Co Catalytic reaction apparatus for purifying waste gases containing carbon monoxide
JPS5039242B1 (fr) * 1970-12-11 1975-12-16
US3874854A (en) * 1973-02-01 1975-04-01 Gen Motors Corp Catalytic converter
US3949053A (en) * 1973-09-14 1976-04-06 Granco Equipment, Inc. Incineration of combustible materials with liquid fuel
DE2702193B2 (de) * 1977-01-20 1979-02-01 Draegerwerk Ag, 2400 Luebeck Atemschutzgerät mit sauerstoffabgebender Chemikalpatrone
US4325364A (en) * 1978-01-10 1982-04-20 Coal Industry (Patents) Limited Training breathing apparatus
US4193966A (en) * 1978-06-15 1980-03-18 The United States Of America As Represented By The Secretary Of The Navy Carbon dioxide absorbent cannister with condensate control
DE2852240C2 (de) * 1978-12-02 1984-05-03 Drägerwerk AG, 2400 Lübeck Luftreinigungspatrone für Atemschutzgeräte
DE2908913A1 (de) * 1979-03-07 1980-09-11 Draegerwerk Ag Chemikalpatrone fuer atemschutzgeraete mit starthilfe
IT1162348B (it) * 1979-07-12 1987-03-25 Euratom Sistema integrato per lo scambio termico e l'immagazzinamento di energia termica mediante reazioni temrochimiche a bassa temperatura
FR2521034A1 (fr) * 1982-02-05 1983-08-12 Air Liquide Compositions a base de superoxyde de potassium et leurs applications

Also Published As

Publication number Publication date
EP0125157A1 (fr) 1984-11-14
ES286975U (es) 1985-11-16
FR2544204B1 (fr) 1987-09-11
DE3466480D1 (en) 1987-11-05
ES286975Y (es) 1986-06-01
JPS59197258A (ja) 1984-11-08
FR2544204A1 (fr) 1984-10-19
US4717549A (en) 1988-01-05

Similar Documents

Publication Publication Date Title
CA1261592A (fr) Procede et appareil pour la production de produits gazeux par decomposition de liquides
EP0125157B1 (fr) Appareil de respiration à génération chimique d'oxygène
EP1609507B1 (fr) Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique
FR2584063A1 (fr) Super purificateur pour le gaz argon et procede de purification de l'argon.
EP0123566A2 (fr) Procédé de production d'air stérile pour usage médical et installation pour la mise en oeuvre de ce procédé
EP0547959A1 (fr) Epurateur d'hydrogène comprenant une embase en alliage de même composition que celui des tubes
WO1994023253A1 (fr) Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant
KR0180946B1 (ko) 수소흐름으로부터 기체상태 불순물을 제거하는 방법
US6905533B2 (en) Filtering and inerting of combustible dusts in the process off-gas
FR2584062A1 (fr) Super purificateur pour l'azote et procede pour purifier ce gaz.
EP0071553A1 (fr) Procédé et installation d'épuration de l'hélium contenu dans un mélange de gaz
EP0543009A1 (fr) Procede d'epuration de trifluorure d'azote a l'etat gazeux
FR2507626A1 (fr) Alliage zirconium-vanadium-fer stabilise par l'oxygene et procede de fixation de l'hydrogene au moyen de cet alliage
FR2493580A1 (fr) Appareil de controle de substances radioactives dans les effluents gazeux
EP0012074A1 (fr) Procédé de nettoyage d'un piège froid pour métaux liquides et dispositif pour la mise en oeuvre de ce procédé
JP5700570B2 (ja) 吸着性流体の貯蔵ならびに計量分配用の吸着・脱着装置及び流体試薬の供給方法
FR2601181A1 (fr) Procede et dispositif pour la decontamination du gaz rejete du cycle de combustible d'un reacteur nucleaire a fusion, gaz rejete contamine par des composants contenant du tritium et/ou du deuterium sous forme combinee chimiquement
FR2721110A1 (fr) Procédé et dispositif de mesure de mouillabilité sous atmosphère contrôlée.
FR2640889A1 (en) Process and device for catalytic purification of the atmosphere of an enclosure for storing plants
FR2614553A1 (fr) Agent de decomposition de l'ozone et appareil a decomposer l'ozone utilisant cet agent
WO2011148067A1 (fr) Procédé de conversion à la vapeur de gaz de synthèse et appareil pour réaliser ce procédé
FR2710182A1 (fr) Procédé de démantèlement d'un générateur de vapeur usagé d'un réacteur nucléaire à eau sous pression.
FR3109892A1 (fr) Elément de filtration pour fluides gazeux
FR2573852A1 (fr) Procede et dispositif de rechauffage de gaz
FR2752234A1 (fr) Procede et dispositif d'oxydation et d'inertage de materiaux a base de plutonium par combustion a haute temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840409

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19860128

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19870930

REF Corresponds to:

Ref document number: 3466480

Country of ref document: DE

Date of ref document: 19871105

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DRAEGERWERK AG

Effective date: 19880629

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19890225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000321

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000324

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000329

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATIO

Effective date: 20010430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 20