EP0124758B1 - Antenne mit elektrisch verkürztem Linearstrahler - Google Patents
Antenne mit elektrisch verkürztem Linearstrahler Download PDFInfo
- Publication number
- EP0124758B1 EP0124758B1 EP19840103590 EP84103590A EP0124758B1 EP 0124758 B1 EP0124758 B1 EP 0124758B1 EP 19840103590 EP19840103590 EP 19840103590 EP 84103590 A EP84103590 A EP 84103590A EP 0124758 B1 EP0124758 B1 EP 0124758B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiator
- frequency
- antenna
- ferrite
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000859 α-Fe Inorganic materials 0.000 claims description 35
- 230000035699 permeability Effects 0.000 claims description 6
- 238000009826 distribution Methods 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005404 monopole Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
Definitions
- the invention relates to an antenna according to the preamble of the main claim.
- Such a slim linear emitter (dipole or monopole) has a relatively uniform radiation diagram at the lowest frequency of the operating frequency band, at which its electrical length is 2, / 4 or shorter, with increasing operating frequency there are more and more flaps of the diagram, so that increasing frequency, the current distribution on the linear radiator also changes and at twice the frequency of the linear radiators has an electrical length of ⁇ / 2, at four times the frequency even an electrical length of ⁇ and thus also has corresponding current distributions with one or more current maxima distributed along the linear radiator.
- the frequency-dependent current distribution on the linear radiator also means a corresponding frequency dependence of the radiation diagram and the input impedance.
- the slim linear radiator is electrically shortened for higher frequencies and thus a current distribution along the linear radiator is achieved for higher frequencies, which corresponds approximately to the current distribution at the lower frequency of the operating frequency band.
- the current distribution thus becomes essentially frequency-independent and thus also the radiation diagram and the input impedance.
- This known measure is mechanically relatively complex and expensive, especially if not only such an impedance element is installed in the radiator at a predetermined location but if such impedance elements are installed at several locations along the radiator, as is necessary for antennas that in a broad frequency band should have a frequency diagram that is as frequency-independent as possible.
- the known measure brings with it considerable mechanical problems, since the linear radiator, which is usually designed as a rod or tube, is mechanically separated at the desired location and the impedance element must be installed there electrically between the radiator halves.
- the known measure would also not be suitable for higher frequencies, since the coils of the impedance elements can no longer be realized as concentrated components for higher frequencies.
- the electrical effect of the known measure consists in the fact that at low frequencies the imaginary part of the impedance element predominates and the current occupancy at this radiator point is influenced only slightly. As the frequency increases, the real part of the impedance element, which acts in series with the coil and which results from the parallel resistor, becomes increasingly effective and thus also its influence on the current distribution along the radiator. However, this frequency-dependent increase in the real part of the impedance element which influences the current distribution is relatively weak in the known solution, and the known solution is therefore also not optimal from an electrical point of view.
- the radiator is no longer mechanically separated, but a ferrite ring is simply slid on at the predetermined location along the radiator and fastened there in a suitable manner. Just as easily, several such ferrite rings can be placed along the radiator at predetermined locations.
- An antenna according to the invention is therefore much easier and cheaper to manufacture.
- the measure according to the invention is also optimal in electrical terms.
- the ferrite ring can also be used for frequencies above 100 MHz up to frequencies of 1000 M Hz or more.
- a ferrite ring For the electrical extension of antennas, it is known per se to place a ferrite ring at the base of the antenna (DE-GM 1961 572, DE-OS 19 53 038).
- a ferrite material is used which has as small an imaginary part of the complex permeability as possible in the entire operating frequency range and thus as small as possible a real part of the impedance acting at the base point of the antenna in the entire frequency range.
- a ferrite material would not be suitable for the purpose according to the invention; rather, according to the invention, a ferrite material is used that has the greatest change in this imaginary part of the complex permeability in the operating frequency range of the antenna, i.e.
- a current distribution in a wide frequency can thus be achieved by simply sliding one or two or more ferrite rings onto a slim linear radiator range of 1: 5 or more, for example, which enables a corresponding frequency-independent radiation diagram in this broad frequency band.
- the number of ferrite rings pushed on depends on the desired bandwidth.For simpler antennas, which should only cover a frequency range of 1: 3, for example, it is sufficient to arrange one or two ferrite rings in the upper area of the linear radiator at a predetermined distance from the radiator end, for antennas If a larger frequency range is to be covered, more ferrite rings are put on accordingly.
- the position of the ferrite rings along the radiator is determined in a known manner according to the current maxima of the current distribution along the radiator to be expected with increasing frequency.
- the measure according to the invention is suitable for all slim linear radiators, for example for monopole or dipole radiators, including those which may be electrically shortened by roof capacities. In the latter case, the ferrite ring is placed on the radiator, for example, directly below the roof capacity.
- the measure according to the invention is also equally suitable for both transmitting and receiving antennas.
- Fig. 1 shows a dipole, for example for the frequency range between 100 and 1000 MHz, which consists of two slim linear radiators 1 and 2, which have an electrical length of ⁇ / 4 or may be shorter for the lowest operating frequency (10 MHz). Ferrite rings 3 to 6 are placed on these linear radiators 1 and 2. Without attached ferrite rings, for example, the lowest frequency f ′′ would result in the current distribution f drawn to the left of the radiator 1, and for the four times the frequency the current distribution 4f. If a first ferrite ring 3 is now placed on the radiator 1 at the point x of the first current maximum would result in a current distribution 4f 'which is not yet optimal.
- a further ferrite ring 4 is therefore arranged in the further current maximum y, so that finally the current distribution 4f "results which largely corresponds to the current distribution f' which is at put on ferrite rings 3, 4 at the lowest frequency.
- the position of the ferrite rings along the radiator is determined according to this principle.
- FIG. 2 shows a typical diagram of the complex permeability of the ferrite material as a function of the frequency, the real part" is approximately linearly constant, in the exemplary embodiment shown, the imaginary part ⁇ "increases sharply with the frequency between 100 MH7 and 1000 M Hz.
- the measure according to the invention is suitable for all slim linear radiators which are electrically longer than ⁇ / 2 at the highest operating frequency.
- the attached ferrite rings can, if necessary, be slotted, which is advantageous, for example, in the case of a transmitting antenna in which the hysteresis losses are to be kept as small as possible.
- the slot must be very narrow, since otherwise the required concentration of the magnetic field will no longer be achieved.
- additional concentrated impedance resistors at the appropriate point into the radiator via the pushed-on ferrite ring, for example by simply winding an additional coil onto the ferrite ring, which is connected to the outside with a corresponding impedance element. This impedance is then also coupled into the radiator via the ferrite ring, in this way the above-described effect of the frequency-dependent increase in the real part of the impedance effective in the radiator could be further enhanced.
- the ferrite rings are preferably attached to the radiator by means of suitable holders, which can optionally also be designed as corresponding protective covers at the same time.
Landscapes
- Details Of Aerials (AREA)
Description
- Die Erfindung betrifft eine Antenne laut Oberbegriff des Hauptanspruches.
- Die Stromverteilung auf dem schlanken Linearstrahler einer Antenne bestimmt bekanntlich das Strahlungsdiagramm und die Eingangsimpedanz einer Antenne (s. beispielsweise Meinke/Grundlach, Taschenbuch der Hochfrequenztechnik, 1956, Abbild. 17.7 auf Seite 390). Ein solcher schlanker Linearstrahler (Dipol oder Monopol) besitzt bei der untersten Frequenz des Betriebsfrequenzbandes, bei der seine elektrische Länge 2,/4 oder kürzer ist, ein relativ gleichmässiges Strahlungsdiagramm, mit zunehmender Betriebsfrequenz treten immer mehr Aufzipfelungen -des Diagramms auf, da - mit zunehmender Frequenz auch die Stromverteilung auf dem Linearstrahler sich ändert und bei der doppelten Frequenz der Linearstrahler eine elektrische Länge von λ/2, bei der vierfachen Frequenz sogar eine elektrische Länge von λ und damit auch entsprechende Stromverteilungen mit einem oder mehreren längs des Linearstrahlersverteilte Strommaxima besitzt. Die frequenzabhängige Stromverteilung auf dem Linearstrahler bedeutet also auch eine entsprechende Frequenzabhängigkeit des Strahlungsdiagramms und der Eingangsimpedanz.
- Um diesen störenden Einfluss zu vermeiden, ist es bekannt, den schlanken Linearstrahler der Antenne an einer oder mehreren Stellen, die sich aus dem Strommaximum bei der höheren Frequenz ergeben, aufzutrennen und dort ein Impedanzelement anzuordnen (DD-PS 129835).
- Mit dieser bekannten Massnahme wird der schlanke Linearstrahler für höhere Frequenzen elektrisch verkürzt und somit auch für höhere Frequenzen eine Stromverteilung längs des Linearstrahlers erreicht, die etwa der Stromverteilung bei der niedrigeren Frequenz des Betriebsfrequenzbandes entspricht. Die Stromverteilung wird dadurch also im wesentlichen frequenzunabhängig und damit auch das Strahlungsdiagramm und die Eingangsimpedanz.
- Diese bekannte Massnahme ist mechanisch relativ aufwendig und teuer, vor allem wenn nicht nur an einer vorbestimmten Stelle ein solches Impedanzelement in den Strahler eingebaut wird sondern wenn längs des Strahlers verteilt an mehreren Stellen solche Impedanzelemente eingebaut werden, wie dies für Antennen nötig ist, die in einem breiten Frequenzband ein möglichst frequenzunabhängiges Strahlendiagramm besitzen sollen. Die bekannte Massnahme bringt erhebliche mechanische Probleme mit sich, da der meist als Stab oder Rohr ausgebildete Linearstrahler an der gewünschten Stelle mechanisch aufgetrennt und das Impedanzelement dort elektrisch zwischen die Strahlerhälften eingebaut werden muss. Die bekannte Massnahme wäre auch für höhere Frequenzen schon deshalb nicht geeignet, da für höhere Frequenzen die Spulen der Impedanzelemente nicht mehr als konzentrierte Bauelemente realisiert werden können. Die elektrische Wirkung der bekannten Massnahme besteht darin, dass bei niedrigen Frequenzen der Imaginärteil des Impedanzelements überwiegt und so die Strombelegung an dieser Strahlerstelle nur wenig beeinflusst wird. Mit steigender Frequenz wird der in Reihe zur Spule wirkende Realteil des Impedanzelements, der von dem parallelgeschalteten Widerstand herrührt, zunehmend wirksamer und dadurch auch sein Einfluss auf die Stromverteilung längs des Strahlers. Diese frequenzabhängige Zunahme des die Stromverteilung beeinflussenden Realteils des Impedanzelements ist bei der bekannten Lösung jedoch relativ schwach, die bekannte Lösung ist daher auch in elektrischer Hinsicht nicht optimal.
- Es ist Aufgabe der Erfindung, die elektrische Verkürzung eines Linearstrahlers bei einer Antenne der eingangs erwähnten Art auf einfachere und elektrisch wirksamere Weise durchzuführen und zwar mit Mitteln, die auch noch für höhere Frequenzen auf einfache Weise realisiert werden können.
- Diese Aufgabe wird ausgehend von einer Antenne laut Oberbegriff des Patentanspruches durch dessen kennzeichnende Merkmale gelöst.
- Nach der Erfindung wird nicht mehr der Strahler mechanisch aufgetrennt sondern es wird an der vorbestimmten Stelle längs des Strahlers einfach ein Ferritring aufgeschoben und dort auf geeignete Weise befestigt. Genauso einfach können an vorbestimmten Stellen mehrere solche Ferritringe längs des Strahlers aufgesetzt werden. Eine erfindungsgemässe Antenne ist daher wesentlich einfacher und billiger herstellbar. Auch in elektrischer Hinsicht ist die erfindungsgemässe Massnahme optimal. Der Ferritring kann auch für Frequenzen über 100 MHz bis zu Frequenzen von 1000 M Hz oder mehr eingesetzt werden.
- Zur elektrischen Verlängerung von Antennen ist es an sich bekannt, am Fusspunkt der Antenne einen Ferritring aufzusetzen (DE-GM 1961 572, DE-OS 19 53 038). Hierbei wird ein Ferritmaterial benutzt, das im ganzen Betriebsfrequenzbereich einen möglichst kleinen Imaginärteil der komplexen Permeabilität und damit im ganzen Frequenzbereich einen möglichst kleinen Realteil der am Fusspunkt der Antenne wirkenden Impedanz besitzt. Ein solches Ferritmaterial wäre für den erfindungsgemässen Zweck nicht geeignet, gemäss der Erfindung wird vielmehr ein Ferritmaterial benutzt, das im Betriebsfrequenzbereich der Antenne, also zwischen deren unterster und oberster Betriebsfrequenz, die grösste Änderung dieses Imaginärteiles der komplexen Permeabilität besitzt, so dass auch der Realteil der Impedanz, die an dieser Stelle im Linearstrahler wirkt und der durch diesen Imaginärteil bestimmt wird, entsprechend stark frequenzabhängig ist. Der im Strahler wirkende Realteil steigt mit der Frequenz überproportional stark an und dadurch wird der gewünschte frequenzabhängige Einfluss auf die Stromverteilung längs des Strahlers optimal. Gemäss der Erfindung kann also durch einfaches Aufschieben von ein oder zwei oder mehreren Ferritringen auf einen schlanken Linearstrahler eine Stromverteilung in einem breiten Frequenzbereich von beispielsweise 1:5 oder mehr erreicht werden, die ein entsprechendes frequenzunabhängiges Strahlungsdiagramm in diesem breiten Frequenzband ermöglicht. Die Anzahl der aufgeschobenen Ferritringe richtet sich nach der gewünschten Bandbreite, für einfachere Antennen, die nur einen Frequenzbereich von beispielsweise 1:3 überstreichen sollen, genügt es, im oberen Bereich des Linearstrahlers einen oder zwei Ferritringe in vorbestimmtem Abstand von dem Strahlerende anzuordnen, für Antennen, die einen grösseren Frequenzbereich überstreichen sollen, werden entsprechend mehr Ferritringe aufgesetzt. Die Lage der Ferritringe längs des Strahlers bestimmt sich in bekannter Weise nach der mit steigender Frequenz zu erwartenden Strommaxima der Stromverteilung längs des Strahlers. Die erfindungsgemässe Massnahme ist für alle schlanken Linearstrahler geeignet, beispielsweise für Monopol- oder Dipol-Strahler, auch solche, die gegebenenfalls durch Dachkapazitäten elektrisch verkürzt sind. Im letzteren Fall wird der Ferritring beispielsweise unmittelbar unterhalb der Dachkapazität auf den Strahler aufgesetzt. Die erfindungsgemässe Massnahme ist ausserdem sowohl für Sende- als auch für Empfangsantennen in gleicher Weise geeignet.
- Die Erfindung wird im folgenden anhand schematischer Zeichnungen an einem Ausführungsbeispiel näher erläutert.
- Fig. 1 zeigt einen Dipol beispielsweise für den Frequenzbereich zwischen 100 und 1000 MHz, der aus zwei schlanken Linearstrahlern 1 und 2 besteht, die für die unterste Betriebsfrequenz (10 MHz) etwa eine elektrische Länge von λ/4 besitzen oder auch kürzer sein können. Auf diese Linearstrahler 1 und 2 sind Ferritringe 3 bis 6 aufgesetzt. Ohne aufgesetzte Ferritringe würde sich für die unterste Frequenz f" beispielsweise die links vom Strahler 1 eingezeichnete Stromverteilung f ergeben, für die vierfache Frequenz die Stromverteilung 4f. Wird nun an der Stelle x des ersten Strommaximums ein erster Ferritring 3 auf den Strahler 1 aufgesetzt, so würde sich eine Stromverteilung 4f' ergeben, die noch nicht optimal ist. Es wird daher in dem weiteren Strommaximum y ein weiterer Ferritring 4 angeordnet, so dass sich schliesslich die Stromverteilung 4f" ergibt, die weitgehendst mit der Stromverteilung f' übereinstimmt, die sich bei aufgesetzten Ferritringen 3, 4 bei der untersten Frequenz ergibt. Nach diesem Prinzip wird die Lage der Ferritringe längs des Strahlers bestimmt.
- Ferrit besitzt die Eigenschaft, dass der lmaginärteil µ" seiner komplexen Permeabilität frequenzabhängig ist und in einem vorgegebenen Frequenzbereich stark ansteigt. Fig. 2 zeigt ein typisches Diagramm der komplexen Permeabilität des Ferritmaterials in Abhängigkeit von der Frequenz, der Realteil µ' ist etwa linear gleichbleibend, der Imaginärteil µ" nimmt in dem gezeigten Ausführungsbeispiel zwischen 100 MH7 und 1000 M Hz mit der Frequenz stark zu. Diese Zusammenhänge sind beispielsweise in dem Buch von Siemens, Ferrite, Weichmagnetisches Siferrit-Material, Datenbuch 1982/83 insbesondere Seite 20 und 42, näher beschrieben. Wird nun gemäss der Erfindung gerade ein solches Ferritmaterial gewählt, das in dem gewünschten Betriebsfrequenzbereich der Antenne diese maximale lmaginärteil-Änderung besitzt, so ist auch die Frequenzabhängigkeit des Realteiles in dem Strahler 1 an der Stelle, an welcher der Ferritring aufgesetzt ist, entsprechend stark frequenzabhängig, da der Imaginärteil µ" der komplexen Permeabilität des Ferrites für die Kernverluste massgeblich ist und damit auch für den in den Strahler hinein transformierten Realteil. Der aufgesetzte Ferritring wirkt also an dieser Stelle des Strahlers wie eine in den Strahler eingeschaltete Impedanz, deren Realteil den gleichen frequenzabhängigen Verlauf besitzt wie der Imaginärteil µ" des Ferrits. Darauf ist die vorteilhafte Wirkung der erfindungsgemässen Ferritringe zurückzuführen, da sie bei niederen Frequenzen praktisch nicht wirksam sind und erst mit höheren Frequenzen die erwünschte Wirkung und Beeinflussung der Stromverteilung besitzen.
- Die erfindungsgemässe Massnahme ist für alle schlanken Linearstrahler geeignet, die bei der obersten Betriebsfrequenz elektrisch länger als λ/2sind.
- Die aufgesetzten Ferritringe können bei Bedarf gegebenenfalls geschlitzt sein, dies ist beispielsweise bei einer Sendeantenne von Vorteil, bei der die Hysteresisverluste so klein wie möglich gehalten werden sollen. Der Schlitz muss jedoch sehr schmal sein, da sonst nicht mehr die geforderte Konzentration des Magnetfeldes bewirkt wird. Es ist auch denkbar, über den aufgeschobenen Ferritring zusätzliche konzentrierte Impedanzwiderstände an der entsprechenden Stelle in den Strahler miteinzukoppeln, beispielsweise dadurch, dass einfach auf den Ferritring eine zusätzliche Spule aufgewickelt wird, die aussen mit einem entsprechenden Impedanzelement verbunden ist. Diese Impedanz wird dann über den Ferritring in den Strahler mit eingekoppelt, auf diese Weise könnte der oben beschriebene Effekt der frequenzabhängigen Zunahme des Realteils der im Strahler wirksamen Impedanz noch verstärkt werden.
- Die Ferritringe werden vorzugsweise über geeignete Halter am Strahler befestigt, die gegebenenfalls auch gleichzeitig als entsprechende Schutzabdeckungen ausgebildet sein können.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19833312638 DE3312638A1 (de) | 1983-04-08 | 1983-04-08 | Antenne mit elektrisch verkuerztem linearstrahler |
DE3312638 | 1983-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0124758A1 EP0124758A1 (de) | 1984-11-14 |
EP0124758B1 true EP0124758B1 (de) | 1987-07-15 |
Family
ID=6195754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840103590 Expired EP0124758B1 (de) | 1983-04-08 | 1984-03-31 | Antenne mit elektrisch verkürztem Linearstrahler |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0124758B1 (de) |
DE (1) | DE3312638A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6753814B2 (en) * | 2002-06-27 | 2004-06-22 | Harris Corporation | Dipole arrangements using dielectric substrates of meta-materials |
NO322780B1 (no) | 2005-01-20 | 2006-12-11 | Comrod As | Anordning ved piskantenne |
KR101177393B1 (ko) | 2009-07-24 | 2012-08-27 | 셰익스피어 컴퍼니 리미티드 라이어빌러티 컴퍼니 | 방열 페라이트/분말 철 네트워크를 가진 낮은 프로파일의 광대역 모노폴 안테나 및 이를 구성하기 위한 방법 |
DE102010053639B4 (de) * | 2010-12-07 | 2017-05-18 | Rohde & Schwarz Gmbh & Co. Kg | Blitzfangstab für Antennensysteme |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1059980B (de) * | 1958-02-03 | 1959-06-25 | Telefunken Gmbh | Antennenanordnung fuer einen breiten Frequenzbereich mit wenigstens zwei verschieden langen Dipolstrahlern |
US3302208A (en) * | 1964-03-20 | 1967-01-31 | Hendrickson Alice | Dipole antenna including ferrite sleeves about the medial portions of its radiating elements |
DE1961572U (de) * | 1964-12-12 | 1967-06-08 | Philips Patentverwaltung | Antenne mit vergroesserung und variabler abstimmung der elektrischen laenge. |
FR1588021A (de) * | 1968-10-23 | 1970-04-03 | ||
DD120977A1 (de) * | 1975-08-25 | 1976-07-05 | ||
DD129835A1 (de) * | 1977-01-20 | 1978-02-08 | Dieter Haussig | Kurze breitbandige lineare antenne |
-
1983
- 1983-04-08 DE DE19833312638 patent/DE3312638A1/de active Granted
-
1984
- 1984-03-31 EP EP19840103590 patent/EP0124758B1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0124758A1 (de) | 1984-11-14 |
DE3312638C2 (de) | 1990-02-15 |
DE3312638A1 (de) | 1984-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69818768T2 (de) | Mehrbandantenne zur Verwendung in einem mobilen Funkgerät | |
DE102006003402B4 (de) | Kompakte Antennenvorrichtung mit zirkularpolarisierter Wellenabstrahlung | |
DE2606271A1 (de) | Streifenleiter-antennenanordnung | |
DE3339278C2 (de) | ||
EP0124758B1 (de) | Antenne mit elektrisch verkürztem Linearstrahler | |
DE3630519C2 (de) | ||
DE2910813A1 (de) | Rundstrahlmehrbandantenne | |
WO2004102742A1 (de) | Mehrbandfähige antenne | |
DE1262465B (de) | Verzoegerungseinrichtung in Form einer Kunstleitung mit verteilten Induktivitaeten und Kapazitaeten | |
DE2410498A1 (de) | Logarithmisch-periodische antenne | |
DE69603993T2 (de) | Transformator, insbesondere für Energiewandler, und Resonanzenergiewandler mit einem solchen Transformator | |
AT234771B (de) | Übertrager für hochfrequente elektromagnetische Wellen zur gegenseitigen Anpassung von erdsymmetrischen und erdunsymmetrischen Leitungen | |
DE957240C (de) | Funkempfangsgeraet mit einem Hochfrequenztransformator und einer baulich mit dem Geraet vereinten Rahmenantenne | |
DE3822081C2 (de) | ||
EP0573971B1 (de) | Antenne | |
DE3439413A1 (de) | Antennenerreger fuer mindestens zwei unterschiedliche frequenzbaender | |
DE977776C (de) | Richtantenne mit veraenderbarer Strahlungsrichtung | |
DE1802653A1 (de) | Transformator zum Messen der Intensitaet der in Leitungen transportierten elektrischen Energie | |
AT289895B (de) | Richtantenne | |
DE2139257C3 (de) | Rundstrahl-Sendeantenne mit von einer Mittenträgeranordnung ausgehenden Strahlerelementen | |
DE1466271C (de) | Gewendelte Dipolantenne | |
DE69016446T2 (de) | Breitbandige Funkantenne mit kleinem Stehwellenverhältnis. | |
DE2751840C2 (de) | Antenne mit elektrostatisch geerdetem, selbststrahlendem Mast | |
DE2161574C3 (de) | Hochfrequenz-Leitung | |
DE2742905A1 (de) | Ukw-bandfilter aus mehreren kreisen, insbesondere zur verbesserung der vorselektion der empfaenger von funksprechsender-empfaenger-anlagen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19840830 |
|
AK | Designated contracting states |
Designated state(s): CH FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19860917 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH FR GB IT LI |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940328 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940330 Year of fee payment: 11 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950331 Ref country code: GB Effective date: 19950331 Ref country code: CH Effective date: 19950331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |