EP1609507B1 - Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique - Google Patents

Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique Download PDF

Info

Publication number
EP1609507B1
EP1609507B1 EP05104116A EP05104116A EP1609507B1 EP 1609507 B1 EP1609507 B1 EP 1609507B1 EP 05104116 A EP05104116 A EP 05104116A EP 05104116 A EP05104116 A EP 05104116A EP 1609507 B1 EP1609507 B1 EP 1609507B1
Authority
EP
European Patent Office
Prior art keywords
gas
combustion
control
fire
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05104116A
Other languages
German (de)
English (en)
Other versions
EP1609507A1 (fr
Inventor
Christian Fabre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Original Assignee
Airbus Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations SAS filed Critical Airbus Operations SAS
Publication of EP1609507A1 publication Critical patent/EP1609507A1/fr
Application granted granted Critical
Publication of EP1609507B1 publication Critical patent/EP1609507B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/006Extinguishants produced by combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide

Definitions

  • the invention relates to fire-fighting apparatus, ie fire extinguishers.
  • the invention finds its application in stationary fire extinguishing devices that can be triggered remotely.
  • the invention relates more particularly to the generation of an inert gas by combustion of a pyrotechnic composition and the diffusion of this gas in the fire zone with a controlled flow rate; the invention relates to an extinguisher comprising a combustion chamber, a control system and diffusion means in the fire zone, in particular used in the field of aeronautics.
  • extinguishing devices include a tank containing an extinguishing agent that is diffused over the fire zone to extinguish it, but also prevent its extension.
  • Agent tank extinguishers are classified into two broad categories.
  • the first category concerns permanent pressure devices in which a gas ensures the constant pressurization of the agent within a single bottle that serves as a reservoir.
  • the extinguishing agent is released by a valve at the outlet of said bottle.
  • a propellant is released only when the extinguisher is put into service and propels the extinguishing agent, which is therefore not stored under pressure.
  • extinguishers currently used to extinguish an aircraft engine fire can be considered. These devices use halon as an extinguishing agent, stored in liquid form because of the level of pressurization of the bottle used as a reservoir. Depending on the safety requirements, two or more fire extinguishers may be installed.
  • One or more distribution lines connected to each bottle allow the distribution of the agent to the area or areas to be protected.
  • a calibrated seal is used to seal the distribution line to keep the halon in the bottle.
  • a pressure sensor is also installed to continuously check the pressurization of the bottle.
  • a pyrotechnic detonator When a fire is detected, a pyrotechnic detonator is triggered: the shock wave generated by this detonator pierces the shutter seal, which causes the emptying of the bottle and the evacuation of the extinguishing agent under the effect pressure to the areas to be protected via the distribution pipes.
  • second category extinguishers For second category extinguishers, they use a separate pressurizing device. These fire-fighting devices are generally equipped with a first compressed gas tank and a second tank for the extinguishing agent. When the device is used, the gas contained in the first tank is communicated through an orifice with the second tank, which allows the pressurization of the bottle containing the extinguishing agent. Sometimes the first compressed gas tank is replaced by a gas generator as described in the document WO 98/02211 . In all cases, when the extinguishing agent is pressurized, it is ejected fire extinguishers of the second category for fire fighting, as for appliances of the first category.
  • the invention aims to overcome the drawbacks mentioned fire extinguishers, including fires in aircraft engines, among other benefits.
  • the invention relates in one aspect to a fire extinguishing device whose extinguishing agent is an inert gas produced only when necessary, that is to say at the time of use of the fire extinguisher, by burning a pyrotechnic material appropriately selected. It is thus possible to generate a large quantity of inert gas whose composition depends on the nature of the pyrotechnic material; in particular, the gas may comprise more than 20% nitrogen or more than 20%, or even 40%, of a mixture of neutral gases such as nitrogen, carbon monoxide and / or dioxide.
  • the inert gas generated will consist essentially of nitrogen given its relative ease of production by pyrotechnic combustion.
  • the generated nitrogen is injected into the areas where the fire has been detected.
  • the inert gas is expelled from the extinguishing device according to a regulated pressure, in order to be able in particular to bring the quantity of oxygen in the fire zones to follow a predetermined profile as a function of time, for example a concentration stage. quasi-constant for a non-zero time period.
  • the device according to the invention therefore comprises a pyrotechnic gas generator associated with means for distributing the gas generated as extinguishing agent and means for regulating the pressure therein.
  • the gas generator comprises an enclosure comprising a propellant block and a pyrotechnic igniter.
  • the ignition of the pyrotechnic igniter by electric current allows for example the start of the combustion of the propellant whose decomposition allows the generation of an inert gas.
  • the extinguishing device comprises filters located in the enclosure of combustion or in the distribution means, so that the soot and ash also produced by the combustion of the pyrotechnic composition do not reach the fire zone.
  • the device comprises means for cooling the generated gas.
  • the extinguishing device may comprise a variable number of gas generators, which are connected to the same distribution means. It is also possible to have several pyrotechnic materials of different compositions in the same enclosure.
  • the regulation means are parameterized beforehand by determining the pressure at which the inert gas is expelled from the chamber, directly related to the flow rate of the gas ejected on the fire zone and the concentration, oxygen or other component, sought in the areas to be treated.
  • the pressure at which the inert gas is expelled from the chamber directly related to the flow rate of the gas ejected on the fire zone and the concentration, oxygen or other component, sought in the areas to be treated.
  • the required pressure can be refined during experiments.
  • the pressure regulation means consist of at least one control valve located in the dispensing means, whose opening is controlled during the trigger sequence of the extinguisher, or by an order outside, or by pressurizing the combustion chamber.
  • the control valve is advantageously controlled according to a given law and defined by the user, possibly using the information from sensors, which for example measure the oxygen concentration in the areas to be treated; this allows a closed loop regulation, even finer, of the gas pressure.
  • the opening of the valve can be controlled remotely, by manual control, or by a control mechanism coupled to the firing means of the pyrotechnic composition.
  • the geometry of the pyrotechnic material block also makes it possible to generate combustion gases according to a predetermined law.
  • the regulating means can thus, alternatively or alternatively, consist of a determination of the various parameters of the gas generator, and in particular of the geometry of the propellant block, which ensures a controlled generation of inert gas injected into the zones to be protected.
  • the regulation can also, alternatively or in addition, be provided by other regulating devices such as a regulator associated or not with a device that creates a pressure difference (diaphragm, nozzle).
  • the extinguisher can be triggered by a remote operator. It can also be put into operation directly by an ignition device receiving the information of a sensor which detects the conditions related to the probability of a fire. To avoid undesired triggering, especially during maintenance operations, the device may be equipped with neutralization means.
  • the extinguishing device according to the invention is preferably used in aircraft, more particularly in turbojet engines where it makes it possible to dispense with the halogenated extinguishing agents currently used.
  • the extinguishing device or fire extinguisher comprises an inert gas generator 2 associated with gas distribution means 4.
  • the gas distribution means 4 may consist of a pipe long enough to reach the fire zone 6, or coupled to any known dispensing device 8, such as for example a multi-outlet pipe.
  • the gas generator 2 is constituted by a combustion chamber 10, for example cylindrical, in which is placed a pyrotechnic cartridge 12, usually consisting of propellant.
  • a combustion chamber 10 for example cylindrical
  • a pyrotechnic cartridge 12 usually consisting of propellant.
  • the combustion of the propellant, initiated by the ignition device 14, generates an inert gas which flows into the distribution means 4 via an outlet orifice 16.
  • the inert gas largely composed of nitrogen and / or carbon monoxide, produced by the combustion decomposition of pyrotechnic compositions, is at a high temperature, and a Rapid cooling may be necessary before introduction into fire zones.
  • Cooling means can thus be provided, for example an "active" filter, that is to say a chemical compound introduced into or outside the combustion chamber 10 and absorbing part of the heat of combustion, or a metal filter.
  • These different filters 18 may be located upstream and / or downstream of the gas outlet orifice 16, in the enclosure 10 or in the distribution means 4.
  • the outlet orifice 16 of the combustion chamber 10 can be closed by a closure device 20, in order to isolate the propellant from the external environment as long as its action is not required.
  • the closing device 20 may be a tared cover, that is to say a membrane which breaks or opens after ignition as soon as the pressure inside the combustion chamber 10 reaches a certain level. threshold.
  • the pressure inside the chamber 10 is advantageously atmospheric pressure when the extinguishing device 1 is not used.
  • the ignition device 14 is triggered, the propellant block 12 begins to burn and to generate a pressure in the chamber 10.
  • the ignition device 14 may consist of any known device. It can be triggered manually, by direct action on the device 14.
  • the ignition device 14 is triggered remotely via a control line 22, which can be coupled to a control unit 24.
  • a signal 26 from a fire detector can be used as an automatic release via the control unit 24.
  • the gas generated by the combustion of the pyrotechnic unit 12 and ejected by the dispensing device 8 makes it possible to reduce the relative concentration of 'oxygen. It is desirable that the gas generated is inert, but also that it is not polluting or corrosive, especially in the context of a fire zone 6 located in an aircraft engine. In this regard, the gas generated therefore comprises a nitrogen portion, at least 20% or even 40%, obtained by the combustion of a pyrotechnic composition strongly "nitrogenous"; it is also possible to associate the nitrogen, for example with carbon dioxide to increase the concentration of injected neutral gas and reach the desired thresholds.
  • a fire extinguisher 1 is provided with a system for regulating the flow of gas at the outlet of line 8 in the fire zone 6, that is to say means for regulating the pressure prevailing in the distribution means 4.
  • a pressure control it is possible to minimize the quantity of pyrotechnic material 12 and / or the size of the enclosure 10 while ensuring that the fires are off.
  • the pressure regulating means make it possible to obtain a predetermined profile of the oxygen concentration in the fire zone, such as a plateau during a non-zero period of time, or a slotted profile; it is clear that each of the concentrations can have a margin of error with respect to the theoretical fixed value of the plateau.
  • a bearing may be a "flattened Gaussian", or a curve between two values separated by less than 10% of the value of the bearing.
  • the closing device 20 of the gas generator 2 can thus be a control valve, advantageously controlled remotely by first control means 32.
  • control valves are known for example from WO 93/25950 or US-A-4,877,051 , and commercially available.
  • the first control means 32 may be a control line coming from a control unit 24, advantageously confused with that used to trigger the ignition device 14.
  • the information input into the control unit 24 makes it possible to modify manually or automatically, according to a predetermined sequence or as a function of measured parameters, the degree of opening and / or closing of the valve 20.
  • the unit 24 can modify the signal sent by the first control means 32 to regulate the opening of the valve 20.
  • Extinguishing devices 1 can be connected in parallel and for example be connected to the same distribution device 8.
  • Another embodiment, presented on the figure 2 relates to the presence of several generators 2a-2e of inert gas within the same extinguishing device 1.
  • the pyrotechnic material blocks 12a-12e of each of these generators can be of nature (composition, geometry, as it will be explained later) similar or different.
  • the ignition devices 14a-14e of each of the generators 2a-2e can be triggered independently or simultaneously.
  • control means can trigger selectively combustion and thus optimize the number of generators 2a-2e used according to the detection and fire parameters, or choose the most appropriate generator if the nature of the propellant blocks 12 is different.
  • each gas generator 2a, 2b it is possible for each gas generator 2a, 2b to be placed in communication with the distribution means 4 by its own duct 4a, 4b provided with its regulation valve 20a, 20b. It is also possible to provide a single valve 20f located on a conduit 4f leading to generators 2c, 2d, 2e coupled together via conduits 4c, 4d, 4e. As for the embodiment presented in figure 1 , the regulation can be carried out in open or closed loop.
  • Another possibility for realizing the regulation of the pressure according to the invention is to calibrate the block of pyrotechnic material in order to generate a pressure in the enclosure 10 conforming to a defined profile.
  • This pressure P stop pressure
  • This pressure P is transmitted directly, and in a parameterized and controlled manner, to the distribution means 4 and thus to the fire zone 6.
  • the outlet orifice 16 is provided with a nozzle 36, shaped if possible so that the speed of sound is reached at the minimum section of the nozzle 36. This allows to isolate the gas generator 2 distribution means 4; the pressure fluctuations in the distribution pipe 4 do not therefore disturb the combustion of the pyrotechnic material 12, which allows better control of the parameters.
  • the surface S c depends on the shape of the block; in particular, it can be scalable during combustion.
  • the device according to the invention is particularly suitable for application in aircraft.
  • the figure 4 schematically shows the mounting on board a turbine engine 40 of an aircraft of a device 1 for extinguishing engine fire according to the invention, which can be triggered on detection of fire and / or smoke.
  • Example Application of the invention to extinguishing engine fire for aircraft.
  • inert gas preferably nitrogen, and more than 20%, or even 30% or 40%
  • inert gas preferably nitrogen, and more than 20%, or even 30% or 40%
  • the main characteristics to consider when choosing a pyrotechnic composition are the efficiency in terms of gas production, the density of the material, the combustion temperature and the secondary species generated by the combustion.
  • the toxic or / and corrosive appearance of the fumes must also be taken into account, which leads to the automatic elimination of certain compositions.
  • a composition recommended in the context of aircraft relates to a mixture of sodium azide and copper oxide (NaN 3 / CuO) which gives by combustion 40.1% nitrogen.
  • guanidine nitrate associated with strontium nitrate NG / Sr (NO 3 ) 2
  • strontium nitrate NG / Sr (NO 3 ) 2
  • BCN / NG basic copper nitrate and guanidine nitrate
  • a motor 40 will be considered according to the figure 4 with both fire zones A and B having the following characteristics: Volume V (m 3 ) Ventilation Q R (m 3 / s) (air change rate) Zone A 1,416 0.212 Zone B 0.476 0.285
  • the inert agent generator is constituted as previously described by a combustion chamber 10, provided with a block 12 of pyrotechnic product as specified above, an ignition device 14 and a filter 18, equipped to an end of a nozzle 36 shaped so that the speed of sound is reached at the minimum section of the nozzle.
  • the flow rate of nitrogen (or of inert gas) is lower than during the extinction phase E.
  • This two-phase regime can be obtained in various ways, such as the use of two different pyrotechnic compositions.
  • the evolution of the combustion profile of the propellant block makes it possible to obtain such a regime.
  • the flow difference between the two phases E and M is in a ratio of 20; or the outlet orifice 16 (calibrated nozzle 36) of the combustion chamber 10 is identical in both cases.
  • the operating pressure P of the gas generator 10 will thus also evolve in a ratio of 20.
  • the combustion surfaces can be obtained in several ways, with blocks burning on one side "in cigarette", on several sides, etc. .
  • the shape to give the block depends on the conditions of manufacture, the surface evolution, but also the mode of ignition. It is possible to optimize the evolution of the combustion surface over time to obtain a desired flow law.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

    DOMAINE TECHNIQUE ET ART ANTERIEUR
  • L'invention concerne les appareils de lutte contre l'incendie, autrement dit les extincteurs. En particulier, l'invention trouve son application dans les dispositifs d'extinction de feu à poste fixe qui peuvent être déclenchés à distance.
  • L'invention porte plus particulièrement sur la génération d'un gaz inerte par combustion d'une composition pyrotechnique et la diffusion de ce gaz dans la zone feu avec un débit contrôlé ; l'invention se rapporte à un extincteur comprenant une enceinte de combustion, un système de régulation et des moyens de diffusion dans la zone feu, en particulier utilisé dans le domaine de l'aéronautique.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • La plupart du temps, les dispositifs d'extinction comprennent un réservoir contenant un agent extincteur qui est diffusé sur la zone du feu pour l'éteindre, mais aussi prévenir son extension.
  • Les extincteurs à réservoir d'agent sont classés en deux grandes catégories. La première catégorie concerne des appareils à pression permanente dans lesquels un gaz assure la pressurisation permanente de l'agent au sein d'une bouteille unique lui servant de réservoir. L'agent extincteur est libéré par une vanne, à la sortie de ladite bouteille. Dans la deuxième catégorie, un gaz propulseur n'est libéré qu'à la mise en service de l'extincteur et propulse l'agent extincteur qui n'est donc pas stocké sous pression.
  • A titre d'illustration, comme extincteur du premier type, on peut considérer les extincteurs actuellement utilisés pour éteindre un feu de moteur d'aéronef. Ces dispositifs utilisent du halon comme agent extincteur, stocké sous forme liquide du fait du niveau de pressurisation de la bouteille utilisée comme réservoir. En fonction des exigences de sécurité, deux extincteurs ou plus peuvent être installés. Une ou plusieurs canalisations de distribution connectées à chaque bouteille permettent la distribution de l'agent vers la ou les zones à protéger. A l'extrémité inférieure de la bouteille, un opercule calibré permet d'obturer la canalisation de distribution pour maintenir le halon dans la bouteille. Un capteur de pression est également installé afin de vérifier, de façon continue, la pressurisation de la bouteille. Lorsqu'un feu est détecté, un détonateur pyrotechnique est déclenché : l'onde de choc générée par ce détonateur vient percer l'opercule obturateur, ce qui entraîne la vidange de la bouteille et l'évacuation de l'agent extincteur sous l'effet de la pression vers les zones à protéger via les canalisations de distribution.
  • En ce qui concerne les extincteurs de la deuxième catégorie, ils utilisent un dispositif séparé de mise sous pression. Ces appareils de lutte contre l'incendie sont généralement équipés d'un premier réservoir de gaz comprimé et d'un second réservoir pour l'agent extincteur. Lorsque l'appareil est utilisé, le gaz contenu dans le premier réservoir est mis en communication par l'intermédiaire d'un orifice avec le second réservoir, ce qui autorise la pressurisation de la bouteille contenant l'agent extincteur. Parfois, le premier réservoir de gaz comprimé est remplacé par un générateur de gaz comme décrit dans le document WO 98/02211 . Dans tous les cas, lorsque l'agent extincteur est pressurisé, il est éjecté des extincteurs de deuxième catégorie pour lutter contre l'incendie, comme pour les appareils de la première catégorie.
  • Le brevet US 6,257,341 divulgue un extincteur comprenant une enceinte fermée 1 qui contient une composition de gaz inertes 2 avant utilisation, c'est-à-dire avant début de brûlage du gaz propulseur 3.
  • Le document US 2002/070035 divulgue quant à lui un système d'extinction comprenant deux enceintes fermées 1 qui contiennent chacun du nitrogène comprimé avant utilisation, c'est-à-dire avant ouverture de l'appareil d'extinction 5 régulant le débit de nitrogène.
  • Les inconvénients de ces extincteurs, quelle que soit la catégorie considérée, est le stockage en continu de l'agent extincteur, avec les nécessaires opérations de surveillance et de vérification, comme la pesée périodique. Pour les dispositifs utilisés pour les extinctions des feux à bord des aéronefs, appartenant à la première catégorie, s'ajoutent les impératifs liés au stockage sous pression de l'agent extincteur, et notamment les problèmes causés par leur sensibilité aux micro fuites.
  • EXPOSÉ DE L'INVENTION
  • L'invention a pour objet de remédier aux inconvénients cités des extincteurs, notamment pour les feux dans les moteurs d'aéronef, entre autres avantages.
  • Pour ce faire, l'invention concerne sous l'un de ses aspects un dispositif d'extinction de feu dont l'agent extincteur est un gaz inerte produit uniquement quand nécessaire, c'est-à-dire au moment de l'utilisation de l'extincteur, par la combustion d'un matériau pyrotechnique choisi de façon adéquate. On peut ainsi générer une grande quantité de gaz inerte dont la composition dépend de la nature du matériau pyrotechnique ; en particulier, le gaz peut comprendre plus de 20 % d'azote ou plus de 20 %, voire 40 %, d'un mélange de gaz neutres comme azote, monoxyde et/ou dioxyde de carbone. De préférence, le gaz inerte généré sera composé essentiellement d'azote compte tenu de sa relative facilité de production par combustion pyrotechnique.
  • L'azote généré est injecté dans les zones où le feu a été détecté. Pour assurer une extinction fiable, le gaz inerte est chassé du dispositif extincteur selon une pression régulée, afin de pouvoir notamment amener la quantité d'oxygène dans les zones de feu à suivre un profil prédéterminé en fonction du temps, par exemple un palier de concentration quasi-constante pendant un laps de temps non nul.
  • Le dispositif selon l'invention comporte donc un générateur pyrotechnique de gaz associé à des moyens de distribution du gaz généré comme agent extincteur et des moyens pour y réguler la pression.
  • De manière avantageuse, le générateur de gaz comprend une enceinte comprenant un bloc de propergol et un allumeur pyrotechnique. L'ignition de l'allumeur pyrotechnique par courant électrique autorise par exemple le démarrage de la combustion du propergol dont la décomposition permet la génération d'un gaz inerte.
  • De préférence, le dispositif d'extinction comporte des filtres situés dans l'enceinte de combustion ou dans les moyens de distribution, pour que les suies et les cendres également produites par la combustion de la composition pyrotechnique n'atteignent pas la zone feu.
  • Avantageusement, le dispositif comprend des moyens de refroidissement du gaz généré.
  • Le dispositif d'extinction peut comporter un nombre variable de générateurs de gaz, qui sont reliés à des mêmes moyens de distribution. Il est possible par ailleurs d'avoir plusieurs matériaux pyrotechniques de compositions différentes dans une même enceinte.
  • Les moyens de régulation sont paramétrés de façon préalable par la détermination de la pression à laquelle le gaz inerte est expulsé de l'enceinte, directement reliée au débit du gaz éjecté sur la zone feu et à la concentration, en oxygène ou autre composant, recherchée dans les zones à traiter. Suivant la géométrie du réseau de distribution, les dimensions et la ventilation des zones à traiter, en prenant en compte les pertes de charge ou l'agencement des zones à traiter, l'homme de l'art peut déterminer la pression requise. Ces calculs peuvent être affinés lors d'expérimentations.
  • Selon un mode de réalisation, les moyens de régulation de la pression consistent en au moins une vanne de régulation située dans les moyens de distribution, dont l'ouverture est commandée au cours de la séquence de déclenchement de l'extincteur, soit par un ordre extérieur, soit par la mise en pression de l'enceinte de combustion. La vanne de régulation est avantageusement pilotée suivant une loi donnée et définie par l'utilisateur, éventuellement en utilisant les informations provenant de capteurs, qui mesurent par exemple la concentration en oxygène dans les zones à traiter ; ceci permet une régulation en boucle fermée, plus fine encore, de la pression du gaz.
  • L'ouverture de la vanne peut être contrôlée à distance, par commande manuelle, ou par un mécanisme de commande couplé aux moyens de mise à feu de la composition pyrotechnique.
  • La géométrie du bloc de matériau pyrotechnique permet également de générer des gaz de combustion suivant une loi prédéterminée. Les moyens de régulation peuvent ainsi, également ou alternativement, consister en une détermination des différents paramètres du générateur de gaz, et notamment de la géométrie du bloc de propergol, qui assure une génération contrôlée de gaz inerte injecté dans les zones à protéger.
  • Dans ce cas, il est possible de remplacer la vanne de régulation par un orifice calibré : une fois déclenchée, la combustion du bloc de matériau pyrotechnique ne nécessite plus de commande, et l'orifice calibré permet de contrôler la pression à laquelle se fera la combustion du propergol de façon à assurer le débit d'agent nécessaire pour la mise sous gaz inerte des zones feu.
  • La régulation peut également, alternativement ou en complément, être assurée par d'autres organes de régulation tels qu'un détendeur associé ou non à un dispositif qui crée une différence de pression (diaphragme, tuyère).
  • Quels que soient les moyens de régulation, ils permettent d'optimiser la durée pendant laquelle la concentration en agent inerte conduira par exemple à un taux d'oxygène inférieur à 12 % dans les zones feu considérées. De cette façon, il est également possible de créer des créneaux de concentration de forme variable et de maîtriser précisément la durée et le niveau de protection de la zone considérée.
  • Sous un aspect de l'invention, l'extincteur peut être déclenché par un opérateur à distance. Il peut également être mis en opération directement par un dispositif d'allumage recevant les informations d'un capteur qui détecte les conditions liées à la probabilité d'un feu. Pour éviter des déclenchements non souhaités, en particulier lors des opérations d'entretien, le dispositif pourra être équipé de moyens de neutralisation.
  • Le dispositif d'extinction selon l'invention est de préférence utilisé dans les aéronefs, plus particulièrement dans les turboréacteurs où il permet de s'affranchir des agents extincteurs halogénés actuellement utilisés.
  • BRÈVE DESCRIPTION DES DESSINS
  • Les figures et dessins annexés permettront de mieux comprendre l'invention, mais ne sont donnés qu'à titre indicatif et ne sont nullement restrictives.
    • La figure 1 représente un dispositif d'extinction conforme à l'un des modes de réalisation de l'invention.
    • La figure 2 montre une alternative au dispositif d'extinction selon l'invention.
    • La figure 3 montre un autre mode de réalisation de l'extincteur selon l'invention.
    • La figure 4 montre schématiquement le montage à bord d'un aéronef d'un dispositif d'extinction feu moteur selon l'invention.
    • Les figures 5 représentent les courbes d'évolution de la concentration en oxygène dans deux zones feu équipées d'un dispositif d'extinction suivant l'invention.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Ainsi que le montre la figure 1, le dispositif d'extinction ou extincteur 1, comprend un générateur de gaz inerte 2 associé à des moyens de distribution du gaz 4. Les moyens de distribution du gaz 4 peuvent consister en une conduite suffisamment longue pour atteindre la zone feu 6, ou être couplés à tout dispositif de distribution 8 connu, tel que par exemple une conduite à sorties multiples.
  • Le générateur de gaz 2 est constitué par une chambre de combustion 10, par exemple cylindrique, dans laquelle est placée une cartouche pyrotechnique 12, composée en général de propergol. La combustion du propergol, initiée par le dispositif d'allumage 14, génère un gaz inerte qui s'écoule dans les moyens de distribution 4 par un orifice de sortie 16.
  • Le gaz inerte, composé en grande partie d'azote et/ou d'oxyde de carbone, produit par la décomposition par combustion de compositions pyrotechniques, se trouve à haute température, et un refroidissement rapide peut s'avérer nécessaire, avant introduction dans les zones feu. Des moyens de refroidissement peuvent ainsi être prévus, par exemple un filtre « actif », c'est-à-dire un composé chimique introduit dans ou à l'extérieur de la chambre de combustion 10 et absorbant une partie de la chaleur de combustion, ou un filtre métallique. Par ailleurs, il peut être souhaitable que des filtres, chimiques et/ou mécaniques, soient présents afin de filtrer les suies.
  • Ces différents filtres 18 peuvent être localisés en amont et/ou en aval de l'orifice 16 de sortie des gaz, dans l'enceinte 10 ou dans les moyens de distribution 4.
  • Avantageusement, l'orifice de sortie 16 de la chambre de combustion 10 peut être obturé par un dispositif de fermeture 20, afin d'isoler le propergol de l'environnement extérieur tant que son action n'est pas sollicitée. En particulier le dispositif de fermeture 20 peut être un opercule taré, c'est-à-dire une membrane qui se rompt ou s'ouvre après l'ignition dès que la pression à l'intérieur de la chambre de combustion 10 atteint un certain seuil.
  • La pression à l'intérieur de l'enceinte 10 est avantageusement la pression atmosphérique lorsque le dispositif d'extinction 1 n'est pas utilisé. Dès que le dispositif d'allumage 14 est déclenché, le bloc de propergol 12 commence à brûler et à générer une pression dans l'enceinte 10. Le dispositif d'allumage 14 peut consister en tout dispositif connu. Il peut être déclenché manuellement, par action directe sur le dispositif 14.
  • De préférence, le dispositif d'allumage 14 est déclenché à distance par l'intermédiaire d'une ligne de commande 22, qui peut être couplée à une unité de commande 24. Avantageusement, un signal 26 issu d'un détecteur d'incendie peut être utilisé comme déclencheur automatique par l'intermédiaire de l'unité de commande 24. Dans ce cas de déclenchement automatique, il peut être préférable de prévoir un dispositif de neutralisation 28 des moyens de commande 22. Il peut également être utile de prévoir un dispositif de déclenchement manuel 30 sur le boîtier de commande 24 et/ou le dispositif d'allumage 14.
  • Afin d'éteindre le feu, on restreint l'apport en oxygène dans la zone incendiée 6. A cet effet, le gaz généré par la combustion du bloc pyrotechnique 12 et éjecté par le dispositif de distribution 8 permet une diminution de la concentration relative d'oxygène. Il est souhaitable que le gaz généré soit inerte, mais aussi qu'il ne soit pas polluant ou corrosif, notamment dans le cadre d'une zone de feu 6 située dans un moteur d'aéronef. A cet égard, le gaz généré comprend donc une part d'azote, au moins 20 % voire 40 %, obtenue par la combustion d'une composition pyrotechnique fortement « nitrogénée » ; il est possible également d'associer l'azote par exemple à du dioxyde de carbone pour augmenter la concentration en gaz neutre injecté et atteindre les seuils voulus.
  • Il est communément admis par exemple que, en dessous d'une concentration en oxygène de 12 %, aucun feu ne peut subsister. Il est possible de déterminer la quantité de gaz devant être injecté dans la zone feu 6 afin d'atteindre ce taux en O2 ; en cas de ventilation des zones de feu, le taux de renouvellement de l'air est pris en compte pour le calcul de la quantité de gaz à injecter. Ceci permet de déterminer de la quantité de produit pyrotechnique 12 à placer dans l'extincteur considéré.
  • Afin d'optimiser les capacités d'extinction, il est prévu dans un extincteur 1 selon l'invention un système pour réguler le débit de gaz en sortie de conduite 8 dans la zone feu 6, c'est-à-dire des moyens de régulation de la pression régnant dans les moyens de distribution 4. Grâce à un tel contrôle de pression, il est possible de minimiser la quantité de matériau pyrotechnique 12 et/ou la taille de l'enceinte 10 tout en s'assurant que les feux seront éteints. Par exemple, les moyens de régulation de la pression permettent d'obtenir un profil prédéterminé de la concentration en oxygène dans la zone feu, comme un palier pendant un laps de temps non nul, ou un profil en créneaux ; il est clair que chacune des concentrations peut avoir une marge d'erreur par rapport à la valeur fixe théorique du palier. Ainsi, un palier peut être une « gaussienne aplatie », ou une courbe comprise entre deux valeurs séparées de moins de 10 % de la valeur du palier.
  • Selon un mode de réalisation préféré, le dispositif de fermeture 20 du générateur de gaz 2 peut ainsi être une vanne de régulation, avantageusement contrôlée à distance par des premiers moyens de commande 32. De telles vannes de régulation sont connues par exemple de WO 93/25950 ou US-A-4 877 051 , et disponibles dans le commerce.
  • Les premiers moyens de commande 32 peuvent être une ligne de commande issue d'une unité de commande 24, avantageusement confondue avec celle qui est utilisée pour déclencher le dispositif d'allumage 14. Les informations entrées dans l'unité de commande 24 permettent de modifier, manuellement ou automatiquement, selon une séquence prédéterminée ou en fonction de paramètres mesurés, le degré d'ouverture et/ou de fermeture de la vanne 20.
  • Ainsi par exemple, il est possible de prévoir un capteur mesurant la concentration en oxygène dans la zone feu 6 : par la ligne de commande 34, l'unité 24 peut modifier le signal envoyé par les premiers moyens de commande 32 pour réguler l'ouverture de la vanne 20.
  • Des dispositifs d'extinction 1 selon l'invention peuvent être mis en parallèle et par exemple être reliés à un même dispositif de distribution 8. Un autre mode de réalisation, présenté sur la figure 2, concerne la présence de plusieurs générateurs 2a-2e de gaz inerte au sein du même dispositif d'extinction 1. Les blocs de matériau pyrotechnique 12a-12e de chacun de ces générateurs peuvent être de nature (composition, géométrie, tel qu'il sera explicité plus tard) similaire ou différente. Les dispositifs d'allumage 14a-14e de chacun des générateurs 2a-2e peuvent être déclenchés indépendamment ou simultanément. Avantageusement, des moyens de commande permettent de déclencher sélectivement la combustion et ainsi d'optimiser le nombre de générateurs 2a-2e utilisés selon la détection et les paramètres du feu, ou de choisir le générateur le plus approprié si la nature des blocs de propergol 12 est différente.
  • Dans ce mode de réalisation, il est possible que chaque générateur de gaz 2a, 2b soit mis en communication avec les moyens de distribution 4 par son propre conduit 4a, 4b muni de sa valve de régulation 20a, 20b. Il est également possible de prévoir une seule valve 20f localisé sur un conduit 4f menant aux générateurs 2c, 2d, 2e couplés entre eux par l'intermédiaire de conduits 4c, 4d, 4e. De même que pour le mode de réalisation présenté en figure 1, la régulation peut être effectuée en boucle ouverte ou fermée.
  • Une autre possibilité pour réaliser la régulation de la pression selon l'invention est de calibrer le bloc de matériau pyrotechnique afin de générer une pression dans l'enceinte 10 conforme à un profil défini. Cette pression P (pression d'arrêt) est transmise directement, et de façon paramétrée et contrôlée, aux moyens de distribution 4 et donc à la zone feu 6.
  • Tel qu'il l'est connu par exemple de la propulsion des fusées, il est en effet possible, en choisissant judicieusement la nature du propergol et la géométrie du bloc, d'obtenir un débit contrôlé en gaz généré, et donc une pression régulée dans l'enceinte 10. Dans ce cas, même si une vanne de régulation 20 peut être prévue, il est possible de ne disposer entre la chambre de combustion 10 et les moyens de distribution 4 que d'un simple dispositif de fermeture tel qu'un opercule taré, voire de connecter directement l'orifice de sortie 16 aux moyens de distribution 4. Un exemple de réalisation d'un tel dispositif d'extinction est présenté dans la figure 3.
  • De façon avantageuse, l'orifice de sortie 16 est muni d'une tuyère 36, conformée si possible de manière à ce que la vitesse du son soit atteinte au minimum de section de la tuyère 36. Ceci permet d'isoler le générateur de gaz 2 des moyens de distribution 4 ; les fluctuations de pression dans la canalisation de distribution 4 ne perturbent donc pas la combustion du matériau pyrotechnique 12, ce qui permet un meilleur contrôle des paramètres.
  • En particulier, il est possible de calibrer le bloc de matériau combustible 12 de façon à obtenir un débit de gaz sortant de l'enceinte 10 par l'ouverture 16 égal à une valeur déterminée. Les moyens de régulation de la pression, et donc du débit d'agent inerte en zone feu 6, sont alors directement intégrés au générateur de gaz 2 : une simple commande sur le dispositif d'allumage 14, permet d'assurer ce débit préalablement fixé.
  • En effet, des formules mathématiques permettent de relier entre eux les différents paramètres (pression, vitesse et surface de combustion, débit de gaz généré,...) afin d'optimiser la géométrie d'un bloc de matériau combustible, de son enceinte de combustion, et les conditions initiales pour un matériau pyrotechnique donné afin d'aboutir au débit de gaz inerte souhaité. Ainsi le débit de gaz engendré par la combustion d'un matériau pyrotechnique 12 comme le propergol est : Q = ρ S C V C ,
    Figure imgb0001

    avec :
  • Q :
    débit (kg/s);
    ρ :
    masse volumique du propergol (kg/m3) ;
    Sc :
    surface de combustion du propergol (m2) ;
    Vc :
    vitesse de combustion du propergol (m/s).
  • Il est à noter que la surface Sc dépend de la forme du bloc ; en particulier, elle peut être évolutive au cours de la combustion.
  • D'autre part, la vitesse de combustion du propergol Vc est fonction de la pression régnant dans la chambre de combustion, soit : V C = a . P n ,
    Figure imgb0002

    avec :
  • a,n :
    coefficients dépendant de la composition du propergol et déterminés expérimentalement ;
    P :
    pression d'arrêt (Pa) régnant dans la chambre de combustion 10.
  • Enfin, le débit de gaz passant à travers une tuyère s'exprime par : Q = PA t C et . C d ,
    Figure imgb0003

    avec
  • P :
    pression d'arrêt (Pa) ;
    At :
    surface de la tuyère 36 au col (m2) ;
    1/Cet :
    coefficient de débit (s/m), dépendant de la nature du gaz généré ;
    Cd :
    coefficient inhérent à la nature de la tuyère.
  • Il suffit de résoudre ces équations en fonction des caractéristiques intrinsèques du propergol choisi (p, a, n, Cet) et des conditions d'éjection du gaz souhaitées (At, P, Vc) pour définir la géométrie du générateur de gaz permettant d'assurer le profil de débit souhaité pendant la durée requise.
  • Le dispositif selon l'invention est particulièrement indiqué pour une application dans les aéronefs. La figure 4 montre schématiquement le montage à bord d'un turbomoteur 40 d'un avion d'un dispositif 1 d'extinction de feu moteur selon l'invention, qui peut être déclenché à la détection d'incendie et/ou de fumée.
  • Exemple : Application de l'invention à l'extinction feu moteur pour aéronef.
  • La génération de gaz inerte, préférentiellement de l'azote, et à plus de 20 %, voire 30 % ou 40 %, est obtenue par la combustion d'une composition pyrotechnique « fortement nitrogénée ». Les principales caractéristiques à considérer pour le choix d'une composition pyrotechnique sont l'efficacité en termes de production de gaz, la densité du matériau, la température de combustion et les espèces secondaires générées par la combustion. L'aspect toxique ou/et corrosif des fumées, doit être également pris en compte, ce qui conduit à éliminer d'office certaines compositions. En particulier, une composition préconisée dans le cadre des aéronefs concerne un mélange d'azoture de sodium et d'oxyde de cuivre (NaN3/CuO) qui donne par combustion 40,1 % d'azote. Une autre possibilité concerne le nitrate de guanidine associé au nitrate de strontium (NG/Sr(NO3)2) dont la combustion donne 32,5 % d'azote et 20 % de dioxyde de carbone. Est également envisageable l'association de nitrate de cuivre basique et de nitrate de guanidine (BCN/NG) pour produire un gaz contenant 24,7 % de N2 et 16,9 % de CO2.
  • Pour évaluer la quantité d'azote à injecter, le taux de ventilation et la taille de la (des) zone(s) concernée(s) sont pris en compte. A titre d'exemple, on considérera un moteur 40 selon la figure 4 avec les deux zones feu A et B ayant les caractéristiques suivantes :
    Volume
    V (m3)
    Ventilation QR (m3/s)
    (débit de renouvellement d'air)
    Zone A 1,416 0,212
    Zone B 0,476 0,285
  • Le générateur d'agent inerte est constitué comme décrit précédemment par une enceinte de combustion 10, muni d'un bloc 12 de produit pyrotechnique tel que précisé plus haut, d'un dispositif d'allumage 14 et d'un filtre 18, équipée à une extrémité d'une tuyère 36 conformée de telle sorte que la vitesse du son soit atteinte au minimum de section de la tuyère.
  • On souhaite que la mise sous atmosphère inerte des zones feu 6, dure 5 secondes. D'autres paramétrages sur la durée sont souvent préférés, voire imposés par la réglementation, et notamment dans ce cas, on souhaite :
    • une phase d'extinction E (phase « booster ») : diminution du taux d'oxygène de 21 % (concentration nominale en oxygène de l'air en volume) à 11 % en 1,5 s.
    • une phase de maintien M (phase « d'inertage », ou « sustainer ») : maintien de la concentration en oxygène à 11 % pendant 3,5 s.
  • On peut ainsi noter que durant la phase de maintien M, le débit d'azote (ou de gaz inerte) est plus faible que pendant la phase d'extinction E. Ce régime en deux phases peut être obtenu de diverses manières comme l'utilisation de deux compositions pyrotechniques différentes. De préférence, et tel que décrit ci-après, l'évolution du profil de combustion du bloc de propergol (évolution géométrique de la surface en combustion) permet d'obtenir un tel régime.
  • L'évolution dans le temps de la concentration en oxygène C(t) dans une zone feu 6 telle que schématisée en figure 3 en fonction du débit en air frais (renouvellement d'air dans la zone) QR, du débit issu du générateur de gaz injecté dans la zone feu QI (ces deux débits étant évacués de la zone feu 6 par le débit QS = QR + QI), et des concentrations relatives en oxygène CR et CI de ces deux débits d'entrée peut s'exprimer par l'équation différentielle : C t + dt = C t + C R Q R + C I Q I V dt - C t . Q S V dt
    Figure imgb0004

    ce qui donne (par définition, le débit du générateur ne contient pas d'oxygène et CI = 0) : C t = k . exp - Q R + Q I V t + Q I C I + Q R C R Q R + Q I = k . exp - Q S t V + Q R C R Q S
    Figure imgb0005
  • Dans la phase d'extinction E, on veut qu'en un temps bien défini (dans l'exemple 1,5 s), on ait atteint une concentration de 11 % (en volume) en oxygène. Or, CR = 0,21, et quand t = 0, C(t) = CR, d' où k = CR · (QS - QR)/QS.
  • On a donc C E t = C R 1 - Q R Q S . exp - Q S t V + Q R C R Q S .
    Figure imgb0006
    .
  • Dans la phase de maintien M, on veut que pendant un temps bien défini (dans l'exemple 3,5 s), on maintienne la concentration en oxygène à un niveau très voisin de celui atteint en fin de phase booster et inférieur au taux minimal nécessaire à une combustion. De la même façon, CR = 0,21, et à tout instant, CM(t) = Cmin = 0,11, d'où k = Cmin - (QR · CR)/QS.
  • On obtient donc directement la quantité de gaz inerte à injecter durant cette phase : QIM = (QR/Cmin) · (CR - Cmin).
  • Tous calculs faits, on obtient les valeurs suivantes pour le débit volumique de gaz inerte à injecter dans les zones feu :
    Régime Durée (s) QI(m3/s) Zone A QI(m3/s) Zone B Total (m3/s) Vtotal (m3)
    Booster E 1,5 0,7 0,35 1,05 1,58
    Maintien M 3,5 0,192 0,259 0,45 1,58
    3,16
  • L'évolution de la concentration en oxygène en un point pour ces deux zones feu est montrée en figure 5A pour la zone A et en figure 5B pour la zone B, où la droite horizontale représente le niveau de concentration en oxygène à atteindre pour sécuriser la zone feu considérée, soit 12 %.
  • Il est clair qu'il serait également possible avec un dispositif d'extinction suivant l'invention de gérer le débit d'agent inerte de manière à avoir une concentration en oxygène dans la zone feu évolutive suivant un profil donné, par exemple en créneaux.
  • Il existe de nombreuses compositions pyrotechniques dont la combustion génère une large quantité de gaz inerte composé principalement d'azote et/ou dioxyde de carbone et/ou monoxyde de carbone, dans l'exemple présenté 3,16 m3, tout en limitant très fortement la production de composés additionnels non souhaités (voir par exemple plus haut). L'homme de l'art, spécialiste du propergol, sera en mesure de faire le choix le plus approprié ou de définir de nouvelles compositions en fonction de l'application visée.
  • Pour l'exemple traité ici, les calculs de dimensionnement seront effectués avec un propergol, choisi uniquement à titre illustratif et non limitatif, dont les caractéristiques balistiques sont les suivantes :
    • Cet = 1034 m/s
    • ρ = 1600 Kg/m3
    • a = 1,7.10-6
    • n = 0,5
    • rendement gazeux de gaz généré par masse brûlée à la température de combustion : 1,2 1/g.
  • Par ailleurs, la différence de débit entre les deux phases E et M est dans un rapport de 20 ; or l'orifice de sortie 16 (tuyère calibrée 36) de la chambre de combustion 10 est identique dans les deux cas. La pression de fonctionnement P du générateur de gaz 10 va donc, elle aussi, évoluer dans un rapport de 20.
  • Autrement dit, pour éviter de descendre trop en pression dans la chambre de combustion pendant la phase de maintien M, ce qui serait préjudiciable aux conditions d'éjection, on peut se fixer une pression de fonctionnement pour cette phase, par exemple 5 bars (5.105 Pa). Pour la phase d'extinction E, la pression atteindra alors 100 bars (100.105 Pa).
  • Le débit volumique que l'on désire pour la phase booster E est de QI = 1,05 m3/s = 1050 l/s, soit un débit massique de gaz sortant du générateur 875 g/s. La vitesse de combustion du propergol à 100 bar est VcE = a.Pn = 1,7.10-6. (100.105)0,5 = 5,4.10-3 m/s.
  • L'épaisseur de propergol à brûler pendant cette phase booster E de 1,5 s est donc EρE = 8,1 mm. La surface en combustion Sc se déduit de l'équation (1), soit ScE = 0,1 m2.
  • Le dimensionnement de la tuyère utilise l'équation (3), soit At = (QIm . Cet)/(P . Cd), avec Cd = 0,99, soit une surface de passage au col At = 91,4.106 m2, ou un diamètre d = 10,8 mm.
  • Pour la phase de maintien M, le débit volumique souhaité est de 0,05 m3/s soit 50 l/s, ce qui donne un débit massique de gaz sortant du générateur QIm = 42 g/s pour une pression de 5 bars. La vitesse de combustion est de VcM = a.Pn = 1,2.10-3 m/s, et l'épaisseur de propergol à brûler pendant cette phase de 3,5 s est EpM = 4,2 mm, soit une surface en combustion ScM = 0,022 m2.
  • Les surfaces en combustion, différentes suivant les phases booster E et maintien M (d'un rapport de 4,55), peuvent être obtenues de plusieurs façons, avec des blocs brûlant sur une seule face « en cigarette », sur plusieurs faces, etc. La forme à donner au bloc dépend des conditions de manufacture, de l'évolution de surface, mais aussi du mode d'allumage. Il est possible d'optimiser l'évolution de la surface de combustion au cours du temps pour obtenir une loi de débit souhaitée.
  • Comme spécifié plus haut, il est également possible de prévoir deux types de propergols différents, pour les deux phases de combustion.
  • La description présentée ci-dessus n'exclut pas toutes les alternatives que l'homme du métier ne manquera pas de relever pour réaliser un dispositif suivant l'invention. En particulier, diverses combinaisons sont possibles entre les différents modes de réalisation présentés. Il est clair par exemple qu'il est envisageable de ne pas avoir de boîtier de commande 24, mais des capteurs et des commandes séparées pour chaque dispositif à commander. De même, pour un dispositif 1 comprenant plusieurs générateurs de gaz 2, on peut envisager que certains générateurs sont conçus de façon à avoir une production de gaz régulée, alors que d'autres, reliés aux mêmes moyens de distribution, ont une génération de gaz régulée par des vannes 20. Par ailleurs, suivant les profils recherchés, il est possible d'avoir plus de deux compositions différentes dans un bloc de propergol 12.

Claims (21)

  1. Dispositif d'extinction (1) caractérisé en ce qu'il comprend
    - un générateur de gaz (2) comprenant une enceinte (10) munie d'un orifice de sortie de gaz (16) et à l'intérieur de laquelle la pression est la pression atmosphérique lorsque le dispositif d'extinction (1) n'est pas utilisé, et un bloc de matériau pyrotechnique (12) générateur de gaz propulseur, le gaz inerte étant généré uniquement au moment de l'utilisation du dispositif d'extinction et contenant au moins 20 % d'azote et/ou de monoxyde de carbone et/ou de dioxyde de carbone ;
    - des moyens de distribution (4) du gaz généré couplés à l'orifice de sortie de gaz (16) ;
    - des moyens de régulation (12, 20, 36) de la pression créée par le gaz généré dans les moyens de distribution (4).
  2. Dispositif selon la revendication 1 comprenant une pluralité de générateurs de gaz (2a-2e) comprenant chacun une enceinte (10) munie d'un orifice de sortie de gaz (16), un bloc de matériau pyrotechnique (12a-12e) générateur de gaz propulseur et des moyens de connexion (4a-4e) pour coupler chaque orifice de sortie de gaz (16) aux moyens de distribution (4).
  3. Dispositif selon la revendication 2 comprenant au moins une vanne de régulation (20a, 20b) dans les moyens de connexion (4a, 4b).
  4. Dispositif selon l'une des revendications 1 à 3 comprenant au moins une vanne de régulation (20, 20f) dans les moyens de distribution (4).
  5. Dispositif selon l'une des revendications 3 ou 4 comprenant des premiers moyens de commande (32) susceptibles de commander la vanne de régulation (20) en fonction de paramètres de commande.
  6. Dispositif selon la revendication 5 dans lequel les premiers moyens de commande (26) comprennent des moyens pour mesurer la concentration d'oxygène dans la zone à traiter et ladite concentration (36) est l'un des paramètres de commande.
  7. Dispositif selon l'une des revendications 5 à 6 comprenant au moins une unité de commande (24) connectée aux premiers moyens de commande (32).
  8. Dispositif selon l'une des revendications 1 à 7 comprenant au moins un déclencheur (14) de combustion d'au moins un bloc de matériau pyrotechnique (12).
  9. Dispositif selon la revendication 8 comprenant des deuxièmes moyens de commande (22) pour actionner le déclencheur de combustion (14).
  10. Dispositif selon la revendication 7 comprenant au moins un déclencheur de combustion d'au moins un bloc de matériau pyrotechnique et des deuxièmes moyens de commande (22) pour actionner le déclencheur de combustion (14) connectés à l'unité de commande (24).
  11. Dispositif selon l'une des revendications 9 ou 10 dans lequel les deuxièmes moyens de commande (22) comprennent des moyens pour détecter un feu, et ladite détection (34) est l'un des paramètres de commande du déclencheur (14).
  12. Dispositif selon l'une des revendications 9 à 11 dans lequel les deuxièmes moyens de commande (22) comprennent des moyens de déclenchement manuel, et le déclenchement manuel (30) est l'un des paramètres de commande.
  13. Dispositif selon l'une des revendications 9 à 12 dans lequel les deuxièmes moyens de commande (22) comprennent des moyens de neutralisation (28).
  14. Dispositif selon l'une des revendications 1 à 13 dans lequel les moyens de régulation sont partie intégrante d'au moins un premier générateur de gaz (2) et les paramètres suivants du premier générateur (2) sont sélectionnés pour que la loi de débit de gaz (Q) issu de la combustion de son bloc de matériau pyrotechnique (12) dans les moyens de distribution (4) suive un profil prédéterminé et contrôlé : pression (P) d'arrêt dans l'enceinte (10), taille (At) de l'orifice (16) et surface (Sc) du bloc de matériau pyrotechnique (12).
  15. Dispositif selon la revendication 14 comprenant une tuyère (36) à l'orifice (16) de sortie de l'enceinte (10) du premier générateur de gaz (2).
  16. Dispositif selon la revendication 15 dans lequel la tuyère (36) est conformée de manière à ce qu'au minimum de section de tuyère (36), les gaz générés par la combustion de matériau pyrotechnique (12) du premier générateur (2) aient une vitesse égale à la vitesse du son.
  17. Dispositif selon l'une des revendications 1 à 16 dans lequel au moins un bloc de matériau pyrotechnique (12) comprend deux matériaux de compositions différentes.
  18. Dispositif selon l'une des revendications 1 à 17 comprenant au moins un opercule taré (20) au niveau d'un orifice de sortie (16).
  19. Dispositif selon l'une des revendications 1 à 18, comprenant au moins un filtre (18) de retenue de particules.
  20. Dispositif selon l'une des revendications 1 à 19 comprenant des moyens de refroidissement (18) du gaz généré.
  21. Turboréacteur comprenant un dispositif selon l'une des revendications 1 à 20.
EP05104116A 2004-05-19 2005-05-17 Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique Expired - Fee Related EP1609507B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0450997A FR2870459B1 (fr) 2004-05-19 2004-05-19 Dispositif d'extinction de feu par injection d'un gaz genere par la combustion d'un bloc pyrotechnique
FR0450997 2004-05-19

Publications (2)

Publication Number Publication Date
EP1609507A1 EP1609507A1 (fr) 2005-12-28
EP1609507B1 true EP1609507B1 (fr) 2012-07-04

Family

ID=34939859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05104116A Expired - Fee Related EP1609507B1 (fr) 2004-05-19 2005-05-17 Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique

Country Status (5)

Country Link
US (1) US7735571B2 (fr)
EP (1) EP1609507B1 (fr)
CA (1) CA2507562C (fr)
FR (1) FR2870459B1 (fr)
RU (1) RU2372956C2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879107B1 (fr) * 2004-12-09 2007-04-06 Airbus France Sas Dispositif pour augmenter l'efficacite du gaz de pressurisation dans une bouteille d'extincteur
US8813860B2 (en) 2005-11-10 2014-08-26 Airbus Operations Gmbh Fuel cell system for extinguishing fires
DE102005053692B3 (de) 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Brandschutz mit Brennstoffzellenabluft
FR2899227B1 (fr) * 2006-04-04 2008-10-24 Snpe Materiaux Energetiques Sa Objets pyrotechniques monolithes de grandes dimensions, obtention et utilisation
FR2905454B1 (fr) 2006-09-01 2011-03-18 Pyroalliance Generateur de gaz pyrotechnique a regulation de pression et dispositif de propulsion de liquide l'incorporant dans sa structure
EP1902757B1 (fr) * 2006-09-21 2010-04-21 Siemens S.A.S. Dispositif de propulsion d'un agent contenu dans une cavité
FR2911168B1 (fr) 2007-01-10 2009-04-10 Snpe Materiaux Energetiques Sa Procede et dispositif pyrotechnique, autonome, d'injection d'un fluide
JP2011500242A (ja) * 2007-10-30 2011-01-06 エアバス・オペレーションズ 漏出防止性を強化した流体射出装置
WO2010137933A1 (fr) * 2009-05-26 2010-12-02 Boris Jankovski Charges générant un gaz pour des dispositifs de suppression d'incendie en aérosol et technologie de production correspondante
US8695720B2 (en) 2010-10-28 2014-04-15 Honeywell International Inc. Fireproof systems in aircraft engines
DE102012218621A1 (de) * 2012-10-12 2014-04-17 Robert Bosch Gmbh Sicherheitsvorrichtung für eine Energieerzeugungsanlage und Verfahren zum Betrieb derselben
US10940341B2 (en) 2013-03-06 2021-03-09 Airbus Canada Limited Partnership Interface between fire suppressant conduit and cargo compartment of an aircraft
US10238902B2 (en) * 2016-09-07 2019-03-26 The Boeing Company Expulsion of a fire suppressant from a container
US10722741B2 (en) * 2017-12-01 2020-07-28 International Business Machines Corporation Automatically generating fire-fighting foams to combat Li-ion battery failures
US10912963B2 (en) * 2017-12-01 2021-02-09 International Business Machines Corporation Automatically generating fire-fighting foams to combat Li-ion battery failures
DE102018109305A1 (de) * 2018-04-19 2019-10-24 Fogtec Brandschutz Gmbh & Co. Kg Brandbekämpfungseinrichtung
US11241599B2 (en) * 2018-05-09 2022-02-08 William A. Enk Fire suppression system
DE102018130087A1 (de) * 2018-11-28 2020-05-28 Rheinmetall Landsysteme Gmbh Feuerlöscher
FR3130752B1 (fr) * 2021-12-22 2023-11-10 Safran Nacelles Intégration d’un extincteur en zone "feu" d’une turbomachine
FR3130751A1 (fr) * 2021-12-22 2023-06-23 Safran Nacelles Intégration de buses d’extinction en zone « feu » d’une turbomachine
CN115487454B (zh) * 2022-10-17 2023-08-04 汕头市奔华电子科技有限公司 一种超高层构筑内自动喷水灭火系统及使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701256A (en) * 1971-09-13 1972-10-31 Thiokol Chemical Corp Demand, solid-propellant gas generator
GB2028127B (en) * 1978-08-16 1982-12-22 Hammargren & Co Ab Fire extinguisher
US4877051A (en) * 1988-11-28 1989-10-31 Mks Instruments, Inc. Flow controller
RU2008045C1 (ru) * 1992-02-11 1994-02-28 Олег Леонидович Дубрава Способ тушения пожара и устройство для его осуществления
EP0711430A1 (fr) 1992-06-12 1996-05-15 Unit Instruments, Inc. Regulateur de flux massique
US5611566A (en) * 1992-08-20 1997-03-18 Temic Bayern-Chemie Airbag Gmbh Gas generator for a safety system for protecting occupants in motor vehicles
US5423384A (en) * 1993-06-24 1995-06-13 Olin Corporation Apparatus for suppressing a fire
BE1010421A3 (fr) 1996-07-12 1998-07-07 Delta Extinctors S A Dispositif de mise sous pression d'appareil de lutte contre l'incendie a cartouches pyrotechniques rechargeables generatrices de gaz et extincteur muni d'un tel dispositif.
US6257341B1 (en) * 1998-09-22 2001-07-10 Joseph Michael Bennett Compact affordable inert gas fire extinguishing system
DE10051662B4 (de) 2000-10-18 2004-04-01 Airbus Deutschland Gmbh Verfahren zur Löschung eines innerhalb eines geschlossenen Raumes ausgebrochenen Feuers
FR2864905B1 (fr) * 2004-01-09 2006-07-14 Airbus France Dispositif d'extinction de feu

Also Published As

Publication number Publication date
EP1609507A1 (fr) 2005-12-28
US20050257937A1 (en) 2005-11-24
US7735571B2 (en) 2010-06-15
RU2005115167A (ru) 2006-11-27
CA2507562A1 (fr) 2005-11-19
FR2870459A1 (fr) 2005-11-25
CA2507562C (fr) 2013-02-26
RU2372956C2 (ru) 2009-11-20
FR2870459B1 (fr) 2006-08-25

Similar Documents

Publication Publication Date Title
EP1609507B1 (fr) Dispositif d'extinction de feu par injection d'un gaz généré par la combustion d'un bloc pyrotechnique
EP1552859B1 (fr) Dispositif d'extinction de feu
EP1168479B1 (fr) Batterie de générateurs électrochimiques comprenant un dispositif de sécurité
EP3013438B1 (fr) Procédé de délivrance d'un liquide pressurisé par les gaz de combustion d'au moins un chargement pyrotechnique
FR2905454A1 (fr) Generateur de gaz pyrotechnique a regulation de pression et dispositif de propulsion de liquide l'incorporant dans sa structure
EP1247546A1 (fr) Procédé et installation de traitement d'un feu dans un compartiment d'aéronef équipé d'une telle installation
WO2014192900A1 (fr) Dispositif d'extinction d'incendie et procédé d'extinction d'incendie
JP2005185835A (ja) 消火装置および消火方法、特に航空機の貨物室での消火装置および消火方法
CA1170282A (fr) Procede pour reduire les risques d'inflammation et d'explosion resultant de la decompositon de l'ethylene sous haute pression et dispositif pour la mise en oeuvre dudit procede
EP0956883B1 (fr) Dispositif d'extinction d'incendie comportant un générateur thermochimique de gaz
FR2782023A1 (fr) Dispositif et procede de broyage de recipients fermes contenant une poudre
EP1376720B1 (fr) Batterie à sécurité améliorée
EP0858425A1 (fr) Dispositif de production autonome d'oxygene respirable a haute pression par voie chimique
FR2735213A1 (fr) Procede et dispositif de destruction par incineration de gaz de reaction
CA2912327C (fr) Cagoule de protection respiratoire
EP3313536B1 (fr) Extincteur d'incendie
WO2011003868A1 (fr) Systeme et procede d'essai de dispositifs a poudres
EP3868445B1 (fr) Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies
EP0040148B1 (fr) Chalumeau avec dispositif de protection contre les allumages intérieurs, retour de gaz et créations de mélanges gazeux dangereux
EP2578077A1 (fr) Dispositif d'allumage
EP1013308A1 (fr) Procédé et dispositif de libération d'un gaz propulseur contenu dans une cartouche auxiliaire destinée notamment à des appareils de lutte contre l'incendie
FR2660564A1 (fr) Appareil de protection contre la suffocation active par l'eau.
FR2851175A1 (fr) Dispositif et procede pour prevenir les risques d'incendie et/ou d'explosion au niveau d'un filtre de separation des poussieres

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060612

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20061123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS OPERATIONS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 5/00 20060101AFI20111216BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005034996

Country of ref document: DE

Effective date: 20120830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

26N No opposition filed

Effective date: 20130405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005034996

Country of ref document: DE

Effective date: 20130405

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220519

Year of fee payment: 18

Ref country code: FR

Payment date: 20220523

Year of fee payment: 18

Ref country code: DE

Payment date: 20220519

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005034996

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531