WO1994023253A1 - Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant - Google Patents

Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant Download PDF

Info

Publication number
WO1994023253A1
WO1994023253A1 PCT/FR1994/000377 FR9400377W WO9423253A1 WO 1994023253 A1 WO1994023253 A1 WO 1994023253A1 FR 9400377 W FR9400377 W FR 9400377W WO 9423253 A1 WO9423253 A1 WO 9423253A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
reactor according
reagent
reactor
containment
Prior art date
Application number
PCT/FR1994/000377
Other languages
English (en)
Inventor
Gilles Labranque
Original Assignee
Sofrigam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofrigam filed Critical Sofrigam
Priority to AU65069/94A priority Critical patent/AU6506994A/en
Priority to CA002159901A priority patent/CA2159901C/fr
Priority to EP94912588A priority patent/EP0692086B1/fr
Priority to JP6521765A priority patent/JPH08508335A/ja
Priority to US08/535,268 priority patent/US5661986A/en
Priority to DE69411377T priority patent/DE69411377T2/de
Publication of WO1994023253A1 publication Critical patent/WO1994023253A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent

Definitions

  • the present invention relates to a chemical reactor for a refrigerating machine or the like.
  • the present invention also relates to a refrigerating machine thus equipped.
  • the present invention also relates to a container provided with such a refrigerating machine.
  • the invention also relates to a reagent cartridge.
  • the fluid From a reserve of refrigerating fluid in the pressurized liquid state, the fluid passes through a pressure reducer and then an evaporator placed in the enclosure to be cooled. Leaving the evaporator, the gas is sucked by the reactor which contains a reagent which, at room temperature, is chemically greedy for this gas. The reagent chemically combines with the gas, producing some heat.
  • the process stops and it is then necessary to initiate a regeneration process consisting in supplying heat to the chemical reactor so that the reagent chemically separates from the refrigerant gas and expels this gas. under strong pressure. Leaving the reactor, the gas passes through a condenser and is then collected in the liquid state in the reserve. When the regeneration process is complete, the reserve is at its maximum level and a new refrigeration process can be initiated.
  • the reagent is subjected in service to significant constraints, in particular of temperature and pressure, and it must in addition be capable of absorbing chemically and to chemically separate from the refrigerant with a speed corresponding to the refrigerant flow rates in the machine.
  • US-A-2 649 700 discloses a chemical reactor for a refrigerating machine or the like comprising several elementary reagent blocks intended to absorb a gas flow from an evaporator by chemical combination and desorb this flow by reverse chemical reaction under the effect of a rise in temperature.
  • the blocks of generally annular shape, are confined between an inner wall and a peripheral wall.
  • porous screens separate the elementary blocks from one another. They distribute the gas flow between the upper and lower surfaces of the elementary blocks and an inlet and outlet duct.
  • a channel parallel to the axis crosses the elementary blocks and the screens and serves as a collector for the flows coming from or going to the screens.
  • the elementary blocks are made of sintered metal and are therefore dimensionally stable, in particular with regard to the aforementioned temperature and pressure constraints.
  • the walls are simply intended to position the blocks.
  • Such an absorbent material has many drawbacks: the quantity of gas which it is capable of absorbing per unit of volume is relatively limited, and it retains absorbent particles poorly. This is forcing passing the gas stream through the screens that serve as a kind of filter but which slow the flow and that may 'also, in time, to charge particles trying to escape blocks elementary. In addition, the need to provide such screens further increases the already large volume which is required due to the relatively low absorption performance of the blocks themselves.
  • these blocks being metallic, preferably in stainless steel, the weight of the assembly is important.
  • the object of the invention is thus to propose a chemical reactor for a refrigerating machine or the like which is capable of ensuring good refrigerating performance which is preserved for many successive cycles, without prohibitive alteration of its initial characteristics.
  • the chemical reactor for a refrigerating machine or the like comprising a reagent block intended to absorb by chemical combination a gas flow coming from an evaporator and desorb this flow by reverse chemical reaction under the effect of an elevation of temperature, the reagent block being confined between confinement faces, at least some of which are permeable to mass exchanges, is characterized in that the block is capable of variation in volume as a function of the quantity of gas absorbed, and in that that the confinement faces belong to confinement walls capable of ensuring the stability of the shape of the block against the tendency to said variations in volume.
  • the reagent in spite of its tendency to increase in volume during the chemical reaction of combination with the refrigerating fluid, tolerated without disadvantage of being confined in a substantially fixed volume.
  • the confinement stabilizes the physical structure of the block, which is favorable for obtaining good performance. absorption and desorption.
  • the reagent block is confined in a substantially fixed volume and as this block is solid, it has good intrinsic cohesion in use by which the active substance is well retained within it.
  • a reliable reactor is produced for the first time capable of storing in a limited volume quantities of gas making it possible to envisage efficient production of cold using an absorption device.
  • a device according to the invention is capable of producing galce by being placed under a high outside temperature (of tropical type) without its size or weight exceeding the usual standards.
  • the reactor according to the invention can receive most if not all of the reactants containing chlorides.
  • the permeable walls may for example be constituted by perforated tubes lining the parallel channels formed in the block. During the combination reaction, it is important to remove the heat produced to prevent the reagent from heating up and therefore becoming less greedy for gas.
  • an electric resistance heating element is preferably used, mounted in a housing located in the heart of the block so that the heat produced by this element diffuses through the block practically without losses.
  • the invention also relates to a refrigeration machine comprising, in a closed circuit, a high pressure tank, a pressure reducer, an evaporator and a reactor according to the first aspect.
  • the invention also relates to a container equipped with a refrigerating machine according to the second aspect.
  • the reagent cartridge in particular to form part of a reactor according to the first aspect, of a refrigerating machine according to the second aspect or of a container according to the third aspect, comprises a reagent block surrounded by a sealed envelope, this block comprising cavities opening through the sealed envelope and closed in a sealed manner by temporary closures.
  • FIG. 1 is a block diagram of a refrigerated container according to the invention, during refrigeration;
  • FIG. 2 is a view similar to Figure 1 but during regeneration
  • FIG. 3 is an axial sectional view of the reactor of Figures 1 and 2;
  • FIG. 4 is a cross-sectional view of the reactor of Figures 1 and 2;
  • the refrigerating machine 1 equipping the refrigerating container 2 comprises a reserve or flask of liquid refrigerating fluid 3 subjected to its own saturated vapor pressure.
  • the fluid is chosen in particular so that this pressure is relatively high.
  • this fluid is ammonia, the saturated vapor pressure of which is of the order of 1.5 MPa at 20 ° C.
  • An outlet orifice 4, provided at the bottom of the balloon 3 so as to let out only the liquid, is connected to a pressure reducer 6 by means of a stop valve 7 which can be a solenoid valve supplied by a rechargeable battery associated with the container.
  • the regulator 6 is located at the inlet of an evaporator 8, the outlet of which is connected by a T-connector 10 on the one hand to a reactor, 9 and on the other hand to a condenser 11.
  • the condenser 11 is itself even connected to an inlet 12 located at the top of the balloon 3.
  • the pressure reducer 6 and the evaporator 8 are located inside the heat-insulated enclosure 5 of the refrigerating container 2 while the other elements described so far are located outside of the enclosure 5.
  • a check valve return 13 prevents the fluid coming from the reactor 9 from circulating in the direction of the evaporator 8, while another non-return valve 14 prevents the fluid contained in the flask 3 from flowing to the condenser 11.
  • a measuring device overheating 16, of known type, controls the degree of opening of the regulator 6 so that the fluid leaving the evaporator 8 is completely evaporated without being excessively overheated.
  • the reactor 9 contains a reagent, preferably that known from EP-A-0477343 / OA-9115292 consisting of a mixture of chloride and an expanded derivative of carbon with lamellar structures, having the property of chemically combining with the refrigerating fluid used, in this case ammonia, when its temperature is low, and of separating chemically from ammonia when its temperature takes a high value predetermined.
  • a reagent preferably that known from EP-A-0477343 / OA-9115292 consisting of a mixture of chloride and an expanded derivative of carbon with lamellar structures, having the property of chemically combining with the refrigerating fluid used, in this case ammonia, when its temperature is low, and of separating chemically from ammonia when its temperature takes a high value predetermined.
  • the reactor 9 comprises means making it possible to selectively heat or cool it. Ways to warm it up include essentially a heating element 17 which is selectively activated by a switch 18. Not shown, the heating element can be
  • the means for cooling the reactor 9 comprise a fan 19 supplied by the rechargeable battery associated with the container.
  • the fan 19 circulates a convection air flow inside an external sheath 21 of the reactor.
  • the sheath 21 is insulated to limit thermal leaks during heating, and has at its base a flap 22 which is closed during heating to avoid the chimney effect. On the contrary, during the operation of the fan 19, the flap 22 is open.
  • the stop valve 7 When the machine is waiting to operate in refrigeration, the stop valve 7 is closed, so that the refrigerant reserve is trapped between the non-return valve 14 and the valve 7. Its pressure is high since it corresponds at the saturated vapor pressure of ammonia at the outside temperature, for example 20 ° C.
  • valve 7 and the flap 22 are closed, the operation of the fan 19 is interrupted and the heating element 17 is started using of the switch 18. It can also be provided to close the upper end of the sheath 21 by means, for example, of a shutter 23.
  • the heating of the reagent by the element 17 causes the separation of the ammonia which leaves at the gaseous state through the same conduit 24 as that through which it entered the reactor. Given the relatively high temperature in the reactor, the pressure of the gas leaving it tends to be higher than the equilibrium temperature in the balloon 3 so that the gas passes through the non-return valve 14.
  • the reagent block 26 has a generally cylindrical shape having the same axis 27 as the sheath 21 and a diameter less than the inside diameter of the sheath 21.
  • the block 26 consists of a stack of elementary blocks 28 having the form pancakes.
  • the block 26 is enclosed in containment walls which are preferably made of stainless steel to be mechanically robust and to resist corrosion.
  • the containment walls include in particular a cylindrical casing 29 in which the elementary blocks 28 are fitted with a slight initial tightening. This tightening is intended to increase after use of the reactor due to the tendency of the reagent to swell as discussed above.
  • the envelope 29 therefore has the role of shrinking the block 26.
  • the peripheral envelope 29 is closed at each axial end of the block 26 by a closing plate 31 of circular shape.
  • the block 26 is crossed by a number (four in the example) of channels 32 of cylindrical shape, which are parallel to the axis 27 and angularly distributed around the latter.
  • the channels 32 coincide with openings 33 made through the plates 31 and thus open outside the confinement envelope of the block 26.
  • the channels 32 are lined with permeable confinement walls constituted by perforated stainless steel tubes 34.
  • the perforations of the tubes 34 allow mass exchanges between the gaseous medium of the channels 32 and the block 26 being exposed to this medium through the perforations.
  • the annular ends of the perforated tubes 34 are contiguous with the periphery of the corresponding slots 33.
  • the outer casing 29 is also tightly connected to an upper closure cap 36 and respectively a lower 37.
  • An upper spacer 38 and respectively lower 39 is mounted in a substantially central position between each cap 36 or respectively 37 and the neighboring containment plate 31.
  • a distribution and collection chamber 41 is defined between the upper cap 36 and the neighboring containment plate 31, and consequently communicates with the channels 32 through the slots 33.
  • the upper spacer 38 includes conduits 42 which communicate the collection and distribution chamber 41 with the conduit 24 for entry and exit into the reactor 9, through a bore 43 of the upper cap 36 and an orifice 44 for entry and exit into the reactor.
  • the lower cap 37 and the corresponding confinement plate 31 define between them a circulation chamber 50.
  • the heating element 17 is a rod-shaped electrical element whose useful length corresponds to the axial length of the block 26, and which is mounted substantially without play in an axial housing 46 provided through the entire axial length of the block 26. L 'upper end of the housing 46 is closed by the plate 31 adjacent to the chamber 41. According to a first embodiment shown in the left part of Figure 3, the housing 46 is not lined so that in operation the reagent , given its tendency to swell, encloses the heating element 17 with the advantage of improving the thermal contact between them.
  • the heating element is mounted through a bore 48 of the lower cap 37 and a central bore 49 of the lower spacer 39. This therefore serves as a mount for the heating element 17. It can by example be internally threaded to receive a corresponding threading of the element 17 for its fixing.
  • the lower containment plate 31 has a central lumen 51 for the passage of the element 17.
  • the peripheral casing 29 is sealed, and it is connected in a sealed manner to the upper 36 and lower 37 caps. These are also sealed with the exception of their respective holes 43 and 48, which communicate in leaktight manner with the interior passages 42 and 49 of their respective spacer 38 and 39, as well as, in the case of the upper cap 36, with the orifice 44 for connection to the rest of the refrigeration circuit.
  • the heating element 17 is mounted in leaktight manner in the bore 49.
  • the peripheral wall 29 and the sheath 21 define between them an annular chamber 52 intended for the upward circulation of the flow of cooling air produced by the fan 19 (not shown in FIG. 3) located below the lower cap 37
  • the assembly constituted by the reagent block 26, the confinement walls 29, 31, 32 and the caps 36 and 37 as well as the heating element 17 is supported inside the sheath 21 by any appropriate means such as consoles 53 allowing the passage of the air flow 54.
  • the peripheral wall 29 carries fins 56 projecting into the annular chamber 52 in the direction of the sheath 21.
  • the fins 56 are arranged in axial planes so as to define therebetween air circulation channels 1 57
  • the fins 56 are for example produced using sections of T-shaped aluminum profile welded to the outer surface of the peripheral casing 29.
  • the sheath 21 is closed by a perforated wall 58, the openings 59 of which can be selectively closed by a shutter disc materializing the shutter 23 shown diagrammatically in FIG. 2.
  • the operation of the reactor 9 is as follows: during the operation in refrigeration, the gaseous ammonia, cold and relaxed, arrives through the orifice 24 in the distribution chamber and collects 41 then in the channels 32 before being absorbed by chemical combination with the reagent 26 through the perforations of the containment tubes 34.
  • the flap 22 is open, as shown in Figure 1, and the shutter 23 is also in the open position, shown in Figure 3.
  • the fan 19 operates and generates the flow of cooling air 54 which dissipates the heat of the combination reaction exothermic.
  • the flow 54 is accelerated by the chimney effect inside the sheath 21, due to the temperature of the fins 56, heated by the heat of reaction.
  • the operation of the fan 19 is interrupted, the shutter 22 and the shutter 23 are closed and the heating element 17 is put into operation to bring the reagent to a temperature which may be of the order of 200 ° C. .
  • the resistance of the plates 31 is increased by the connection provided between them by the perforated tubes 34 and, where appropriate, the non-perforated tube 47, and also by the spacers 38 and 39 which transfer the swelling thrust onto the caps 36 and 37 which are resistant thanks to their rounded shape.
  • This reinforcement provided to the plates 31 is useful when the pressure in the chambers 41 and 50 is low while the block's inflation tendency is maximum, for example at the end of the refrigeration cycle.
  • the elementary blocks 28 are prefabricated cartridges having their own external envelope 60 which is sealed apart from the openings 61 for the passage of the perforated tubes 34 and of the heating element 17.
  • the envelope 60 has a simple sealing and mechanical cohesion role, but is not designed to withstand the working pressure.
  • the openings 61 are closed with frangible shutters 62, leaktight, made for example of waterproof paper.
  • frangible shutters 62 leaktight, made for example of waterproof paper.
  • the peripheral wall 29, the lower cap, the lower containment plate 31, the lower spacer 39, the perforated tubes 34 and the heating element 17 are first assembled, then the elementary blocks 28 are stacked in the peripheral wall 29 while the heating element 17 and the tubes 34 each perforate two shutters 62 of each block when it enters and respectively emerges from the bore 63 or 64 which corresponds to it in the block. Bores 63 and 64 are not lined.
  • the shutters 62 have the function of protecting the block from unwanted absorption of moisture before mounting.
  • the assembly of the reactor core ends with the installation of the plate 31 and the cap 36 superior.
  • the embodiment according to FIG. 5 simplifies the assembly of the reactor by transferring a certain number of precautions, in particular hygrometric, to the sole production of the blocks.
  • the reactor could have two different ports, one for the entry of ammonia during refrigeration, the other for the exit of ammonia during regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Un réactif (26) se combine exothermiquement avec un fluide frigorigène froid sortant d'un évaporateur frigorifique pendant un cycle de réfrigération, puis restitue endothermiquement le frigorigène lorsque le réactif est porté à une température suffisamment élevée au moyen d'un élément chauffant (17) pendant un cycle de régénération au cours duquel le frigorigène restitué va se condenser dans une réserve sous pression. Le réactif est confiné dans des parois en inox (29, 31, 34) qui l'empêchent de gonfler. Ces parois comprennent des tubes perforés (34) chemisant des canaux (32) dans lesquels s'effectuent les échanges de masse lors des réactions de combinaison et de séparation. L'élément chauffant (17) est monté dans un logement central (46). Un flux d'air (54) que l'on interrompt pour la régénération, évacue la chaleur de la réaction de combinaison grâce à des ailettes (56). Utilisation pour éviter que le bloc de réactif se déforme et devienne progressivement inopérant à la suite de cycles répétés.

Description

DESCRIPTION
"Réacteur chimique, machine frigorifique et conteneur ainsi équipés, et cartouche de réactif s'y rapportant"
La présente invention concerne un réacteur chimique pour machine frigorifique ou analogue.
La présente invention concerne également une machine frigorifique ainsi équipée.
La présente invention concerne encore un conteneur muni d'une telle machine frigorifique. L'invention concerne aussi une cartouche de réactif.
On connaît le principe des machines frigorifiques fonctionnant par réaction chimique.
A partir d'une réserve de fluide frigorifique à l'état liquide sous pression, le fluide traverse un détendeur puis un évaporateur placé dans l'enceinte à refroidir. En sortant de l'évaporateur, le gaz est aspiré par le réacteur qui contient un réactif qui, à température ambiante, est chimiquement avide de ce gaz. Le réactif se combine chimiquement avec le gaz en produisant un certain dégagement de chaleur.
Lorsque la réserve de liquide sous pression est épuisée, le processus s'arrête et il est alors nécessaire d'initier un processus de régénération consistant à fournir de la chaleur au réacteur chimique pour que le réactif se sépare chimiquement du gaz frigorifique et refoule ce gaz sous forte pression. En sortant du réacteur, le gaz passe à travers un condenseur puis est collecté à l'état liquide dans la réserve. Lorsque le processus de régénération est terminé, la réserve est à son niveau maximum et un nouveau processus de réfrigération peut être initié.
Ce principe connu a jusqu'à présent posé de graves problèmes de mise en oeuvre. Le réactif est soumis en service à des contraintes importantes, notamment de température et de pression, et il doit en outre être capable d'absorber chimiquement et de se séparer chimiquement du fluide frigorifique avec une vitesse correspondant aux débits de fluide frigorifique dans la machine.
On connaît d'après le US-A-2 649 700 un réacteur chimique pour machine frigorifique ou analogue comprenant plusieurs blocs de réactif élémentaires destinés à absorber par combinaison chimique un flux gazeux en provenance d'un évaporateur et désorber ce flux par réaction chimique inverse sous l'effet d'une élévation de température. Les blocs, de forme générale annulaire, sont confinés entre une paroi intérieure et une paroi périphérique. En outre, des écrans poreux séparent les blocs élémentaires l'un de l'autre. Ils distribuent le flux gazeux entre les surfaces supérieures et inférieures des blocs élémentaires et un conduit d'arrivée et de départ. Un canal parallèle à l'axe traverse les blocs élémentaires et les écrans et sert de collecteur pour les flux provenant des écrans ou allant vers ceux-ci. Selon ce document, les blocs élémentaires sont en métal fritte et sont donc dimensionnellement stables, notamment à l'égard des contraintes précitées de température et de pression. Les parois ont simplement pour but de positionner les blocs. Un tel matériau absorbant a de nombreux inconvénients : la quantité de gaz qu'il est capable d'absorber par unité de volume est relativement limitée, et il retient mal les particules absorbantes. C'est ce qui oblige à faire passer le flux gazeux à travers des écrans qui servent en quelque sorte de filtre mais qui ralentissent le flux et qui risquent' d'ailleurs, à la longue, de se charger de particules cherchant à fuir les blocs élémentaires. En outre, la nécessité de prévoir de tels écrans augmente encore le volume déjà important qui est nécessaire en raison de la relativement faible performance d'absorption des blocs eux-mêmes. Enfin, ces blocs étant métalliques, de préférence en inox, le poids de l'ensemble est important.
On connaît par ailleurs d'après le US-A-2384460 un réacteur dans lequel le réactif est une poudre susceptible de gonfler lorsqu'elle absorbe du gaz frigorifique. Cette poudre est logée dans un corps cylindrique en étant confinée dans un volume déterminé. Pour les transferts de masse entre le matériau absorbant et le conduit de gaz, l'espace réservé au matériau est traversé par des tubes perforés remplis de laine de verre pour empêcher les particules de fuir avec le flux gazeux. On retrouve donc d'une manière un peu différente la particularité consistant en un filtre censé retenir les particules et laisser passer le flux gazeux. On comprendra cependant que le concepteur de ce dispositif connu admet que les particules vont traverser les perforations du tube. Sinon, il n'aurait pas prévu de laine de verre dans les tubes. Par conséquent il y aura de plus en plus de particules dans la laine de verre, puis finalement, dans le flux gazeux lui-même, c'est-à-dire précisément ce que l'on avait voulu éviter.
Et on connaît par ailleurs d'après le EP-A-0206875 un réactif solide constitué d'un mélange de chlorure et d'un dérivé expansé du carbone à structures en lamelles. Ce réactif résout les problèmes de transfert de masse et de chaleur. Il est capable d'absorber de grandes quantités de gaz par unité de volume.
Par contre, sa tenue mécanique est réduite et il a tendance à se déformer rapidement sous l'action des gradients de pression et des variations de volume rencontrées pendant le fonctionnement de la machine. En particulier, lorsque le réactif absorbe du gaz par combinaison chimique, son volume tend à augmenter progressivement. A la suite de cela, la séparation chimique peut être incomplète et les surfaces du réactif prévues pour les échanges de masse peuvent être tellement déformées qu'elles deviennent inefficaces. Par exemple, si des cavités ont été prévues dans le bloc de réactif pour augmenter la surface d'échange, ces cavités ont tendance à se refermer sur elles-mêmes après quelques cycles de réfrigération-régénération.
Le but de l'invention est ainsi de proposer un réacteur chimique pour machine frigorifique ou analogue qui soit capable d'assurer de bonnes performances frigorifiques qui se conservent pendant de nombreux cycles successifs, sans altération prohibitive de ses caractéristiques initiales.
Suivant l'invention, le réacteur chimique pour machine frigorifique ou analogue, comprenant un bloc de réactif destiné à absorber par combinaison chimique un flux gazeux en provenance d'un évaporateur et désorber ce flux par réaction chimique inverse sous l'effet d'une élévation de température, le bloc de réactif étant confiné entre des faces de confinement dont certaines au moins sont perméables aux échanges de masse, est caractérisé en ce que le bloc est susceptible de variation de volume en fonction de la quantité de gaz absorbée, et en ce que les faces de confinement appartiennent à des parois de confinement capables d'assurer la stabilité de forme du bloc à 1'encontre de la tendance auxdites variations de volume.
On s'est en effet aperçu que le réactif, malgré sa tendance à augmenter de volume pendant la réaction chimique de combinaison avec le fluide frigorifique, supportait sans inconvénient d'être confiné dans un volume sensiblement fixe. En particulier il s'est avéré que "cela influait de manière négligeable sur sa capacité à absorber chimiquement une quantité importante de gaz frigorifique. Au contraire, le confinement stabilise la structure physique du bloc, ce qui est favorable pour l'obtention de bonnes performances d'absorption et de désorption. Ainsi, selon l'invention, on confine le bloc de réactif dans un volume sensiblement fixe et comme ce bloc est solide, il a en service une bonne cohésion intrinsèque grâce à laquelle la substance active est bien retenue à son intérieur. On maîtrise ainsi les problèmes de fuite de réactif avec de simples parois perméables, pouvant par exemple être des parois ajourées.
Il n'est plus nécessaire de faire passer le flux gazeux à travers des filtres plus ou moins efficaces pour retenir les particules.
Grâce à l'invention, on réalise pour la première fois un réacteur fiable capable d'emmagasiner dans un volume restreint des quantités de gaz permettant d'envisager la production efficace de froid à l'aide d'un appareil à absorption. Par exemple, contrairement aux réfrigérateurs à absorption que l'on connaît actuellement et qui en fait ne sont que des rafraîchisseurs, un appareil selon l'invention est capable de produire de la galce en étant placé sous une forte température extérieure (de type tropical) sans que son encombrement ni son poids ne dépassent les normes usuelles.
Le réacteur selon l'invention peut recevoir la plupart sinon la totalité des réactifs contenant des chlorures.
Les parois perméables peuvent par exemple être constituées par des tubes ajourés chemisant des canaux parallèles ménagés dans le bloc. Pendant la réaction de combinaison, il importe d'évacuer la chaleur produite pour éviter que le réactif s'échauffe et devienne par conséquent moins avide du gaz.
Pour cela, on peut fixer sur une paroi périphérique, appartenant aux parois de confinement, des ailettes de refroidissement exposées à un flux d'air de refroidissement, naturel ou forcé. Au contraire, pendant la régénération, il est avantageux que la dissipation de chaleur soit aussi faible que possible. C'est pourquoi les ailettes sont placées dans une chambre annulaire définie extérieurement par une gaine calorifugée. Pendant la réfrigération, cette gaine canalise l'air de refroidissement le long des ailettes. Pendant la régénération, on isole au moins , partiellement l'espace entouré par la gaine relativement à l'extérieur pour empêcher le flux de convection le long des ailettes.
Pour chauffer le réactif pendant la régénération, on utilise de préférence un élément chauffant à résistance électrique, monté dans un logement situé au coeur du bloc de façon que la chaleur produite par cet élément diffuse à travers le bloc pratiquement sans pertes.
On peut si on le désire chemiser ce logement avec une paroi de confinement, mais il est également acceptable de ne pas chemiser le logement, en acceptant que la substance du bloc, en raison de sa tendance à gonfler, vienne enserrer l'élément chauffant. La conduction entre l'élément chauffant et le bloc n'en sera que meilleure. Il faudra bien entendu veiller à utiliser un élément chauffant dont la température en surface n'excède pas la température limite acceptable pour la substance du bloc.
Avec l'élément chauffant au coeur du bloc et les ailettes à sa périphérie, la tendance néfaste des ailettes à jouer le rôle de diffuseur thermique pendant la régénération est efficacement combattue.
Selon son deuxième aspect, l'invention concerne également une machine frigorifique comprenant, en circuit fermé, un réservoir haute pression, un détendeur, un évaporateur et un réacteur selon le premier aspect.
Selon son troisième aspect, l'invention concerne en outre un conteneur équipé d'une machine frigorifique selon le deuxième aspect.
Suivant un quatrième aspect, la cartouche de réactif, notamment pour faire partie d'un réacteur selon le premier aspect, d'une machine frigorifique selon le deuxième aspect ou d'un conteneur selon le troisième aspect, comprend un bloc de réactif entouré par une enveloppe étanche, ce bloc comportant des cavités débouchant à travers l'enveloppe étanche et fermées de manière étanche par des obturations provisoires.
Une telle cartouche permet la manutention et le stockage du réactif sans altération de ses propriétés notamment sans absorption d'humidité, depuis sa fabrication jusqu'à son installation dans le réacteur. D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs. Aux dessins annexés :
- la figure 1 est un schéma de principe d'un conteneur frigorifique selon l'invention, pendant la réfrigération ;
- la figure 2 est une vue analogue à la figure 1 mais pendant la régénération ;
- la figure 3 est une vue en coupe axiale du réacteur des figures 1 et 2 ;
- la figure 4 est une vue en coupe transversale du réacteur des figures 1 et 2 ; et
- la figure 5 est une vue partielle d'une variante de réalisation. Dans l'exemple représenté à la figure 1, la machine frigorifique 1 équipant le conteneur frigorifique 2 comprend une réserve ou ballon de fluide frigorifique liquide 3 soumis à sa propre pression de vapeur saturante. Le fluide est notamment choisi pour que cette pression soit relativement élevée. Dans l'exemple, ce fluide est de l'ammoniac dont la pression de vapeur saturante est de l'ordre de 1,5 MPa à 20°C. Un orifice de sortie 4, prévu au fond du ballon 3 de manière à ne laisser sortir que du liquide, est raccordé à un détendeur 6 par l'intermédiaire d'une vanne d'arrêt 7 qui peut être une électrovanne alimentée par une batterie rechargeable associée au conteneur. Le détendeur 6 est situé à l'entrée d'un évaporateur 8 dont la sortie est reliée par un raccord en T 10 d'une part à un réacteur, 9 et d'autre part à un condenseur 11. Le condenseur 11 est lui-même relié à une entrée 12 située au sommet du ballon 3.
Le détendeur 6 et 1'évaporateur 8 sont situés à l'intérieur de l'enceinte calorifugée 5 du conteneur frigorifique 2 tandis que les autres éléments décrits jusqu'à présent sont situés à l'extérieur de l'enceinte 5. Un clapet anti-retour 13 empêche le fluide provenant du réacteur 9 de circuler en direction de 1'évaporateur 8, tandis qu'un autre clapet anti-retour 14 empêche le fluide contenu dans le ballon 3 de s'écouler vers le condenseur 11. Un dispositif de mesure de surchauffe 16, de type connu, commande le degré d'ouverture du détendeur 6 de manière que le fluide sortant de 1'évaporateur 8 soit complètement évaporé sans être excessivement surchauffé. D'une manière qui sera décrite plus en détail plus loin, le réacteur 9 contient un réactif, de préférence celui connu d'après le EP-A-0477343/ O-A-9115292 constitué d'un mélange de chlorure et d'un dérivé expansé de carbone à structures en lamelles, ayant la propriété de se combiner chimiquement avec le fluide frigorifique utilisé, en l'occurence l'ammoniac, lorsque sa température est basse, et de se séparer chimiquement de 1'ammoniac lorsque sa température prend une valeur élevée prédéterminée. C'est pourquoi le réacteur 9 comporte des moyens permettant sélectivement de le réchauffer ou de le refroidir. Les moyens pour le réchauffer comprennent essentiellement un élément chauffant 17 qui est sélectivement activé par un interrupteur 18. De manière non représentée, l'élément chauffant peut être thermostaté. Les moyens pour refroidir le réacteur 9 comprennent un ventilateur 19 alimenté par la batterie rechargeable associée au conteneur. Le ventilateur 19 fait circuler un flux d'air de convection à l'intérieur d'une gaine extérieure 21 du réacteur. La gaine 21 est calorifugée pour limiter les fuites thermiques pendant le chauffage, et comporte à sa base un volet 22 que l'on ferme pendant le chauffage pour éviter l'effet de cheminée. Au contraire, pendant le fonctionnement du ventilateur 19, le volet 22 est ouvert.
On va maintenant décrire le fonctionnement général de la machine frigorifique représentée aux figures 1 et 2.
Lorsque la machine est en attente de fonctionner en réfrigération, la vanne d'arrêt 7 est fermée, de sorte que la réserve de fluide frigorifique est emprisonnée entre le clapet anti-retour 14 et la vanne 7. Sa pression est importante puisqu'elle correspond à la pression de vapeur saturante de 1'ammoniac à la température extérieure, par exemple 20°C.
Pour lancer un cycle de réfrigération, il suffit d'ouvrir la vanne d'arrêt 7 et le volet 22, et de mettre en fonctionnement le ventilateur 19. Le liquide quitte le ballon 3 par la sortie 4 et la vanne 7, puis traverse le détendeur 6 en perdant de la pression ce qui lui permet de se vaporiser dans 1'évaporateur 8 en extrayant à la chambre froide du conteneur la chaleur latente de vaporisation nécessaire. Le gaz ainsi formé traverse dans le sens passant le clapet anti-retour 13 puis atteint le réacteur 9 où compte-tenu de la basse température entretenue par le ventilateur 19, le gaz se combine chimiquement avec le réactif. L'effet frigorifique disparaît quand le réactif est sensiblement saturé par l'ammoniac, le ballon 3 est alors à son niveau bas.
Il faut alors procéder à un cycle de régénération, représenté à la figure 2. Pour cela, on ferme la vanne 7 et le volet 22, on interrompt le fonctionnement du ventilateur 19 et on met en fonctionnement l'élément chauffant 17 à l'aide de l'interrupteur 18. Il peut également être prévu de fermer l'extrémité supérieure de la gaine 21 au moyen par exemple d'un obturateur 23. Le chauffage du réactif par l'élément 17 provoque la séparation de l'ammoniac qui sort à l'état gazeux par le même conduit 24 que celui par lequel il était entré dans le réacteur. Compte-tenu de la température relativement élevée dans le réacteur, la pression du gaz qui en sort tend à être supérieure à la température d'équilibre dans le ballon 3 de sorte que le gaz traverse le clapet anti-retour 14. Il est ensuite ramené à la température ambiante telle que 20°C dans le condenseur 11 pour parvenir à l'état liquide dans le ballon 3. Quand le réactif est débarrassé de la quasi- totalité de l'ammoniac mobile (après mise en service, une certaine quantité d'ammoniac reste définitivement prisonnière du bloc) , le cycle de régénération s'arrête. Un nouveau cycle de réfrigération peut commencer. Le ballon 3 est alors à son niveau haut. Un tel conteneur a l'avantage de pouvoir subir le processus de régénération lorsqu'il est en entrepôt, puis d'être ensuite autonome en énergie pour assurer la réfrigération des denrées que renferme le conteneur pendant le transport du conteneur. On va maintenant décrire plus en détail le réacteur 9 en référence aux figures 3 et 4.
Le bloc de réactif 26 a une forme générale cylindrique ayant même axe 27 que la gaine 21 et un diamètre inférieur au diamètre intérieur de la gaine 21.
Dans l'exemple représenté, le bloc 26 est constitué d'un empilage de blocs élémentaires 28 ayant la forme de galettes.
Conformément à l'invention, le bloc 26 est enfermé dans des parois de confinement qui sont de préférence réalisées en acier inoxydable pour être mécaniquement robustes et résister à la corrosion.
Les parois de confinement comprennent en particulier une enveloppe cylindrique 29 dans laquelle les blocs élémentaires 28 sont emmanchés avec un léger serrage initial. Ce serrage est destiné à augmenter après utilisation du réacteur en raison de la tendance du réactif à gonfler comme il a été exposé plus haut. L'enveloppe 29 a donc un rôle de frettage du bloc 26.
L'enveloppe périphérique 29 est fermée à chaque extrémité axiale du bloc 26 par une plaque de fermeture 31 de forme circulaire. Le bloc 26 est traversé par un certain nombre (quatre dans l'exemple) de canaux 32 de forme cylindrique, qui sont parallèles à l'axe 27 et répartis angulairement autour de celui-ci. Les canaux 32 coïncident avec des lumières 33 pratiquées à travers les plaques 31 et débouchent ainsi à l'extérieur de l'enveloppe de confinement du bloc 26. Les canaux 32 sont chemisés par des parois de confinement perméables constituées par des tubes perforés en acier inoxydable 34. Les perforations des tubes 34 permettent les échanges de masse entre le milieu gazeux des canaux 32 et le bloc 26 se trouvant exposé à ce milieu à travers les perforations. Les extrémités annulaires des tubes perforés 34 sont jointives avec le pourtour des lumières 33 correspondantes. Dans chacune des deux régions annulaires où l'enveloppe extérieure 29 est reliée à l'une des plaques de confinement 31, l'enveloppe extérieure 29 est également reliée de manière étanche à une calotte de fermeture supérieure 36 et respectivement inférieure 37. Une entretoise supérieure 38 et respectivement inférieure 39 est montée en position sensiblement centrale entre chaque calotte 36 ou respectivement 37 et la plaque de confinement 31 voisine.
Une chambre de répartition et de collecte 41 est définie entre la calotte supérieure 36 et la plaque de confinement 31 voisine, et communique par conséquent avec les canaux 32 à travers les lumières 33. L'entretoise supérieure 38 comporte des conduits 42 qui font communiquer la chambre de collecte et répartition 41 avec le conduit 24 d'entrée et sortie dans le réacteur 9, à travers un perçage 43 de la calotte supérieure 36 et un orifice 44 d'entrée et sortie dans le réacteur. La calotte inférieure 37 et la plaque de confinement 31 correspondante définissent entre elles une chambre de circulation 50.
L'élément chauffant 17 est un élément électrique en forme de tige dont la longueur utile correspond à la longueur axiale du bloc 26, et qui est monté sensiblement sans jeu dans un logement axial 46 prévu à travers toute la longueur axiale du bloc 26. L'extrémité supérieure du logement 46 est fermée par la plaque 31 adjacente à la chambre 41. Selon un premier mode de réalisation représenté à la partie gauche de la figure 3, le logement 46 n'est pas chemisé de sorte qu'en fonctionnement le réactif, compte-tenu de sa tendance à gonfler, vient enserrer l'élément chauffant 17 avec l'avantage d'améliorer le contact thermique entre eux.
Au contraire, comme représenté à la partie droite de la figure 3, si l'on craint que la température de l'élément chauffant 17 dégrade le réactif environnant, il est également possible de chemiser le logement 46 avec un tube 47. Si celui-ci est imperméable, en particulier non perforé, il protège l'élément chauffant 17 de la corrosion.
L'élément chauffant est monté à travers un perçage 48 de la calotte inférieure 37 et un alésage central 49 de l'entretoise inférieure 39. Celle-ci sert donc de monture pour l'élément chauffant 17. Elle peut par exemple être filetée intérieurement pour recevoir un filtage correspondant de l'élément 17 en vue de sa fixation. La plaque de confinement 31 inférieure présente une lumière centrale 51 pour le passage de l'élément 17.
Pour éviter les fuites d'ammoniac vers l'extérieur, l'enveloppe périphérique 29 est étanche, et elle est reliée de manière étanche aux calottes supérieure 36 et inférieure 37. Celles-ci sont également étanches à l'exception de leurs perçages respectifs 43 et 48, qui communiquent de manière étanche avec les passages intérieurs 42 et 49 de leur entretoise respective 38 et 39, ainsi que, dans le cas de la calotte supérieure 36, avec l'orifice 44 de raccordement au reste du circuit frigorifique. L'élément chauffant 17 est monté de manière étanche dans l'alésage 49.
La paroi périphérique 29 et la gaine 21 définissent entre elles une chambre annulaire 52 destinée à la circulation ascendante du flux d'air de refroidissement produit par le ventilateur 19 (non représenté à la figure 3) se trouvant en-dessous de la calotte inférieure 37. L'ensemble constitué par le bloc de réactif 26, les parois de confinement 29, 31, 32 et les calottes 36 et 37 ainsi que l'élément chauffant 17 est supporté à l'intérieur de la gaine 21 par tous moyens appropriés tels que des consoles 53 permettant le passage du flux d'air 54.
La paroi périphérique 29 porte des ailettes 56 faisant saillie dans la chambre annulaire 52 en direction de la gaine 21. Les ailettes 56 sont disposées dans des plans axiaux de manière à définir entre elles des couloirs de circulation d'air1 57
(figure 4) parallèles à l'axe 27. Les ailettes 56 sont par exemple réalisées à l'aide de tronçons de profilé en aluminium en forme de T soudés sur la surface extérieure de l'enveloppe périphérique 29.
A son extrémité supérieure, la gaine 21 est fermée par une paroi ajourée 58 dont les ouvertures 59 peuvent être sélectivement fermées par un disque obturateur matérialisant l'obturateur 23 représenté schématiquement à la figure 2. Le fonctionnement du réacteur 9 est le suivant : pendant le fonctionnement en réfrigération, l'ammoniac gazeux, froid et détendu, arrive par l'orifice 24 dans la chambre de répartition et collecte 41 puis dans les canaux 32 avant d'être absorbé par combinaison chimique avec le réactif 26 à travers les perforations des tubes de confinement 34. Le volet 22 est ouvert, comme représenté à la figure 1, et l'obturateur 23 est également dans la position d'ouverture, représentée à la figure 3. Le ventilateur 19 fonctionne et génère le flux d'air de refroidissement 54 lequel évacue la chaleur de la réaction de combinaison exothermique. Le flux 54 est accéléré par l'effet de cheminée à l'intérieur de la gaine 21, en raison de la température des ailettes 56, réchauffées par la chaleur de réaction.
Pendant la régénération, on interrompt le fonctionnement du ventilateur 19, on ferme le volet 22 et l'obturateur 23 et on met en fonctionnement l'élément chauffant 17 pour porter le réactif à une température qui peut être de l'ordre de 200°C. Il en résulte une réaction chimique endothermique de séparation entre le réactif et l'ammoniac, lequel se dégage à l'état gazeux à travers les perforations des tubes 34 puis à travers l'orifice d'entrée et sortie 44, via la chambre de répartition et collecte 41 et les conduits 42 de l'entretoise 38.
Comme à ce stade la chambre annulaire 52 est isolée de l'extérieur, les ailettes 56 ne jouent plus aucun rôle d'évacuation de chaleur, de sorte que la réaction endothermique se produit avec un bon rendement.
Les plaques de confinement 31, bien que planes, résistent efficacement à la tendance du bloc à gonfler car elles sont adjacentes aux chambres 41 et 50 dans lesquelles règne la pression de l'ammoniac gazeux.
La résistance des plaques 31 est augmentée par la liaison assurée entre elles par les tubes perforés 34 et le cas échéant le tube non perforé 47, et aussi par les entretoises 38 et 39 qui reportent la poussée de gonflement sur les calottes 36 et 37 qui sont résistantes grâce à leur forme bombée. Ce renfort assuré aux plaques 31 est utile quand la pression dans les chambres 41 et 50 est basse alors que la tendance au gonflement du bloc est maximal, par exemple en fin de cycle de réfrigération.
Dans l'exemple de la figure 5, les blocs élémentaires 28 sont des cartouches préfabriquées ayant leur propre enveloppe extérieure 60 qui est étanche à part les ouvertures 61 de passage des tubes ajourés 34 et de l'élément chauffant 17.
L'enveloppe 60 a un simple rôle d'étanchéité et de cohésion mécanique, mais n'est pas conçue pour résister à la pression de service.
A la fabrication des cartouches, on obture les ouvertures 61 avec des obturateurs frangibles 62, étanches, réalisés par exemple en papier étanche. Lors du montage, on assemble d'abord la paroi périphérique 29, la calotte inférieure, la plaque de confinement 31 inférieure, l'entretoise inférieure 39, les tubes perforés 34 et l'élément chauffant 17, puis on empile les blocs élémentaires 28 dans la paroi périphérique 29 tandis que l'élément chauffant 17 et les tubes 34 perforent chacun deux obturateurs 62 de chaque bloc lorsqu'il rentre et respectivement ressort de l'alésage 63 ou 64 qui lui correspond dans le bloc. Les alésages 63 et 64 sont non chemisés. Les obturateurs 62 ont pour fonction de protéger le bloc d'une indésirable absorption d'humidité avant le montage.
Le montage du coeur du réacteur se termine par la mise en place de la plaque 31 et de la calotte 36 supérieure.
La réalisation selon la figure 5 simplifie le montage du réacteur en reportant un certain nombre de précautions, notamment hygrométriques, sur la seule fabrication des blocs.
Bien entendu, l'invention n'est pas limitée aux exemples décrits et représentés.
On pourrait perforer aussi, les plaques 31 pour augmenter les surfaces d'échange de masse. Pour interrompre le flux d'air de refroidissement pendant la régénération, on pourrait ne fermer que le haut ou le bas de la gaine.
Il pourrait y avoir plusieurs entretoises dans chaque chambre, et plusieurs éléments chauffants dans le bloc.
Le réacteur pourrait avoir deux accès différents, l'un pour l'entrée de l'ammoniac pendant la réfrigération, l'autre pour la sortie de l'ammoniac pendant la régénération.

Claims

REVENDICATIONS
1. Réacteur chimique pour machine frigorifique (1) ou analogue, comprenant un bloc de réactif (26) destiné à absorber par combinaison chimique un flux gazeux en provenance d'un évaporateur (8) et désorber ce flux par réaction chimique inverse sous l'effet d'une élévation de température, le bloc de réactif (26) étant confiné entre des faces de confinement (29, 31, 34, 47) dont certaines (34) au moins sont perméables aux échanges de masse, caractérisé en ce que le bloc (26) est susceptible de variations de volume en fonction de la quantité de gaz qu'il a absorbée, et en ce que les faces de confinement appartiennent à des parois de confinement capables d'assurer la stabilité de forme du bloc à l'encontre de la tendance aux dites variations de volume.
2. Réacteur selon la revendication 1, caractérisé en ce que les parois de confinement perméables sont des parois ajourées (34) interposées entre la matière du bloc et un espace (32) de circulation du flux gazeux.
3. Réacteur selon la revendication 1 ou 2, caractérisé en ce que les parois perméables sont des tubes chemisant des évidements (32) ménagés dans le bloc (26) .
4. Réacteur selon la revendication 3, caractérisé en ce que les évidements sont des canaux (32) parallèles les uns aux autres.
5. Réacteur selon la revendication 3 ou 4, caractérisé en ce que les évidements débouchent à une au moins de leurs extrémités dans une chambre (41) adjacente à l'une de deux faces opposées du bloc (26) de réactif.
6. Réacteur selon la revendication 5, caractérisé en ce que la chambre (41) est séparée du bloc par une plaque de confinement (31), appartenant aux parois de confinement du bloc et à travers laquelle débouchent les évidements (32) .
7. Réacteur selon la revendication 6, caractérisé en ce que la chambre (41) adjacente à l'une des extrémités du bloc communique avec un orifice (44) de raccordement à un circuit frigorifique.
8. Réacteur selon la revendication 6, caractérisé en ce qu'au moins une entretoise (38, 39) s'étend entre la plaque de confinement (31) et une paroi opposée (36, 37) délimitant également la chambre (41, 50) .
9. Réacteur selon la revendication 8, caractérisé en ce que dans l'entretoise (38) est pratiqué un passage (42) faisant communiquer la chambre (41) avec un circuit frigorifique (24) .
10. Réacteur selon la revendication 8, caractérisé en ce que l'entretoise (39) est creuse et permet le passage et la fixation d'un élément chauffant (17) engagé dans un logement (46) ménagé dans le bloc de réactif (26) et débouchant à travers la plaque de confinement (31) en regard de l'entretoise (39) .
11. Réacteur selon la revendication 4, caractérisé en ce que les canaux (32) sont répartis autour d'un logement (46) ménagé en position sensiblement centrale dans le bloc (26) et occupé par un élément chauffant (17).
12. Réacteur selon l'une des revendications 1 à 9, caractérisé en ce que le bloc (26) comporte un logement
(46) dans lequel est monté un élément chauffant (17) .
13. Réacteur selon l'une des revendications 10 à 12, caractérisé en ce que l'élément chauffant (17) est monté sensiblement sans jeu dans le logement (46) , lequel est délimité par des surfaces appartenant au bloc de réactif.
14. Réacteur selon l'une des revendications 10 à 12, caractérisé en ce que le logement (46) est délimité par l'une des parois de confinement (47).
15. Réacteur selon la revendication 6, caractérisé en ce que la plaque de confinement (31) est reliée par sa périphérie à une enveloppe périphérique (29) de frettage du bloc, appartenant auxdites parois de confinement.
16. Réacteur selon la revendication 15, caractérisé en ce que dans la région où la plaque de confinement (31) est reliée à l'enveloppe périphérique (29), les parois de confinement sont reliées au bord périphérique d'une calotte d'extrémité (36, 37) .
17. Réacteur selon l'une des, revendications 1 à 14, caractérisé en ce que le bloc (26) est de forme cylindrique et les parois de confinement comprennent une enveloppe de frettage périphérique (29) .
18. Réacteur selon l'une des revendications 1 à 14, caractérisé en ce que les parois de confinement comprennent une enveloppe périphérique (29) portant des ailettes de refroidissement (56) faisant saillie dans une chambre annulaire (52) comprise entre l'enveloppe périphérique (29) et une gaine (21) .
19. Réacteur selon la revendication 18, caractérisé en ce que les ailettes (56) sont orientées de manière à définir entre elle des couloirs de circulation d'air (57) parallèles, de préférence verticaux.
20. Réacteur selon la revendication 18 ou 19, caractérisé par des moyens (19, 22, 23) pour sélectivement assurer et empêcher la circulation d'air dans la chambre annulaire (52) .
21. Réacteur selon l'une des revendications 18 à 20', caractérisé en ce que la gaine (21) est calorifugée.
22. Réacteur selon l'une des revendications 18 à 21, caractérisé en ce que les parois de confinement
(29, 31, 34, 47) sont en inox et les ailettes (56) en aluminium.
23. Réacteur selon l'une des revendications 18 à 22, caractérisé en ce que les ailettes (56) appartiennent à des tronçons de profilé fixés sur l'enveloppe périphérique (29).
24. Réacteur selon l'une des revendications 15 à 23, caractérisé en ce que le bloc (26) est monté en léger serrage dans l'enveloppe périphérique (29).
25. Réacteur selon l'une des revendications 15 à
24, caractérisé en ce que le bloc (26) comprend des blocs élémentaires (28) enfilés les uns derrière les autres dans la paroi périphérique (29) .
26. Machine frigorifique ' comprenant en circuit fermé un réservoir haute pression (3) , un détendeur (6), un évaporateur (8) et un réacteur (9) selon l'une des revendications 1 à 25.
27. Conteneur équipé d'une machine frigorifique (1) selon la revendication 26.
28. Cartouche de réactif, notamment pour faire partie d'un réacteur selon l'une des revendications 1 à 25, d'une machine frigorifique selon la revendication 26 ou d'un conteneur selon la revendication 27, et comprenant un bloc de réactif entouré par une enveloppe étanche (60), ce bloc comportant des cavités (63, 64) débouchant à travers l'enveloppe étanche (60) et fermées de manière étanche par des obturations provisoires (62) .
PCT/FR1994/000377 1993-04-07 1994-04-05 Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant WO1994023253A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU65069/94A AU6506994A (en) 1993-04-07 1994-04-05 Chemical reactor, refrigerating machine and container provided therewith, and reagent cartridge therefor
CA002159901A CA2159901C (fr) 1993-04-07 1994-04-05 Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant
EP94912588A EP0692086B1 (fr) 1993-04-07 1994-04-05 Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant
JP6521765A JPH08508335A (ja) 1993-04-07 1994-04-05 化学的リアクタ、該リアクタを備えた冷凍機械およびコンテナー、並びにその反応剤カートリッジ
US08/535,268 US5661986A (en) 1993-04-07 1994-04-05 Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
DE69411377T DE69411377T2 (de) 1993-04-07 1994-04-05 Chemischer reaktor, kältemaschine und behälter ausgestattet mit diesem reaktor und reagenzpatrone dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/04141 1993-04-07
FR9304141A FR2703763B1 (fr) 1993-04-07 1993-04-07 Réacteur chimique, machine frigorifique et conteneur ainsi équipés, et cartouche de réactif s'y rapportant.

Publications (1)

Publication Number Publication Date
WO1994023253A1 true WO1994023253A1 (fr) 1994-10-13

Family

ID=9445857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000377 WO1994023253A1 (fr) 1993-04-07 1994-04-05 Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant

Country Status (11)

Country Link
US (1) US5661986A (fr)
EP (1) EP0692086B1 (fr)
JP (1) JPH08508335A (fr)
AT (1) ATE167930T1 (fr)
AU (1) AU6506994A (fr)
CA (1) CA2159901C (fr)
DE (1) DE69411377T2 (fr)
ES (1) ES2120033T3 (fr)
FR (1) FR2703763B1 (fr)
SG (1) SG52474A1 (fr)
WO (1) WO1994023253A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736421A1 (fr) * 1995-07-07 1997-01-10 Manufactures De Vetements Paul Procede de fabrication d'une unite contenant une matiere active solide utile pour la production de froid, unite obtenue et dispositif frigorigene comportant cette unite

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014898A1 (fr) * 1993-11-29 1995-06-01 Mayekawa Mfg. Co., Ltd. Appareil de refroidissement a adsorption, procede de commande de sa production de froid et echangeur thermique du type a aileron qui y est incorpore
US5816069A (en) * 1994-09-12 1998-10-06 Electrolux Leisure Appliances Ag Sorption cooling unit
US5842356A (en) * 1995-09-20 1998-12-01 Sun Microsystems, Inc. Electromagnetic wave-activated sorption refrigeration system
US5873258A (en) * 1995-09-20 1999-02-23 Sun Microsystems, Inc Sorption refrigeration appliance
IL123603A (en) * 1995-09-20 2000-07-16 Sun Microsystems Inc Absorbent pair refrigeration system
US5916259A (en) * 1995-09-20 1999-06-29 Sun Microsystems, Inc. Coaxial waveguide applicator for an electromagnetic wave-activated sorption system
US6244056B1 (en) 1995-09-20 2001-06-12 Sun Microsystems, Inc. Controlled production of ammonia and other gases
US5855119A (en) * 1995-09-20 1999-01-05 Sun Microsystems, Inc. Method and apparatus for cooling electrical components
FR2748093B1 (fr) * 1996-04-25 1998-06-12 Elf Aquitaine Dispositif thermochimique pour produire du froid et/ou de la chaleur
US7065981B2 (en) * 1997-07-14 2006-06-27 Dometic Ag Sorption unit for an air conditioning apparatus
FR2774460B1 (fr) * 1998-02-03 2000-03-24 Elf Aquitaine Procede de gestion d'une reaction thermochimique ou d'une adsorption solide-gaz
US6224842B1 (en) 1999-05-04 2001-05-01 Rocky Research Heat and mass transfer apparatus and method for solid-vapor sorption systems
US6823931B1 (en) * 1999-12-17 2004-11-30 Energy Conversion Devices, Inc. Hydrogen cooled hydride storage unit incorporating porous encapsulant material to prevent alloy entrainment
US7003979B1 (en) 2000-03-13 2006-02-28 Sun Microsystems, Inc. Method and apparatus for making a sorber
ES2190839B1 (es) * 2000-04-07 2004-09-16 Universidad De Vigo Dispositivo antirretorno para absorbedores de burbuja tubulares verticales.
ATE352758T1 (de) * 2000-07-06 2007-02-15 Thermagen Sa Adsorptionskältevorrichtung
FR2816698B1 (fr) * 2000-11-13 2004-05-28 Pierre Jeuch Dispositif de refrigeration par adsorption
FR2811412B1 (fr) * 2000-07-06 2002-08-23 Thermagen Dispositif de refrigeration par adsorption
SE527721C2 (sv) * 2003-12-08 2006-05-23 Climatewell Ab Kemisk värmepump arbetande enligt hybridpincipen
FR2873793B1 (fr) * 2004-07-30 2006-12-29 Alcali Ind Sa Reacteur thermochimique pour appareil de refrigeration et/ou de chauffage
JP2009505828A (ja) 2005-08-31 2009-02-12 コールドウェイ 冷却および/または加熱機器用の熱化学反応装置
WO2011146572A1 (fr) * 2010-05-19 2011-11-24 Joseph Company International, Inc. Appareil de type tonnelet pour l'auto-refroidissement et l'auto-distribution de liquides
FR3131614A1 (fr) * 2022-01-06 2023-07-07 Sofrigam Éléments de sécurité pour une machine thermique

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854589A (en) * 1921-06-08 1932-04-19 Frigidaire Corp Gas or liquid storing material
US1881568A (en) * 1930-01-31 1932-10-11 Frigidaire Corp Refrigerating apparatus
US2338712A (en) * 1942-01-19 1944-01-11 Kleen Nils Erland Af Boiler-absorber assembly
US2384460A (en) * 1941-10-21 1945-09-11 Kleen Refrigerator Inc Boiler-absorber
FR1029877A (fr) * 1950-12-19 1953-06-08 S E R A M Réfrigérateur à absorption
US2649700A (en) * 1949-05-21 1953-08-25 Hoover Co Absorption-refrigerating apparatus
FR2455713A1 (fr) * 1979-04-30 1980-11-28 Wallsten Hans Dispositif contenant un corps sorbeur et procede de fabrication correspondant
FR2508596A1 (fr) * 1981-06-25 1982-12-31 Mannesmann Ag Recipient pour gaz sous pression, notamment pour le stockage d'hydrogene
EP0151786A2 (fr) * 1983-12-31 1985-08-21 ZEO-TECH Zeolith Technologie GmbH Pièces façonnées de zéolites à haute conductibilité thermique et procédé de fabrication
GB2159133A (en) * 1984-05-24 1985-11-27 Central Electr Generat Board Hydrogen absorber body
US4609038A (en) * 1984-11-30 1986-09-02 Agency Of Industrial Science & Technology Heat exchanger using a hydrogen occlusion alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB417044A (en) * 1932-12-23 1934-09-24 Wulff Berzelius Normelli Periodical absorption refrigerating apparatus
DE3610332A1 (de) * 1985-03-30 1986-10-09 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa Regenerativheizgeraet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1854589A (en) * 1921-06-08 1932-04-19 Frigidaire Corp Gas or liquid storing material
US1881568A (en) * 1930-01-31 1932-10-11 Frigidaire Corp Refrigerating apparatus
US2384460A (en) * 1941-10-21 1945-09-11 Kleen Refrigerator Inc Boiler-absorber
US2338712A (en) * 1942-01-19 1944-01-11 Kleen Nils Erland Af Boiler-absorber assembly
US2649700A (en) * 1949-05-21 1953-08-25 Hoover Co Absorption-refrigerating apparatus
FR1029877A (fr) * 1950-12-19 1953-06-08 S E R A M Réfrigérateur à absorption
FR2455713A1 (fr) * 1979-04-30 1980-11-28 Wallsten Hans Dispositif contenant un corps sorbeur et procede de fabrication correspondant
FR2508596A1 (fr) * 1981-06-25 1982-12-31 Mannesmann Ag Recipient pour gaz sous pression, notamment pour le stockage d'hydrogene
EP0151786A2 (fr) * 1983-12-31 1985-08-21 ZEO-TECH Zeolith Technologie GmbH Pièces façonnées de zéolites à haute conductibilité thermique et procédé de fabrication
GB2159133A (en) * 1984-05-24 1985-11-27 Central Electr Generat Board Hydrogen absorber body
US4609038A (en) * 1984-11-30 1986-09-02 Agency Of Industrial Science & Technology Heat exchanger using a hydrogen occlusion alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736421A1 (fr) * 1995-07-07 1997-01-10 Manufactures De Vetements Paul Procede de fabrication d'une unite contenant une matiere active solide utile pour la production de froid, unite obtenue et dispositif frigorigene comportant cette unite
WO1997003328A1 (fr) * 1995-07-07 1997-01-30 Manufactures De Vetements Paul Boye S.A Bouilleur-absorbeur a sorbant solide, procede pour sa fabrication et dispositif frigorifique l'utilisant
US5875648A (en) * 1995-07-07 1999-03-02 Manufactures De Vetements Paul Boye S.A. Process for the manufacture of a unit containing a solid active material which can be used for producing cold, unit obtained and refrigerating device comprising this unit
KR100432296B1 (ko) * 1995-07-07 2004-07-16 마뉘파끄뛰르 드 베뜨망 뽈 브와 에스. 아. 고체-흡착제보일러-흡수장치와,상기장치및상기장치를활용하는냉동장치를제조하는방법

Also Published As

Publication number Publication date
ES2120033T3 (es) 1998-10-16
JPH08508335A (ja) 1996-09-03
SG52474A1 (en) 1998-09-28
DE69411377D1 (de) 1998-08-06
FR2703763A1 (fr) 1994-10-14
EP0692086B1 (fr) 1998-07-01
FR2703763B1 (fr) 1995-06-23
CA2159901A1 (fr) 1994-10-13
AU6506994A (en) 1994-10-24
CA2159901C (fr) 2002-10-01
EP0692086A1 (fr) 1996-01-17
US5661986A (en) 1997-09-02
ATE167930T1 (de) 1998-07-15
DE69411377T2 (de) 1999-01-28

Similar Documents

Publication Publication Date Title
EP0692086B1 (fr) Reacteur chimique, machine frigorifique et conteneur ainsi equipes, et cartouche de reactif s'y rapportant
EP1621828B1 (fr) Réacteur thermochimique pour appareil de réfrigération et/ou de chauffage
FR2727247A1 (fr) Dispositif de refroidissement pour une batterie constituee de plusieurs elements
FR2950045A1 (fr) Reservoir de stockage et de destockage d'hydrogene et/ou de chaleur
WO1997003328A1 (fr) Bouilleur-absorbeur a sorbant solide, procede pour sa fabrication et dispositif frigorifique l'utilisant
EP1448938B1 (fr) Echangeur thermique
CA2619680C (fr) Reacteur thermochimique pour appareil de refrigeration et/ou de chauffage
CH658122A5 (fr) Appareil de refrigeration et piege frigorifique comprenant un tel appareil.
CH635922A5 (fr) Echangeur de chaleur a enceinte en spirale et procedes pour sa fabrication.
EP0564342A1 (fr) Faisceaux tubulaires d'échange thermique et bac de production et de stockage de glace comportant au moins un tel faisceau
BE1023605B1 (fr) Procédé et appareil pour comprimer et sécher un gaz
FR2749377A1 (fr) Procede de gestion d'une reaction thermochimique ou d'une adsorption solide-gaz
FR2666875A1 (fr) Machine frigorifique a adsorption-desorption sur zeolithes utilisant des echangeurs en profile d'aluminium.
FR2748093A1 (fr) Dispositif thermochimique pour produire du froid et/ou de la chaleur
FR2667933A1 (fr) Procede de fabrication d'un accumulateur de chaleur et accumulateur pour la mise en óoeuvre de ce procede.
EP0229410A1 (fr) Machine frigorifique
EP0836059A1 (fr) Frigopompe
EP2981781B1 (fr) Caloduc comportant un bouchon gazeux de coupure
RU77093U1 (ru) Контейнер для водорода и его изотопов
FR2793167A1 (fr) Reacteur a adsorption reversible solide/gaz et resistance de regeneration de l'adsorbant d'un tel reacteur
WO2004011860A2 (fr) Procede pour la production de froid, et installation pour la mise en oeuvre du procede.
EP3867589A1 (fr) Réacteur thermochimique et procédé de production d'énergie thermique associé
FR2675247A1 (fr) Procede de deshumidification de l'air et dispositif pour la mise en óoeuvre du procede.
EP0726432A2 (fr) Echangeur de chaleur diphasique à température contrÔlée
FR2756621A1 (fr) Thermo-frigopompe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2159901

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08535268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994912588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994912588

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1994912588

Country of ref document: EP