EP3868445B1 - Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies - Google Patents

Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies Download PDF

Info

Publication number
EP3868445B1
EP3868445B1 EP21153321.1A EP21153321A EP3868445B1 EP 3868445 B1 EP3868445 B1 EP 3868445B1 EP 21153321 A EP21153321 A EP 21153321A EP 3868445 B1 EP3868445 B1 EP 3868445B1
Authority
EP
European Patent Office
Prior art keywords
fuel
supply system
plant
combustion
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21153321.1A
Other languages
German (de)
English (en)
Other versions
EP3868445A1 (fr
Inventor
Jean RIONDEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mini Green Power
Original Assignee
Mini Green Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mini Green Power filed Critical Mini Green Power
Publication of EP3868445A1 publication Critical patent/EP3868445A1/fr
Application granted granted Critical
Publication of EP3868445B1 publication Critical patent/EP3868445B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/10Under-feed arrangements
    • F23K3/14Under-feed arrangements feeding by screw
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/06Fire prevention, containment or extinguishing specially adapted for particular objects or places of highly inflammable material, e.g. light metals, petroleum products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/02Preventing emission of flames or hot gases, or admission of air, through working or charging apertures
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/026Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being put under pressure by means other than pressure gas, e.g. pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/102Flashback safety, e.g. inertizing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/202Feeding/conveying devices using screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature

Definitions

  • the present invention relates to the field of energy, and, more specifically, installations operating on the basis of combustion, gasification, or any other thermochemical process involving solid fuels.
  • It relates more particularly to a method for securing a solid fuel combustion or gasification plant against fires, said plant comprising a solid fuel combustion hearth, this hearth being supplied, with solid fuel, by a supply system .
  • It also relates to a solid fuel combustion or gasification plant equipped with means for implementing the aforementioned securing method.
  • Industrial solid fuel combustion or gasification power stations for example, biomass combustion, present, as do gas or fuel oil thermal power stations, risks of fires. Even if, in solid fuel combustion or gasification plants, the risk of explosion is minimal, it still remains, due to the presence of dust and the possibility of leakage of combustible gas resulting from the pyrolysis of solid fuel. . In addition, one of the most risky areas of solid fuel combustion or gasification plants is the fuel supply. The fire can indeed spread in this zone, and go up in the supply system towards the fuel reserve and thus cause significant damage to the plant.
  • Valve systems are the most widespread and certainly the oldest fire protection systems. They implement a hatch, pivoting around an axis, obstructing, if necessary, the passage between the hearth and the fuel supply.
  • the patent document US2873703 illustrates this technology for a coal-fired power plant.
  • guillotine systems are quite similar to clamshell systems.
  • a major difference between the guillotine systems and the flap systems concerns the setting in motion of the hatch.
  • guillotine systems it is a door guided in translation allowing the supply system to be separated into two distinct zones. It is essential to couple this type of system with a device that releases the biomass so as not to interfere with the travel of the hatch.
  • the patent document FR2615931 describes such a system. It should be noted that, in a guillotine system, the guillotine is raised above the rest of the feed to prevent the firebreak system from being blocked by excess material. It is ultimately an “intelligent” system, which restarts automatically when the temperature drops below a threshold.
  • Rotary systems consist of an assembly rotated around an axis inside the power system. Unlike the two previous systems, the rotary systems are sealed systems even during normal operating phases. These are valve-airlock type systems ensuring the distribution of the material and the sealing of the system.
  • the patent document CN178166860 illustrates this technology. It describes a system consisting of an airlock valve located above a hopper to prevent backfire.
  • thermocouple measures a temperature beyond the programmed threshold
  • auger automatically starts up and the system injects water as long as the temperature is too high.
  • the system thus sends wet biomass to the boiler.
  • patent document EP3015136 describes a solution for detecting fire outbreaks in a storage of biomass thanks to a continuous air humidity analyzer.
  • the biomass burns, the water contained in it evaporates, increasing the level of humidity in the air.
  • the patent document CN106056824 concerns a redundant and intelligent solution for detecting and fighting the risk of fire in biomass power plants. It includes two different sensors: a first set of thermocouples in contact with the biomass and an infra-red camera also allowing detection of the start of a fire. The two sensors are connected to an intelligent system controlling an extinguishing device. This device can be used in three configurations according to the wishes of the operator: fully automatic, remotely controlled or manual.
  • thermocouples directly installed in the biomass supply and connected to regulation valves which are themselves placed on a water injection system. When the thermocouples exceed the set value the valves open, injecting water into the biomass feed.
  • Solid fuels are very irregular.
  • the mechanical valve or guillotine systems are very often obstructed, preventing the correct isolation of the biomass.
  • installing mechanical systems and adapting the power supply to them is often very expensive.
  • Mechanical systems of the valve and guillotine types require regular maintenance and break down very easily. Rotating systems disrupt the proper supply of biomass, they are regularly responsible for jams and the formation of vaults. They are not suitable for irregular fuels.
  • a firestop system must interact with the hearth as little as possible. It seems essential not to inject soaked biomass into it so as not to damage it or make it unavailable for too long a time.
  • one problem that the invention proposes to solve is to provide a method for securing a solid fuel combustion or gasification plant comprising a solid fuel combustion hearth, said hearth being fed , solid fuel, by a supply system, which overcomes the aforementioned drawbacks of the prior art.
  • the solid fuel comprises biomass, solid recovered fuels and/or waste
  • the solid fuel supply system comprises at least one endless screw, the solid fuel being brought to the combustion hearth by said at least one endless screw;
  • the supply system comprises a first worm screw positioned substantially horizontally with respect to the ground and a second worm screw positioned at the terminal end of the first worm screw, and the solid fuel is conveyed, from a fuel storage tank arranged upstream of the first endless screw to the combustion chamber arranged downstream of the second endless screw, by means of the first then the second endless screw;
  • - for the formation of the fuel plug and for the creation of the empty fuel space in the fuel supply system said at least one endless screw is operated in reverse after having injected the liquid into the contained fuel in the fuel system;
  • the solid fuel supply system of the plant further comprises one or more sensors, and the method further comprises a step according to which, by means of said sensors, a fire rising in the fuel supply system is detected ;
  • the sensors are temperature sensors, CO 2 sensors, infrared sensors
  • the proposed solution of the invention to the aforementioned problem has the second object of a solid fuel combustion or gasification plant secured against fires, for the implementation of the method as described above, comprising a fuel combustion hearth solid fuel, said hearth being supplied with solid fuel by a supply system, characterized in that it further comprises means for injecting a non-flammable liquid into the supply system, means for forming a fuel in the fuel supply system, and means for creating an empty fuel space in the fuel supply system.
  • the supply system comprises at least one endless screw and at least one non-flammable liquid injector.
  • the most risky phases of solid fuel combustion or gasification plants are the extinguishing phases.
  • the fuel the oxidizer or the heat source, also called the trigger element.
  • the heat source is present from the start-up phase of the installation until the total cooling of the plant which can take place several hours after the extinction. of it. It is very difficult for a solid fuel to be isolated from the air. Separating the oxidizer and the fuel under these conditions is not an conceivable solution.
  • One objective achieved by the invention is therefore to insulate the fuel from the heat source to prevent any outbreak of fire. In the event that a fire is declared, the energy released by the reaction between the oxygen and the fuel maintains the combustion. To fight the fire, the invention makes it possible to deprive the reaction of one of these reagents by installing a fire barrier system.
  • the method according to the invention is a complete method for preventing and combating the risk of fire, the main source of this risk being the rise of fire in a solid fuel supply system in a thermal power plant.
  • This risk exists in particular in several cases, namely, when the plant is shut down in normal operation, or during a malfunction of the plant which may be due to - a technical problem with the extraction of fumes, - the use of fuel not suitable for the thermal power plant, - human error when controlling the power plant, or - a failure of the control/command system which causes the system to shut down, for example stopping the fuel supply or the draft fan.
  • the invention relates in particular to a method for securing or protecting a thermal power plant of solid fuel combustion or gasification against fires.
  • the solid fuel used in such plants is, in one example, biomass, solid recovered fuels (SRF) and/or waste such as household waste. These are then fuels whose structure and nature are not homogeneous. However, it may be other fuels, for example fossil fuels such as coal.
  • Combustion power stations are thermal power stations, which produce electrical energy and/or thermal energy from a heat source, produced by the combustion of solid fuel in a combustion hearth.
  • the combustion hearth 1 of a combustion plant 2 is supplied with solid fuel 3, by a supply system 4.
  • the solid fuel supply system 4 comprises at least one endless screw 4-1, 4-2 and the biomass 3 is conveyed to the combustion hearth 1 by said at least one endless screw 4-1, 4-2.
  • the feed system 4 comprises a first endless screw 4-1 positioned substantially horizontally relative to the ground and a second endless screw 4-2 positioned at the end of the first endless screw 4- 1, substantially vertically.
  • the solid fuel 3 is conveyed from a storage tank 5 arranged upstream of the first endless screw 4-1 to the combustion hearth 1 arranged downstream of the second endless screw 4-2 using the first 4-1 and then the second 4-2 auger.
  • the method according to the invention is characterized in that it comprises the steps below.
  • a non-flammable liquid is injected into the fuel contained in the fuel supply system.
  • This is, in one example, water.
  • the injection is carried out by means of one or more injectors 6-1, 6-2, 6-3 distributed along the supply system and, in particular, along the first endless screw 4.1, namely the horizontal auger. These injectors are represented by arrows on the figure 1 .
  • These injectors 6-1, 6-2, 6-3 form an extinguishing device installed on the power supply independent of the extinguishing means of the general fire-fighting system, which is generally present for all power plants.
  • the non-flammable liquid injected wets the fuel 3 contained in the supply system and forms agglomerates of wet fuel, at the location of the injections of liquid.
  • a plug 7 of fuel 3 is formed in the fuel supply system 4 .
  • Such a plug 7 is shown schematically in figure 2B .
  • the endless screw 4-1 is operated in reverse, that is to say in the opposite direction to its normal direction of operation.
  • the wet fuel agglomerate does not move with the same speed through the auger as the fuel that has not been wetted.
  • the fuel which has not been wetted, and which is located downstream of the wetted fuel, will settle on the agglomerate and the agglomerate itself will undergo compacting.
  • the plug 7 results from the compaction of the agglomerate under the action of the reverse movement of the endless screw and the settling of the fuel downstream of the agglomerate.
  • the hardness of the plug 7 obtained in the endless screw is of the order of that of a champagne cork. It is therefore very hard.
  • a space 8 empty of fuel is created in the fuel supply system.
  • This empty space 8 partly results from the settling of the non-wet biomass forming the plug 7, but also from the fact that the endless screw operates in reverse and that no fuel source is brought to the entrance of the endless screw.
  • the solid fuel supply system of the plant further comprises one or more sensors.
  • sensors are advantageously temperature sensors rated TC on the picture 3 , For thermocouple, CO 2 sensors, IR infrared sensors and/or humidity sensors.
  • the plant is advantageously equipped with an automaton.
  • the aforementioned sensors then communicate with said automaton.
  • the automaton controls the steps of the method according to the invention, namely the injection of the non-flammable liquid into the fuel contained in the fuel supply system and/or the formation of the fuel plug in the supply system fuel and/or the creation of a fuel void in the fuel supply system.
  • the aforementioned automaton is, in an exemplary implementation of the invention, the automaton ensuring the control and command of the plant. It is denoted Principal Control-Command PLC on the picture 3 .
  • One function of this automaton is finally to make the sensors communicate with the fuel supply extinguishing device. It also allows alarms to be sent to the operator via the man-machine interface.
  • the automaton triggers the extinguishing device of the biomass feed system.
  • This extinguishing device comprises the means for bringing water to the injectors from the water supply and/or the public water network, and the means for controlling the rotation of the endless screws and in particular of the horizontal endless screw that reverses.
  • the securing method according to the invention does not exclude the presence of a general security system.
  • firefighting intended to allow fires to be extinguished throughout the plant.
  • a general system operates on a power supply different from the particular combat system according to the invention described above and, preferably, on a back-up power supply in the event of a power cut. It is also composed of three parts communicating with each other.
  • a system of sensors arranged throughout the plant for example, UV or IR sensors intended for the detection of fire on battery or temperature sensors, CO 2 or even 'humidity.
  • sensors are placed at different locations in the plant where a fire risk has been identified, for example at the fuel storage location, at the level of the conveyors, on the smoke filtration system, at the level of the power electronics.
  • the sensors are at least doubled.
  • This automaton has a backup electrical power source and/or independent of the electrical network.
  • This automaton autonomously manages the fire sensors and the triggering of fire alarm and extinguishing actions. It also communicates alarms to the control-command automaton managing the plant.
  • the method according to the invention forms an effective fire-fighting system, which makes it possible both to prevent the risk of fire and to fight it if a fire breaks out.
  • the fire risk is very present, but combustion is also the heart of the business and, consequently, the source of income. Faced with such an important issue, it is inconceivable that a technical or mechanical problem could jeopardize the entire installation.
  • the method according to the invention makes it possible to prevent this risk.
  • Fire prevention consists of a series of actions carried out automatically when the plant is shut down, which is the most risky phase. This shutdown can occur following a normal shutdown requested by an operator, or following a a sudden and/or unforeseeable incident due to human errors or technical failures.
  • a preventive routine comprising two phases has been put in place.
  • a first phase renders the fuel present in the supply system non-flammable. It can be an injection of water which soaks the fuel and makes it incombustible. THE fuel present in the conveyor cannot then catch fire.
  • a second phase makes it possible to form a plug of fuel while creating an “empty” space of fuel. This makes it possible to limit the risks of fire or smoke rising via the supply system thanks to the wet fuel plug formed. This also serves as a double safety in case the first action fails. Indeed, the empty space limits the risk of fire rising and the fuel plug formed makes it possible to slow down the fire and reduce the supply of air to the combustion in progress.
  • the plug formed is thus advantageously permanent until the total cooling of the plant. It will be evacuated to restarting it.
  • said plant can automatically go into the so-called safety position when stopped in order to limit human, material and fire risks.
  • the two preventive phases presented above are put in place, namely the injection of a liquid to make the fuel non-flammable and the implementation of an automatic sequence of the conveyor creating an empty space in fuel and a "plug" of fuel.
  • the method according to the invention therefore has numerous advantages responding to the problems posed by the prior art.
  • the entire corrective system is redundant. This repetition makes it possible not to jeopardize the entire installation for a simple technical problem or a fault in the sensors.
  • the energy systems allowing the operation of the two preventive and corrective parts are totally differentiated. This makes it possible to maintain protection in the event of a power supply fault for either of them.
  • the preventive system in particular the fuel system firebreak system, is a simple device suitable for solid fuels. Due to the absence of any additional mechanical element dedicated to the firebreak device, this system is very inexpensive and robust.
  • the backfire prevention system is spatially limited to the fuel supply, which preserves the hearth of the plant.
  • the plant can be shut down for two reasons: either the operator decides to shut down the plant and shuts it down via a Human-Machine Interface; either an incident occurs and triggers the implementation plant security. Under these conditions, an accelerated shutdown procedure is triggered in order to quickly cool the plant and cut off all fuel supply.
  • steps are implemented in an automatic sequence of water injection and formation of a fuel plug.
  • the vertical screw is stopped to stop the supply of fuel to the reactor.
  • a solenoid valve opens to inject mains water into the auger to moisten the fuel.
  • the horizontal auger moves back to create a plug of wet fuel while creating an empty space of biomass. Water is regularly injected to ensure that no fire rises.
  • control-command sequence making it possible to spray the fuel and form the fuel plug during a normal shutdown is given in the flowchart shown in figure 4 .
  • the sequence during an accidental stop will be close in terms of flowchart.
  • the timings, the quantities of water injected and the recoil speeds of the screws will be different and depend on the fuel and the configuration of the plant.
  • the plant according to the invention therefore comprises two completely independent and redundant corrective systems. These are the particular fire fighting system relating to the fuel supply and the general fire fighting system.
  • the fuel supply being the most sensitive point, it is important to ensure redundancy of the fire protection system at this point.
  • the particular fire fighting system of the present invention is as described herein. They are summarized below. The entire system runs on the power grid and has a battery system in case of a power outage.
  • thermocouples that measure the temperature at three different points in the fuel system. They are fixed on the chute of the conveyor screw. These thermocouples are transmitters which communicate their information to the control-command of the plant.
  • Level 1 alarm for the operator, no particular action.
  • Level 2 opening of the solenoid valve used in the preventive system which is connected to the water network.
  • Level 3 transmission of the alarm to the general fire safety PLC. This last level makes it possible to make a redundancy on the injection of water because the system triggered by the general fire safety automaton uses another source of water, namely an independent tank.
  • This system consists of three parts. It is first of all a pipe fed by pressurized water from the drinking water network. It is then a solenoid valve communicating with the control-command system as well as a manual bypass valve, the latter allowing an operator to act directly and water the biomass even without electricity or without a PLC. if it detects a fire. Finally, it is a injection nozzle disposed directly inside the fuel supply system.
  • the general fire-fighting system is part of a larger system for fighting against industrial risks such as the production of CO, CH 4 or H 2 .
  • it comprises, according to the invention, three redundant and independent parts of the particular control system relating to the fuel supply. These three parts are presented below.
  • UV/IR flame detectors To ensure the redundancy of the measurement which detects any flames.
  • UV and IR sensors use 2 technologies, UV and IR, in order to increase the relevance of the measurement. They communicate their information to a independent safety automaton. They work with an internal battery.
  • this automaton triggers the general extinguishing system of the power plant, warns the operator and the staff by an audible and visual signal, and transmits the alarm to the programmable industrial automaton.
  • the automaton works thanks to an internal battery.
  • This system is made up of different parts: - a reserve of 10 m 3 of water, the volume depending on the size of the plant and the storage areas; - a diesel pump to send water from the tank to the entire fire network; - a fire water network independent of the public water network and completely dedicated to this system, connected to the tank and the pump; and - a set of water injection nozzles positioned above each biomass store, fuel conveying system or other area with an identified fire risk.
  • the pump starts automatically and sends water from the tank through the fire network.
  • the water is then projected to all the places likely to be on fire. This makes it possible to be certain of sending water to the place of the fire but also to avoid a runaway effect.
  • all the other zones likely to bring a load to the fire are moistened and inhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Solid-Fuel Combustion (AREA)
  • Incineration Of Waste (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention concerne le domaine de l'énergie, et, plus précisément, les installations fonctionnant à base de combustion, de gazéification, ou tout autre processus thermochimique impliquant des combustibles solides.
  • Elle concerne plus particulièrement un procédé de sécurisation d'une centrale de combustion ou de gazéification à combustible solide contre les incendies, ladite centrale comprenant un foyer de combustion du combustible solide, ce foyer étant alimenté, en combustible solide, par un système d'alimentation.
  • Elle concerne en outre une centrale de combustion ou de gazéification à combustible solide équipée de moyens pour la mise en oeuvre du procédé précité de sécurisation.
  • ART ANTERIEUR
  • Les centrales industrielles de combustion ou de gazéification à combustible solide, par exemple, à combustion de biomasse, présentent, de même que les centrales thermiques à gaz ou à fioul, des risques d'incendies. Même si, dans les centrales de combustion ou de gazéification à combustible solide, le risque d'explosion est minime, il subsiste toujours, du fait de la présence de poussières et de la possibilité de fuite de gaz combustible issus de la pyrolyse du combustible solide. En outre, une des zones les plus à risque des centrales de combustion ou de gazéification à combustible solide est l'alimentation en combustible. Le feu peut en effet se propager dans cette zone, et remonter dans le système d'alimentation vers la réserve en combustible et ainsi causer des dégâts importants sur la centrale.
  • Il est par suite nécessaire de prévenir et de lutter contre les risques d'incendie dans ces centrales.
  • A cet effet, on connaît, selon l'art antérieur, des centrales équipées de systèmes de protection contre les incendies à clapets ou à guillotine, de systèmes rotatifs, ou de systèmes utilisant directement les moyens de convoyage pour empêcher une remontée de feu.
  • Les systèmes à clapets sont les systèmes anti-feu les plus répandus et certainement les plus anciens. Ils mettent en oeuvre une trappe, pivotante autour d'un axe, obstruant, en cas de nécessité, le passage entre le foyer et l'alimentation en combustible. Le document brevet US2873703 illustre cette technologie pour une centrale à charbon.
  • Les systèmes à guillotine sont assez similaires aux systèmes à clapets. Une différence majeure entre les systèmes à guillotine et les systèmes à clapets concerne la mise en mouvement de la trappe. Dans les systèmes à guillotine il s'agit d'une trappe guidée en translation permettant de séparer le système d'alimentation en deux zones distinctes. Il est essentiel de coupler ce type de système avec un dispositif qui dégage la biomasse pour ne pas gêner la course de la trappe. Le document brevet FR2615931 décrit un tel système. A noter que, dans un système à guillotine, la guillotine est surélevée par rapport au reste de l'alimentation pour éviter le blocage du système coupe-feu par un surplus de matière. Il s'agit d'un système finalement «intelligent», qui redémarre automatiquement lorsque la température descend en dessous d'un seuil.
  • Les systèmes rotatifs sont constitués d'un ensemble mis en rotation autour d'un axe à l'intérieur du système d'alimentation. A la différence des deux précédents systèmes, les systèmes rotatifs sont des systèmes étanches même durant les phases de fonctionnement normales. Ce sont des systèmes de type vanne-sas assurant la distribution de la matière et l'étanchéité du système. Le document brevet CN178166860 illustre cette technologie. Il décrit un système composé d'une vanne-sas situé au-dessus d'une trémie permettant d'empêcher un retour de feu.
  • Certaines technologies utilisent directement leur dispositif d'alimentation dans un mode spécialement prévu pour empêcher les retours de feu. C'est le cas par exemple du système présenté dans le document brevet RU2287474 . Ce système est composé d'une vis d'alimentation, d'un thermocouple et d'une injection d'eau. Lorsque le thermocouple mesure une température au-delà du seuil programmé, la vis sans fin se met automatiquement en route et le système injecte de l'eau tant que la température est trop élevée. Le système fait ainsi parvenir de la biomasse mouillée dans la chaudière.
  • Par ailleurs, le document brevet EP3015136 décrit une solution de détection des départs de feu dans un stockage de biomasse grâce à un analyseur en continu de l'humidité de l'air. En effet lorsque la biomasse brûle, l'eau contenue dans celle-ci s'évapore, augmentant le taux d'humidité de l'air.
  • Le document brevet CN106056824 concerne une solution redondante et intelligente de détection et de lutte contre le risque incendie dans les centrales biomasse. Il comprend deux capteurs différents : un premier ensemble de thermocouples au contact de la biomasse et une caméra infra-rouge permettant également la détection de départ de feu. Les deux capteurs sont reliés à un système intelligent contrôlant un dispositif d'extinction. Ce dispositif peut être utilisé dans trois configurations suivant la volonté de l'opérateur : entièrement automatique, contrôlé à distance ou manuel.
  • Le document brevet CN202554782 présente un dispositif de lutte contre les incendies inhérent à l'alimentation biomasse. Ce système est composé de trois thermocouples directement installés dans l'alimentation en biomasse et reliés à des vannes de régulation elles-mêmes disposées sur un système d'injection d'eau. Lorsque les thermocouples dépassent la valeur fixée les vannes s'ouvrent, injectant de l'eau dans l'alimentation en biomasse.
  • Le document brevet EP 0 202 681 A2 représente la base de la forme en deux parties de la revendication 1.
  • Les systèmes précités, ainsi que leurs procédés de mise en oeuvre, présentent de nombreux inconvénients.
  • Les combustibles solides sont très irréguliers. Les systèmes mécaniques à clapets ou à guillotine sont très souvent obstrués empêchant l'isolement correct de la biomasse. De plus, l'installation de systèmes mécaniques et l'adaptation de l'alimentation en fonction de ces derniers sont souvent très coûteuses. Les systèmes mécaniques de types à clapets et à guillotines nécessitent une maintenance régulière et tombent très facilement en panne. Les systèmes rotatifs perturbent la bonne alimentation en biomasse, ils sont régulièrement responsables de bourrages et de formation de voutes. Ils ne sont pas adaptés pour des combustibles irréguliers. Par ailleurs, un système coupe-feu doit le moins possible interagir avec le foyer. Il parait essentiel de ne pas injecter de biomasse détrempée dans celui-ci pour ne pas l'endommager ou le rendre indisponible un trop long moment.
  • RESUME DE L'INVENTION
  • Compte tenu de ce qui précède, un problème que ce propose de résoudre l'invention, est de réaliser un procédé de sécurisation d'une centrale de combustion ou de gazéification à combustible solide comprenant un foyer de combustion du combustible solide, ledit foyer étant alimenté, en combustible solide, par un système d'alimentation, qui pallie aux inconvénients précités de l'art antérieur.
  • La solution proposée de l'invention à ce problème posé a pour premier objet un Procédé de sécurisation, contre des incendies, d'une centrale de combustion ou de gazéification à combustible solide comprenant un foyer de combustion du combustible solide, ledit foyer étant alimenté, en combustible solide, par un système d'alimentation, caractérisé en ce qu'il comporte les étapes suivantes selon lesquelles :
    • on injecte un liquide non inflammable dans le combustible contenu dans le système d'alimentation en combustible ;
    • on forme un bouchon de combustible dans le système d'alimentation en combustible ; et
    • on crée un espace vide de combustible dans le système d'alimentation en combustible.
  • De manière avantageuse, - le combustible solide comprend de la biomasse, des combustibles solides de récupération et/ou des déchets - le système d'alimentation en combustible solide comprend au moins une vis sans fin, le combustible solide étant amené au foyer de combustion par ladite au moins une vis sans fin ; - le système d'alimentation comprend une première vis sans fin positionnée sensiblement horizontalement par rapport au sol et une seconde vis sans fin positionnée à l'extrémité terminale de la première vis sans fin, et le combustible solide est convoyé, à partir d'un bac de stockage du combustible disposé en amont de la première vis sans fin au foyer de combustion disposé au aval de la seconde vis sans fin, au moyen de la première puis de la seconde vis sans fin ; - pour la formation du bouchon de combustible et pour la création de l'espace vide de combustible dans le système d'alimentation en combustible, on fait fonctionner ladite au moins une vis sans fin en marche arrière après avoir injecté le liquide dans le combustible contenu dans le système d'alimentation ; - le système d'alimentation en combustible solide de la centrale comprend en outre un ou plusieurs capteurs, et le procédé comprend en outre une étape selon laquelle on détecte, au moyen desdits capteurs, une remontée de feu dans le système d'alimentation en combustible ; - les capteurs sont des capteurs de température, des capteurs de CO2, des capteurs infrarouge et/ou des capteurs d'humidité ; - la centrale de combustion est équipée d'un automate, les capteurs communiquent avec ledit automate, et l'automate commande l'injection du liquide non-inflammable dans le combustible contenu dans le système d'alimentation en combustible et/ou la formation du bouchon de combustible dans le système d'alimentation en combustible et/ou la création d'un espace vide de combustible dans le système d'alimentation en combustible ; et - la centrale comprend en outre un système général de lutte contre les incendies comprenant des capteurs disposés sur l'ensemble de la centrale, un moyen d'extinction des incendies par arrosage de la centrale en liquide et/ou en gaz ininflammable, et un automate de sécurité.
  • La solution proposé de l'invention au problème précité a pour second objet une centrale de combustion ou de gazéification à combustible solide sécurisée contre des incendies, pour la mise en oeuvre du procédé tel que décrit ci-dessus, comprenant un foyer de combustion du combustible solide, ledit foyer étant alimenté, en combustible solide, par un système d'alimentation, caractérisé en ce qu'il comporte en outre des moyens pour injecter un liquide non-inflammable dans le système d'alimentation, des moyens pour former un bouchon de combustible dans le système d'alimentation en combustible, et des moyens pour créer un espace vide de combustible dans le système d'alimentation en combustible.
  • De manière avantageuse, le système d'alimentation comprend au moins une vis sans fin et au moins un injecteur de liquide non-inflammable.
  • Les phases les plus à risque des centrales de combustion ou de gazéification à combustible solide sont les phases d'extinction. Ainsi, pour prévenir le risque incendie lors de ces phases, il est nécessaire de priver le système d'un des trois éléments suivants : le combustible, le comburant ou la source de chaleur aussi appelée élément déclencheur. Dans les centrales à combustibles solides et, plus généralement, dans toutes les centrales thermiques, la source de chaleur est présente dès la phase de démarrage de l'installation jusqu'au refroidissement total de la centrale qui peut avoir lieu plusieurs heures après l'extinction de celle-ci. Un combustible solide ne peut être que très difficilement isolé de l'air, séparer le comburant et le combustible dans ces conditions n'est pas une solution envisageable. Un objectif atteint par l'invention est donc d'isoler le combustible de la source de la chaleur pour éviter tout départ de feu. Dans le cas où un feu est déclaré, l'énergie dégagée par la réaction entre le dioxygène et le combustible entretient la combustion. Pour lutter contre l'incendie l'invention permet de priver la réaction d'un de ces réactifs en installant un système coupe-feu.
  • BREVE DESCRIPTION DES FIGURES
  • L'invention sera mieux comprise à la lecture de la description non limitative qui suit, rédigée au regard des dessins annexés, dans lesquels :
    • la figure 1 illustre, de manière schématique, une centrale sécurisée selon le procédé de l'invention ;
    • la figure 2A illustre, de manière schématique, le fonctionnement classique d'une centrale sécurisée selon le procédé de l'invention, en détaillant la progression du combustible solide dans le système d'alimentation ;
    • la figure 2B illustre, de manière schématique, la formation du bouchon et la création de l'espace vide lors de la mise en oeuvre du procédé selon l'invention ;
    • la figure 3 est une représentation schématique d'une configuration possible d'une installation pour la mise en oeuvre du procédé selon l'invention ; et
    • la figure 4 est un logigramme représentatif des étapes mises en oeuvre dans le procédé selon l'invention, suite à un arrêt d'une centrale de combustion ou de gazéification à combustible solide.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • Le procédé selon l'invention est un procédé complet de prévention et de lutte contre le risque incendie, la principale source de ce risque étant la remonté de feu dans un système d'alimentation en combustible solide dans une centrale thermique. Ce risque existe en effet notamment dans plusieurs cas de figures, à savoir, lors de l'arrêt de la centrale dans le fonctionnement normal, ou lors d'un disfonctionnement de la centrale qui peut être dû à - un problème technique du système d'extraction des fumées, - l'utilisation d'un combustible non adapté à la centrale thermique, - une erreur humaine lors du pilotage de la centrale, ou - une panne du système de contrôle/commande qui entraine l'arrêt du système, par exemple l'arrêt de l'alimentation en combustible ou du ventilateur de tirage.
  • L'invention concerne en particulier un procédé de sécurisation ou de protection d'une centrale thermique de combustion ou de gazéification à combustible solide contre les incendies.
  • Le combustible solide utilisé dans de telles centrales est, dans un exemple, de la biomasse, des combustibles solides de récupération (CSR) et/ou des déchets tels que des déchets ménagers. Il s'agit alors de combustibles dont la structure et la nature ne sont pas homogènes. Il peut cependant s'agir d'autres combustibles, par exemple de combustibles fossiles tels que le charbon.
  • Les centrales de combustion sont des centrales thermiques, qui produisent une énergie électrique et/ou une énergie thermique à partir d'une source de chaleur, produite par la combustion du combustible solide dans un foyer de combustion.
  • Ainsi que cela est illustré en figure 1, le foyer de combustion 1 d'une centrale de combustion 2, est alimenté en combustible solide 3, par un système d'alimentation 4.
  • Dans un exemple, le système d'alimentation 4 en combustible solide comprend au moins une vis sans fin 4-1, 4-2 et la biomasse 3 est convoyée au foyer de combustion 1 par ladite au moins une vis sans fin 4-1, 4-2. Dans un exemple préférentiel, le système d'alimentation 4 comprend une première vis sans fin 4-1 positionnée sensiblement horizontalement par rapport au sol et une seconde vis sans fin 4-2 positionnée, à l'extrémité de la première vis sans fin 4-1, sensiblement verticalement. Le combustible solide 3 est convoyé à partir d'un bac de stockage 5 disposé en amont de la première vis sans fin 4-1 au foyer de combustion 1 disposé en aval de la seconde vis sans fin 4-2 au moyen de la première 4-1 puis de la seconde 4-2 vis sans fin.
  • Le procédé selon l'invention se caractérise en ce qu'il comprend les étapes ci-après.
  • Dans une première étape, on injecte un liquide non-inflammable dans le combustible contenu dans le système d'alimentation en combustible. Il s'agit, dans un exemple, d'eau.
  • L'injection est réalisée au moyen d'un ou plusieurs injecteurs 6-1, 6-2, 6-3 répartis le long du système d'alimentation et, en particulier, le long de la première vis sans fin 4.1, à savoir la vis sans fin horizontale. Ces injecteurs sont schématisés par des flèches à la figure 1. Ces injecteurs 6-1, 6-2, 6-3 forment un dispositif d'extinction installé sur l'alimentation indépendant du moyen d'extinction du système de lutte général contre les incendies, qui est généralement présent pour toutes les centrales.
  • Le liquide non-inflammable injecté mouille le combustible 3 contenu dans le système d'alimentation et forme des agglomérats de combustible mouillé, à l'endroit des injections de liquide.
  • Dans une autre étape du procédé selon l'invention, on forme un bouchon 7 de combustible 3 dans le système d'alimentation 4 en combustible. Un tel bouchon 7 est schématisé à la figure 2B.
  • Pour la formation de ce bouchon 7, on fait fonctionner la vis sans fin 4-1 en marche arrière, c'est-à-dire dans le sens inverse à son sens de fonctionnement normal. Lorsque la vis sans fin fonctionne en marche arrière, l'agglomérat de combustible mouillé ne se déplace pas avec la même vitesse dans la vis sans fin que le combustible qui n'a pas été mouillé. Le combustible qui n'a pas été mouillé, et qui est situé en aval du combustible mouillé va venir se tasser sur l'agglomérat et l'agglomérat lui-même va subir un compactage. Le bouchon 7 résulte du compactage de l'agglomérat sous l'action de la marche arrière de la vis sans fin et du tassement du combustible en aval de l'agglomérat. En pratique, lorsque le combustible solide est de la biomasse, la dureté du bouchon 7 obtenu dans la vis sans fin est de l'ordre de celle d'un bouchon de champagne. Il s'agit donc d'une très grande dureté.
  • Dans une autre étape du procédé selon l'invention, on crée un espace 8 vide de combustible dans le système d'alimentation en combustible. Cet espace vide 8 résulte en partie du tassement de la biomasse non-mouillée formant le bouchon 7, mais aussi, du fait que la vis sans fin fonctionne en marche arrière et qu'aucune source de combustible n'est apportée à l'entrée de la vis sans fin.
  • Ainsi que cela est illustré à la figure 3, le système d'alimentation en combustible solide de la centrale comprend en outre un ou plusieurs capteurs. Selon l'invention, on détecte, au moyen desdits capteurs, une remontée de feu dans le système d'alimentation en combustible. Les capteurs sont avantageusement des capteurs de température notés TC sur la figure 3, pour thermocouple, des capteurs de CO2, des capteurs infrarouge IR et/ou des capteurs d'humidité.
  • Par ailleurs, la centrale est avantageusement équipée d'un automate. Les capteurs précités communiquent alors avec ledit automate. L'automate contrôle les étapes du procédé selon l'invention, à savoir l'injection du liquide non-inflammable dans le combustible contenu dans le système d'alimentation en combustible et/ou la formation du bouchon de combustible dans le système d'alimentation en combustible et/ou la création d'un espace vide de combustible dans le système d'alimentation en combustible.
  • L'automate précité est, dans un exemple de mise en oeuvre de l'invention, l'automate assurant le contrôle et la commande de la centrale. Il est noté Automate Principal Contrôle-Commande à la figure 3. Une fonction de cet automate est finalement de faire communiquer les capteurs avec le dispositif d'extinction de l'alimentation combustible. Il permet aussi d'envoyer des alarmes à l'opérateur via l'interface homme-machine. Lorsque le système de capteurs détecte un incendie dans le convoyeur, l'automate déclenche le dispositif d'extinction du système d'alimentation en biomasse. Ce dispositif d'extinction comprend les moyens d'amener de l'eau aux injecteurs à partir de la réserve d'eau et/ou du réseau d'eau public, et les moyens de commande de la rotation des vis sans fin et notamment de la vis sans fin horizontale qui fait marche arrière.
  • Bien entendu, le procédé de sécurisation selon l'invention, ainsi que les moyens de mise en oeuvre de ce procédé, n'exclut pas la présence d'un système général de lutte contre les incendies, destiné à permettre d'éteindre des incendies sur l'ensemble de la centrale. Un tel système général fonctionne sur une alimentation électrique différente du système de lutte particulier selon l'invention décrit précédemment et, de préférence, sur une alimentation secourue en cas de coupure électrique. Il est également composé de trois parties communicant entre elles.
  • Il s'agit, premièrement, d'un système de capteurs disposés sur l'ensemble de la centrale, par exemple, des capteurs UV ou IR destinés à la détection de feu sur batterie ou des capteurs de température, de CO2 ou encore d'humidité. Ces capteurs sont disposés à différents endroits de la centrale où un risque incendie a été identifié, par exemple au lieu du stockage du combustible, au niveau des convoyeurs, sur le système de filtration des fumées, au niveau de l'électronique de puissance. De la même manière que pour le système pour la mise en oeuvre du procédé selon l'invention, les capteurs sont au minimum doublés.
  • Il s'agit, deuxièmement, d'un moyen d'extinction indépendant de celui utilisé par le moyen de lutte particulier selon l'invention, qui est composé d'un réseau d'eau permettant d'arroser toutes les zones où le risque incendie est identifié. Une des ramifications du système donne directement dans le système d'alimentation de la centrale. Il est activé par une source électrique au minimum secourue et dans la meilleure des configurations, totalement indépendante du réseau électrique.
  • Il s'agit, troisièmement, d'un automate de sécurité, différent de l'automate utilisé pour le système de contrôle-commande de la centrale. Cet automate a une source d'alimentation électrique secourue et/ou indépendante du réseau électrique. Cet automate gère de façon autonome les capteurs d'incendie et le déclenchement des actions d'alarme et d'extinction incendie. Il communique également les alarmes à l'automate de contrôle-commande gérant la centrale.
  • En définitive, le procédé selon l'invention forme un système de lutte anti-incendie efficace, qui permet à la fois de prévenir le risque d'incendie et de le combattre si un incendie se déclenche. Dans des installations de combustion, le risque incendie est très présent, mais la combustion est aussi le coeur du métier et, par suite, la source de revenu. Devant un enjeu aussi important, il n'est pas concevable qu'un problème technique ou mécanique mette en péril l'intégralité de l'installation. Le procédé selon l'invention permet de prévenir ce risque.
  • La prévention contre l'incendie consiste en une série d'actions réalisées automatiquement lors de l'arrêt de la centrale, qui est la phase la plus à risques, cet arrêt pouvant subvenir suite à un arrêt normal demandé par un opérateur, ou suite à un incident soudain et/ou imprévisible dû à des erreurs humaines ou des défaillances techniques.
  • Pour limiter les risques de départ de feu lors de l'arrêt de la centrale, une routine préventive qui comporte deux phases est mise en place. Une première phase rend non-inflammable le combustible présent dans le système d'alimentation. Il peut s'agir d'une injection d'eau qui imbibe le combustible et le rend incombustible. Le combustible présent dans le convoyeur ne peut alors pas prendre feu. Une seconde phase permet de former un bouchon de combustible tout en créant un espace « vide » de combustible. Cela permet de limiter les risques de remontée de feu ou de fumées via le système d'alimentation grâce au bouchon de combustible humide formé. Cela sert aussi de double sécurité en cas de défaillance de la première action. En effet, l'espace vide limite les risques de remontée de feu et le bouchon de combustible formé permet de ralentir le feu et diminuer l'apport d'air à la combustion en cours. Le bouchon formé est ainsi avantageusement pérenne jusqu'au refroidissement total de la centrale. Il sera évacué au
    redémarrage de celle-ci.
  • Les phases précitées peuvent être réalisées manuellement mais, dans un mode de réalisation préféré de l'invention, il s'agira d'une séquence programmée dans le système de contrôle-commande de la centrale.
  • Par ailleurs, lors d'une défaillance technique ou humaine provoquant un défaut de la centrale, ladite centrale peut se mettre automatiquement en position dite de sécurité à l'arrêt afin de limiter les risques humains, matériels et d'incendie. Dans la présente invention les deux phases préventives présentées précédemment sont mises en place, à savoir l'injection d'un liquide pour rendre le combustible ininflammable et la mise en oeuvre une séquence automatique du convoyeur créant un espace vide en combustible et un « bouchon » de combustible.
  • Ces deux phases ne se déroulent pas nécessairement dans les mêmes conditions que dans le cas d'un arrêt normal. Les quantités de liquide non-inflammable injectées peuvent être différentes, la séquence de formation du bouchon peut aussi être différente. Seul le principe reste le même.
  • Le procédé selon l'invention présente donc de nombreux avantages répondant aux problématiques posées de l'art antérieur. Dans l'invention, l'intégralité du système correctif est redondante. Cette répétition permet de ne pas mettre en péril toute l'installation pour un simple problème technique ou un défaut de capteurs. Les systèmes énergétiques permettant le fonctionnement des deux parties préventives et correctives sont totalement différenciés. Cela permet de maintenir une protection en cas de défaut d'alimentation de l'un comme de l'autre. Le système préventif, notamment le système coupe-feu du système d'alimentation, est un dispositif simple et adapté aux combustibles solides. Du fait de l'absence d'élément mécanique supplémentaire dédié au dispositif coupe-feu, ce système est très peu coûteux et robuste. Du fait de la configuration du système et des précautions prises dans la partie préventive de l'invention, le risque de retour de feu pendant le fonctionnement normal de la centrale est très limité et quasiment inexistant. Le système de prévention du retour de flamme est limité spatialement à l'alimentation du combustible, ce qui préserve le foyer de la centrale.
  • On notera que, dans le mode de réalisation préféré de l'invention, à savoir le mode de réalisation présenté dans les figures 1, 2A, 2B et 3, la centrale peut être arrêtée pour deux raisons : soit l'opérateur décide d'éteindre la centrale et l'éteint via une Interface Homme-Machine ; soit un incident intervient et déclenche la mise en sécurité de la centrale. Dans ces conditions une procédure d'arrêt accélérée est déclenchée afin de refroidir rapidement la centrale de couper tout apport de combustible.
  • Pour limiter les risques de retour de flamme dû à la présence de biomasse immobile à proximité du foyer, on met en oeuvre des étapes en séquence automatique d'injection d'eau et de formation d'un bouchon de combustible. La vis verticale est stoppée pour arrêter l'alimentation du réacteur en combustible. Une électrovanne s'ouvre pour injecter de l'eau du réseau dans la vis afin d'humidifier le combustible. La vis horizontale recule afin de créer un bouchon de combustible humide tout en créant un espace vide de biomasse. De l'eau est régulièrement injectée pour s'assurer qu'aucune remontée de feu ne se fasse.
  • Un exemple de séquence du contrôle-commande permettant de réaliser l'arrosage du combustible et de former le bouchon de combustible lors d'un arrêt normal est donné dans le logigramme montré à la figure 4. La séquence lors d'un arrêt accidentel sera proche en terme de logigramme. Les temporisations, les quantités d'eau injectées et les vitesses de recul des vis seront différentes et dépendent du combustible et de la configuration de la centrale.
  • La centrale selon l'invention comporte donc deux systèmes correctifs totalement indépendants et redondants. Il s'agit du système de lutte particulier relatif à l'alimentation en combustible et du système général de lutte contre l'incendie.
  • EXEMPLE : SYSTEME DE LUTTE PARTICULIER RELATIF A L'ALIMENTATION EN COMBUSTIBLE
  • L'alimentation en combustible étant le point le plus sensible il est important d'assurer une redondance du système anti-incendie en ce point. Dans cet exemple, le système particulier de lutte contre l'incendie de la présente invention est tel que décrit dans la présente demande. Elles sont résumées ci-après. L'intégralité du système fonctionne sur le réseau électrique et dispose d'un système de batterie en cas de coupure.
  • Système de détection
  • Il se compose de trois thermocouples TC (voir Fig. 3) qui mesurent la température en trois point différents au niveau du système d'alimentation. Ils sont fixés sur la goulotte de la vis de convoyage. Ces thermocouples sont des transmetteurs qui communiquent leurs informations au contrôle-commande de la centrale.
  • Automate programmable
  • Il s'agit de l'automate programmable industrielle du contrôle commande de la centrale. En cas de défaut relevé par les thermocouples TC, différents niveaux sont atteints. Niveau 1 : alarme pour l'opérateur, pas d'action particulière. Niveau 2 : ouverture de l'électrovanne utilisée dans le système préventif qui est raccordée au réseau d'eau. Niveau 3 : transmission de l'alarme à l'automate de sécurité incendie général. Ce dernier niveau permet de faire une redondance sur l'injection d'eau car le système déclenché par l'automate de sécurité incendie général utilise une autre source d'eau, à savoir un réservoir indépendant. Lorsqu'une alarme provient de l'automate de sécurité incendie général (feu détecté ailleurs sur la centrale), le système particulier de lutte contre l'incendie est déclenché par sécurité
  • Système d'extinction
  • Ce système comprend trois parties. It s'agit tout d'abord d'une tuyauterie alimentée par l'eau sous pression du réseau d'eau potable. Il s'agit ensuite d'une électrovanne communiquant avec le système de contrôle-commande ainsi qu'une vanne manuelle de by-pass, cette dernière permettant à un opérateur d'agir directement et d'arroser la biomasse même sans électricité ou sans automate s'il détecte un incendie. Il s'agit enfin d'une
    buse d'injection disposée directement à l'intérieur du système d'alimentation en combustible.
  • EXEMPLE : SYTEME GENERAL DE LUTTE CONTRE L'INCENDIE
  • Le système général de lutte contre l'incendie s'inscrit dans un système plus grand de lutte contre les risques industriels tels que la production de CO, de CH4 ou d'H2. Dans cet exemple, il comprend, selon l'invention, trois parties redondantes et indépendantes du système de lutte particulier relatif à l'alimentation en combustible. Ces trois parties sont présentées ci-après.
  • Système de détection
  • Il est composé de deux détecteurs de flammes UV/IR pour s'assurer de la redondance de la mesure qui détectent d'éventuelles flammes. Ces capteurs utilisent 2 technologies, UV et IR, afin d'augmenter la pertinence de la mesure. Ils communiquent leurs informations à un automate de sécurité indépendant. Ils fonctionnent grâce une batterie interne.
  • Automate programmable indépendant
  • Il s'agit de l'automate de sécurité indépendant responsable de l'intégralité du système de lutte contre les risques liés au feu et au gaz sur l'ensemble de la centrale. Dans le cas où les capteurs de flammes détectent une anomalie, cet automate déclenche le système d'extinction général de la centrale, prévient l'opérateur et le personnel par une signalétique sonore et visuelle, et transmet l'alarme à l'automate industrielle programmable. L'automate fonctionne grâce à une batterie interne.
  • Système d'extinction
  • Ce système est composé de différentes parties : - une réserve de 10 m3 d'eau, le volume dépendant de la taille de la centrale et des zones de stockage ; - une pompe Diesel permettant d'envoyer l'eau du réservoir sur l'ensemble du réseau incendie ; - un réseau d'eau incendie indépendant du réseau d'eau public et totalement
    dédié à ce système, relié à la cuve et à la pompe ; et - un ensemble de buses d'injection d'eau positionné au-dessus de chaque réserve de biomasse, système de convoyage de combustible ou autre zone avec un risque d'incendie identifié.
  • En pratique, lors du déclenchement du système général, la pompe démarre automatiquement et envoie l'eau du réservoir à travers le réseau incendie. L'eau est alors projetée à tous les endroits susceptibles d'être en feu. Cela permet d'avoir une certitude d'envoyer de l'eau sur le lieu de l'incendie mais aussi d'éviter un effet d'emballement. Ainsi, si l'incendie n'est pas arrêté là où il a débuté car il est trop violent ou pour tout autre raison, l'ensemble des autres zones susceptibles d'apporter une charge au feu est humidifié et inhibé.

Claims (11)

  1. Procédé de sécurisation, contre des incendies, d'une centrale (2) de combustion ou de gazéification à combustible solide (3) comprenant un foyer de combustion (1) du combustible solide (3), ledit foyer (1) étant alimenté, en combustible solide (3), par un système d'alimentation (4), le procédé comportant les étapes suivantes selon lesquelles :
    on injecte un liquide non inflammable dans le combustible (3) contenu dans le système d'alimentation (4) en combustible ;
    on forme un bouchon (7) de combustible (3) dans le système d'alimentation (4) en combustible ; le procédé étant caractérisé en ce qu'
    on crée un espace (8) vide de combustible dans le système d'alimentation en combustible.
  2. Procédé selon la revendication 1, caractérisé en ce que le combustible solide (3) comprend de la biomasse, des combustibles solides de récupération et/ou des déchets.
  3. Procédé selon l'une des revendications 1 ou 2, en ce que le système d'alimentation (4) en combustible solide comprend au moins une vis sans fin, le combustible étant amené au foyer (1) de combustion par ladite au moins une vis sans fin.
  4. Procédé selon la revendication 3, caractérisé en ce que le système d'alimentation (4) comprend une première vis sans fin (4-1) positionnée sensiblement horizontalement par rapport au sol et une seconde vis sans fin (4-2) positionnée à l'extrémité terminale de la première vis sans fin (4-1), et en ce que le combustible solide (3) est convoyé, à partir d'un bac de stockage (5) du combustible disposé en amont de la première vis sans fin (4-1) au foyer de combustion (1) disposé au aval de la seconde vis sans fin, au moyen de la première (4-1) puis de la seconde (4-2) vis sans fin.
  5. Procédé selon l'une des revendications 3 ou 4, caractérisé en ce que, pour la formation du bouchon (7) de combustible et pour la création de l'espace (8) vide de combustible dans le système d'alimentation (4) en combustible, on fait fonctionner ladite au moins une vis sans fin (4-1) en marche arrière après avoir injecté le liquide dans le combustible (3) contenu dans le système d'alimentation (4) .
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le système d'alimentation (4) en combustible solide (3) de la centrale comprend en outre un ou plusieurs capteurs, et en ce qu'il comprend en outre une étape selon laquelle on détecte, au moyen du ou desdits capteurs, une remontée de feu dans le système d'alimentation (4) en combustible.
  7. Procédé selon la revendication 6, caractérisé en ce que le ou les capteurs sont des capteurs de température, des capteurs de CO2, des capteurs infrarouge et/ou des capteurs d'humidité.
  8. Procédé selon l'une des revendications 6 ou 7, caractérisé en ce que la centrale de combustion (2) est équipée d'un automate, en ce que le ou les capteurs communiquent avec ledit automate, et en ce que l'automate commande l'injection du liquide non-inflammable dans le combustible (3) contenu dans le système d'alimentation (4) en combustible et/ou la formation du bouchon (7) de combustible dans le système d'alimentation en combustible et/ou la création de l'espace (8) vide de combustible dans le système d'alimentation (4) en combustible.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la centrale comprend en outre un système général de lutte contre les incendies comprenant des capteurs disposés sur l'ensemble de la centrale, un moyen d'extinction des incendies par arrosage de la centrale en liquide et/ou en gaz ininflammable, et un automate de sécurité.
  10. Centrale (2) de combustion ou de gazéification à combustible solide (3) sécurisée contre des incendies, configurée pour la mise en oeuvre du procédé selon l'une des revendications 1 à 8, comprenant ledit foyer (1) de combustion du combustible solide (3), ledit foyer (1) étant alimenté, en combustible solide (3), par le système d'alimentation (4) la centrale comportant en outre des moyens pour injecter le liquide non-inflammable dans le système d'alimentation (4), des moyens pour former le bouchon (7) de combustible (3) dans le système d'alimentation (4) en combustible, et des moyens pour créer l' espace (8) vide de combustible dans le système d'alimentation en combustible.
  11. Centrale (2) selon la revendication 10, dans laquelle le système d'alimentation (4) comprend au moins une vis sans fin (4-1, 4-2) et au moins un injecteur (6-1, 6-2, 6-3) de liquide non-inflammable.
EP21153321.1A 2020-02-18 2021-01-25 Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies Active EP3868445B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2001598A FR3107338B1 (fr) 2020-02-18 2020-02-18 Procédé de sécurisation d’une centrale de combustion ou de gazéification contre les incendies

Publications (2)

Publication Number Publication Date
EP3868445A1 EP3868445A1 (fr) 2021-08-25
EP3868445B1 true EP3868445B1 (fr) 2023-03-22

Family

ID=70918574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21153321.1A Active EP3868445B1 (fr) 2020-02-18 2021-01-25 Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies

Country Status (6)

Country Link
EP (1) EP3868445B1 (fr)
ES (1) ES2942141T3 (fr)
FR (1) FR3107338B1 (fr)
MA (1) MA53940B1 (fr)
PL (1) PL3868445T3 (fr)
PT (1) PT3868445T (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2873703A (en) 1955-06-02 1959-02-17 V & E Products Inc Safety device for preventing hopper fires in coal furnaces
SE443637B (sv) * 1980-04-01 1986-03-03 Ake Ekenberg Span- eller fliseldningsaggregat for vermepannor
DE3518576A1 (de) * 1985-05-23 1986-11-27 Stubinen Utveckling AB, Stockholm Vorrichtung zum verbrennen und/oder thermischen zersetzen von brennmaterial, insbesondere festen brennstoffen
FR2615931A1 (fr) 1987-05-26 1988-12-02 Raas Jean Bernard Dispositif de securite d'incendie pour les chaudieres a combustible solide
RU2287474C1 (ru) 2005-05-03 2006-11-20 Дмитрий Борисович Кучин Устройство противопожарной защиты винтовых конвейеров (варианты)
CN202554782U (zh) 2012-04-27 2012-11-28 泰安市泰山东城热电有限责任公司 生物质锅炉给料机自动灭火系统
DE202014104897U1 (de) * 2014-10-14 2014-10-28 Lasco Heutechnik Gmbh Mobile Festbrennstofffeuerungsanlage
US20160117900A1 (en) 2014-10-27 2016-04-28 Ian Hibbitt Methods for detecting fires in biomass storage systems
CN106056824B (zh) 2016-08-01 2018-08-03 国网节能服务有限公司 一种生物质电厂料场火灾监测管理系统
CN108166860A (zh) 2017-12-25 2018-06-15 深圳迈辽技术转移中心有限公司 一种基于特征识别模块的保密安全锁

Also Published As

Publication number Publication date
ES2942141T3 (es) 2023-05-30
FR3107338B1 (fr) 2022-12-30
MA53940A (fr) 2022-03-23
PL3868445T3 (pl) 2023-05-02
MA53940B1 (fr) 2023-05-31
EP3868445A1 (fr) 2021-08-25
PT3868445T (pt) 2023-04-11
FR3107338A1 (fr) 2021-08-20

Similar Documents

Publication Publication Date Title
CA2507562C (fr) Dispositif d'extinction de feu par injection d'un gaz genere par la combustion d'un bloc pyrotechnique
US20150053799A1 (en) Pulverizer mill protection system
FR2998952A1 (fr) Dispositif de sechage de cereales notamment du mais utilisant l'energie combustible des dechets desdits cereales
WO2015104462A1 (fr) Dispositif de séchage utilisant les déchets du maïs comme combustible
EP2477020A1 (fr) Système de détection de fuite de fluide.
CN202289283U (zh) 煤仓自动防火灭火装置
CN104534508B (zh) 一种沼气安全燃烧控制装置及控制方法
EP3868445B1 (fr) Procede de securisation d'une centrale de combustion ou de gazeification contre les incendies
EP2300104B1 (fr) Tete d'aspersion
EP1140339A1 (fr) Procede et dispositif d'injection regulee de dioxyde de carbone liquide dans un liquide sous pression
CN204345708U (zh) 一种沼气安全燃烧控制装置
FR2531724A1 (fr) Dispositif de broyage, de sechage et de transport d'un combustible broye destine a un haut fourneau
FR2565254A1 (fr) Dispositif d'application d'un revetement par detonation
JP2011240295A (ja) 防火装置を備えた廃棄物破砕設備及びその運転方法
CN106139450A (zh) 磨煤机惰化灭火系统
KR101110514B1 (ko) 자동 소화기능을 구비한 펠릿 보일러
CN205127202U (zh) 一种输气场站排污池主动防护系统
KR200380098Y1 (ko) 화재 진화 시스템
CN217210279U (zh) 一种回转窑进料系统温控电磁阀蒸汽灭火系统
EP1531910A2 (fr) Installation d exercice pour l entrainement de personne s a l extinction d un feu
FR2919506A1 (fr) Installation de protection contre les incendies
EP2808605B1 (fr) Procédé de sécurisation d'un équipement de combustion industrielle
CN205535069U (zh) 一种燃气防火灾输送装备
WO2020053495A2 (fr) Chandelle sèche pour réseau sous vide d'extinction d'incendie
KR101562440B1 (ko) 미분기의 화재 감시장치 및 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602021001649

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A62C0003000000

Ipc: F23K0003140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A62C 35/02 20060101ALI20220516BHEP

Ipc: A62C 3/06 20060101ALI20220516BHEP

Ipc: F23M 11/02 20060101ALI20220516BHEP

Ipc: F23K 3/14 20060101AFI20220516BHEP

INTG Intention to grant announced

Effective date: 20220601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021001649

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3868445

Country of ref document: PT

Date of ref document: 20230411

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230405

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1555506

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2942141

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230530

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 53940

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1555506

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602021001649

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

26N No opposition filed

Effective date: 20240102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240118

Year of fee payment: 4

Ref country code: ES

Payment date: 20240216

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 4

Ref country code: PT

Payment date: 20240118

Year of fee payment: 4