EP0123168B1 - Procédé et dispositif pour le refroidissement de fours - Google Patents

Procédé et dispositif pour le refroidissement de fours Download PDF

Info

Publication number
EP0123168B1
EP0123168B1 EP84103465A EP84103465A EP0123168B1 EP 0123168 B1 EP0123168 B1 EP 0123168B1 EP 84103465 A EP84103465 A EP 84103465A EP 84103465 A EP84103465 A EP 84103465A EP 0123168 B1 EP0123168 B1 EP 0123168B1
Authority
EP
European Patent Office
Prior art keywords
cooling
pressure
furnace
liquid
reducing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103465A
Other languages
German (de)
English (en)
Other versions
EP0123168A1 (fr
Inventor
Karl Bühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT84103465T priority Critical patent/ATE26015T1/de
Publication of EP0123168A1 publication Critical patent/EP0123168A1/fr
Application granted granted Critical
Publication of EP0123168B1 publication Critical patent/EP0123168B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein

Definitions

  • the invention relates to a method for cooling vessel walls and lids of arc furnaces by means of a liquid-cooled device consisting of at least one cooling element.
  • water destroys an electric furnace of an arc furnace, for example with dolomitic refractory materials. It is particularly dangerous if the water does not evaporate immediately in a temporarily cold stove, collects in the stove covered with ceramic refractory materials and comes into contact with molten metal in the subsequent melting process. Detection systems for monitoring the water cooling system are very complex and expensive and only allow an insufficient error display for all parts of the cooling system.
  • the invention has for its object to provide a cooling system for electric arc furnaces, which is simple in construction and economical to manufacture, with which a long service life of the furnace vessel walls and the furnace lid can be achieved, and which offers complete security against the penetration of coolant into the furnace chamber .
  • An essential characteristic of the invention is that the water pressure in the cooling elements, which are located in the endangered zones of the furnace vessel of high heat radiation intensity, is kept below the pressure of the surrounding atmosphere (preferably 0.9 bar) at every point. In this way, penetration of water or water vapor into the interior of the furnace vessel is avoided with absolute certainty.
  • the cooling liquid is guided from top to bottom, so that the hydrostatic pressure difference supports the circulation of the cooling liquid (principle of the hydraulic jack). This has the advantage that the hydrostatic height can be used as an additional pressure difference to overcome the flow resistance.
  • a pressure reducing valve is arranged before the cooling liquid enters the cooling elements and at least one suction pump is arranged at the outlet of the cooling system. In this way, the pressure reduction in the cooling elements can be achieved with simple means.
  • the pump is designed both as a suction pump and as a pressure pump. It is thereby achieved that with one and the same pump, a water negative pressure is generated in the cooling elements and, on the other hand, the water flowing out of the cooling elements can be pumped into a collecting container, for example.
  • the development of the invention according to claim 5 provides that the liquid-cooled device is divided into several separate cooling circuits, that each cooling circuit has at least one cooling element and that at least two cooling circuits are assigned a pressure reducing valve.
  • liquid-cooled device can be flexibly adapted to the respective number of segments of the furnace vessel walls and that sufficient cooling is available in each segment.
  • a gas separating device for the gas of the cooling liquid is arranged after the cooling elements, and the gas separating device is connected to a detection device for detecting the gases separated from the cooling liquid per unit of time.
  • Fig. 1 shows a schematic representation of the front view of an exemplary embodiment of an arc furnace.
  • the arc furnace 1 with furnace cover 5 is mounted in an opening on the platform 6, which is supported on two roller cradles 7, which in turn are supported on the weighing beams 8, which are firmly anchored to the foundation 9.
  • the pouring spout 2 can also be seen in FIG. 1.
  • a movable rotary console 10 is arranged on the platform 6, to which the cover lifting and swiveling device 11 is fastened.
  • the cover lifting and swiveling device 11 consists of a support arm 13 and a support arm column 12.
  • the platform 6 also carries three electrode positioning columns 13, of which only one is visible in FIG. 1.
  • the electrode adjusting columns 14 are hydraulically connected to be movable individually in the vertical direction with electrode adjusting cylinders 15.
  • the electrode support arms 16 are fastened to the electrode adjusting columns 14 and the electrodes 18 are held in electrode holders 17 at their outer ends.
  • FIG. 2 shows a plan view of the furnace according to FIG. 1, but with the furnace cover 5 removed.
  • the prefabricated wall elements 27 can be seen, which are arranged inside the furnace vessel casing 1.
  • six wall elements 27 are attached. However, their number is different and depends on the size of the furnace. It has proven to be advantageous if the number of wall elements 27 increases with increasing furnace size.
  • the inside of the furnace vessel 28 shows the bottom 28 of the furnace and the slag door 29 opposite the cast spout 2.
  • FIG. 3 shows a section through the side view of the furnace according to FIG. 2.
  • the water cooling system can be seen, which in this exemplary embodiment consists of serpentine, vertically running cooling pipes 30, as well as an upper inflow pipe 31 and a lower outflow pipe 32.
  • connection lines outside the vessel jacket required for the cooling system 30, 31, 32 have been omitted in Figure 3 for reasons of clarity.
  • FIG. 4 shows an overview diagram of an exemplary embodiment of the cooling system according to the invention.
  • the cooling liquid preferably water
  • the pressure reducing valve 35 reduces the pressure present to the desired maximum permissible pressure of the cooling liquid when it enters the cooling elements 36.
  • This inlet pressure of the cooling liquid is lower than the surrounding atmospheric pressure, for example 0.9 bar.
  • two serpentine cooling tubes 36 with a vertical axis are shown connected in parallel in the cooling circuit.
  • cooling elements 36 have any other form of construction and that the cooling elements 36 can also run horizontally, for example.
  • the cooling elements 36 can also run horizontally, for example.
  • longitudinal cooling boxes instead of cooling pipes, e.g. for cooling an oven lid.
  • more than two cooling elements 36 can also be assigned to one cooling circuit.
  • the cooling liquid is fed into all cooling elements 36 connected in parallel in a cooling circuit from a distributor point 40. This ensures that all cooling elements 36 connected in parallel in the cooling circuit receive the same inlet pressure.
  • a water pump 37 is arranged on the output side of the cooling elements 36. This can be a centrifugal pump, for example, and ensures that the cooling liquid is sucked away, thereby reducing the negative pressure in the cooling elements 36 to, for example, 0.5 bar. 4, the pump 37 is designed both as a suction and as a pressure pump and conveys the cooling liquid in a collecting container 34.
  • the pump 37 according to FIG. 4 could also only act as a suction pump, and that in addition to this a further pump can be switched on, which then works as a pressure pump and conveys the coolant into the collecting container 34.
  • the inventive measures ensure that in the event of any leaks in the liquid-cooled device, the cooling liquid cannot enter the furnace space, but on the contrary, gas from the Furnace space is sucked into the cooling elements 36.
  • the vertical arrangement of the cooling elements 36 is a preferred embodiment of the present invention. Because the cooling liquid runs in the upper part of the cooling elements 36, flows through them successively downwards and reaches the outlet in the lower part of the cooling elements 36, the hydrostatic height of the cooling elements 36 can be used as an additional pressure difference to overcome the flow resistances.
  • a gas separation device 38 is attached after the pump 37.
  • the gas carried by the cooling liquid is separated out in the device 38 and fed to a detection device 39 connected to the gas separation device 38.
  • the amount of gas per unit of time occurring in the gas separation device 38 is detected in a manner known per se by means of the detection device 39.
  • any leakage in the cooling elements 36 can be determined immediately. This leakage is then signaled optically or acoustically in a manner known per se and the furnace system is taken out of operation.
  • the detection device 39 can also be coupled directly to a control device (not shown in FIG. 4), as a result of which the furnace system is automatically shut down.
  • each cooling circuit having at least one cooling element 36 and at least one cooling circuit being assigned to a pressure reducing valve 35.
  • the arc furnace 1 has six furnace vessel wall segments 27.
  • the liquid-cooled device could be divided into six cooling circuits with three pressure-reducing valves 35.
  • cooling circuits can be assigned to one and the same pressure reducing valve 35, especially when the inlets into the cooling circuits are at approximately the same height.
  • a larger number of cooling circuits can have only a single suction pump.
  • means can also be used to adjust or regulate the water flow through the individual cooling circuits.
  • Flow meters, adjusting or regulating valves can be used for this.
  • Diaphragm pressure reducing valve 41 is a manually operable Diaphragm pressure reducing valve 41 shown.
  • the valve 41 shown in FIG. 5 is a pressure drop valve which reduces the pressure from the overpressure inlet to the underpressure outlet to an amount which is constant compared to atmospheric pressure.
  • the overpressure prevailing in the overpressure space 48 acts on the one hand on a valve plate 45 which closes the upper opening of the inner tube 44 by means of a spring 53, and on the other hand on the diaphragm plate 52.
  • the valve plate is via a piston rod 50 which is mounted in a guide bushing 51 45 mechanically firmly connected to the membrane 46 and the membrane plate 52.
  • the piston rod 50 is hydraulically loaded on both sides, i.e. the pressures on the valve plate 45 and the diaphragm plate 52 are compensated for in such a way that almost a constant difference between atmospheric pressure and negative pressure is established automatically.
  • the centrifugal pump 37 acting as a suction pump according to FIG. 5 can only generate the desired negative pressure if it is largely filled with coolant.
  • the diaphragm plate 52 of the diaphragm pressure reducing valve 41 is actuated, and the overpressure space 48 and the underpressure space 49 are bridged for a short time. Thereafter, the valve 41 works automatically again.
  • the pressure control described in FIG. 5 by means of a manually operated diaphragm pressure reducing valve 41 can also be carried out just as well with a level control known per se.
  • the negative pressure part of the cooling elements 36 sucks the cooling liquid from a basin arranged near or at the level of the inlet to the cooling element 36, the inflow of the cooling liquid into the basin being regulated by a float lock, depending on the water level in the basin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Stoves And Ranges (AREA)

Claims (7)

1. Procédé pour le refroidissement des parois (27) ou du couvercle (5) de fours à arc électrique (1) au moyen d'un dispositif refroidi par un liquide, se composant d'au moins un élément de refroidissement (38), caractérisé en ce que le liquide de refroidissement est fourni à l'élément de refroidissement sous une pression inférieure à la pression atmosphérique.
2. Procédé suivant la revendication 1 , caractérisé en ce que le liquide de refroidissement est introduit de haut en bas dans les éléments de refroidissement (38), de sorte que la différence de pression hydrostatique favorise la circulation du liquide de refroidissement suivant le principe du siphon hydraulique.
3. Dispositif pour la mise en oeuvre du procédé suivant la revendication 1 ou 2, caractérisé en ce qu'il est prévu, avant l'entrée du liquide de refroidissement dans un élément de refroidissement (36) une vanne (35,41) de réduction de pression et à la sortie du système de refroidissement (36) au moins une pompe aspirante (37).
4. Dispositif suivant la revendication 3, caractérisé en ce que la pompe est constituée aussi bien comme pompe aspirante (37) que comme pompe foulante.
5. Dispositif suivant la revendication 3, caractérisé en ce que le dispositif refroidi par un liquide est divisé en plusieurs circuits de refroidissement séparés, chaque circuit de refroidissement presentant au moins un élément de refroidissement (36), et en ce qu'au moins deux circuits de refroidissement sont associés à une vanne (35,41) de réduction de pression.
6. Dispositif pour la mise en oeuvre du procédé suivant une des revendications 3 à 5, caractérisé en ce qu'un appareil de séparation de gaz (38) destiné au gaz du liquide de refroidissement est monté après les éléments de refroidissement, et en ce que l'appareil de séparation de gaz (38) est raccordé à un appareil de détection (39) destiné à détecter les gaz s'échappant du liquide de refroidissement, afin de constater toutes les fuites se produisant dans le dispositif refroidi par un liquide.
7. Dispositif suivant la revendication 3, caractérisé en ce que la vanne de réduction de pression est une vanne (41) de réduction de pression à diaphragme à commande manuelle.
EP84103465A 1983-04-12 1984-03-29 Procédé et dispositif pour le refroidissement de fours Expired EP0123168B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84103465T ATE26015T1 (de) 1983-04-12 1984-03-29 Verfahren und vorrichtung zur kuehlung von oefen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH195783 1983-04-12
CH1957/83 1983-04-12

Publications (2)

Publication Number Publication Date
EP0123168A1 EP0123168A1 (fr) 1984-10-31
EP0123168B1 true EP0123168B1 (fr) 1987-03-18

Family

ID=4222548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103465A Expired EP0123168B1 (fr) 1983-04-12 1984-03-29 Procédé et dispositif pour le refroidissement de fours

Country Status (7)

Country Link
US (1) US4603423A (fr)
EP (1) EP0123168B1 (fr)
JP (1) JPS59205581A (fr)
AT (1) ATE26015T1 (fr)
BR (1) BR8401670A (fr)
DE (1) DE3462711D1 (fr)
SU (1) SU1366067A3 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511259B2 (ja) * 1986-12-27 1996-06-26 株式会社ディスコ 半導体熱処理装置のウエ−ハ冷却方法
LU90693B1 (en) * 2000-12-11 2002-06-12 Wurth Paul Sa Kuehlsystem fuer einen metallurgischen Schmelzofen
CN100458340C (zh) * 2002-11-28 2009-02-04 侯松发 带有冷却水循环系统的电弧炉
EP2693143A1 (fr) * 2012-08-01 2014-02-05 Siemens VAI Metals Technologies GmbH Procédé et dispositif destinés à détecter une fuite dans la zone d'au moins un dispositif de refroidissement d'un four, ainsi qu'un four
CN104154746B (zh) * 2014-09-02 2015-09-23 山东亨圆铜业有限公司 熔炉制造中间罐炉渣加热装置
WO2023209427A1 (fr) * 2022-04-28 2023-11-02 Frederik Petrus Greyling Four métallurgique à système de refroidissement de fluide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1035050A (en) * 1912-02-21 1912-08-06 George J Rennie Cleaning device for water-cooled-wall furnaces.
US1030792A (en) * 1912-02-29 1912-06-25 Frank C Roberts Furnace-cooling.
GB958493A (en) * 1960-05-04 1964-05-21 Nippon Telegraph & Telephone Improvements in or relating to arc furnaces
FR1557637A (fr) * 1967-05-29 1969-02-21
US3612501A (en) * 1969-09-29 1971-10-12 Anderson Constr Corp A E Furnace-cooling apparatus
GB1488563A (en) * 1974-05-20 1977-10-12 Nippon Kokan Kk Evaporative cooling method using natural circulation of cooling water
US3966179A (en) * 1974-07-18 1976-06-29 Sergei Mikhailovich Andoniev Apparatus for evaporative cooling of metallurgical plants
DE2651593C2 (de) * 1976-11-12 1978-09-28 Fried. Krupp Huettenwerke Ag, 4630 Bochum Meßgerät für im Wasserdampf des Kühlsystems eines Industrie- insbesondere Hochofens enthaltenes Fremdgas
US4274967A (en) * 1978-07-07 1981-06-23 Technicon Instruments Corporation Chromatographic apparatus and method
FR2449125A1 (fr) * 1979-02-16 1980-09-12 Inst Ochistke T Systeme de refroidissement de haut fourneau
DE3365226D1 (en) * 1982-03-10 1986-09-18 Hitachi Ltd Gas chromatographic apparatus

Also Published As

Publication number Publication date
EP0123168A1 (fr) 1984-10-31
US4603423A (en) 1986-07-29
JPS59205581A (ja) 1984-11-21
BR8401670A (pt) 1984-11-20
SU1366067A3 (ru) 1988-01-07
DE3462711D1 (en) 1987-04-23
ATE26015T1 (de) 1987-04-15

Similar Documents

Publication Publication Date Title
DE3886379T2 (de) Kühlsystem und -verfahren zum Handhaben von geschmolzenen metallenthaltenden Gefässen.
EP0313599B1 (fr) Dispositif de transfert d'expansion dans des circuits de liquide, notamment d'installations de chauffage ou de refrigeration
EP0123168B1 (fr) Procédé et dispositif pour le refroidissement de fours
DE4206658A1 (de) Sicherheitseinrichtung gegen ueberdruckversagen eines kernreaktor-druckbehaelters
DE2439891C2 (de) Abscheider zum Trennen von Flüssigkeit und Gas
EP0580881B1 (fr) Dispositif pour dégazer des liquides dans des systèmes à circuit de liquides
DE69604802T2 (de) Ausdehnungsüberwachung für einen geschlossenen flüssigkeitskreislauf
DE2502674C3 (de) Schutzgasanlage
EP0004614B1 (fr) Système de refroidissement pour un convertisseur d'acierie
EP0085462A1 (fr) Voûtes d'un four à arc refroidies par une circulation de fluide
DE19909267A1 (de) Kesselaufhängung
DE1278085B (de) Heinz- und/oder Kuehlgeraet
EP0981024B1 (fr) Chaudière avec brûleur inversé
DE4320333A1 (de) Verfahren zur Überwachung und Regulierung des Wasserfüllstands und des Vorspanndrucks in Membranausdehnungsgefäßen
DE2847789C2 (de) Membran-Druckbehälter mit integriertem Vorschaltgefäß
EP0073537A1 (fr) Support du conduit d'évacuation des gaz d'un four à arc
EP1063401B1 (fr) Appareil et procédé pour séparer l'air d'un liquide
DE4414210C2 (de) Vorrichtung zur Wärmenutzung einer Abgasfackel
DE2008667C (de) Boden Verschluß für metallurgische Behälter, insbesondere Gießpfannen
DE248308C (fr)
DE1943431U (de) Glockenofen zur waermebehandlung von blechen in spulenform od. dgl.
DE2709549C3 (de) Vorrichtung zum Verdampfungskühlen des Hochofenunterteils
DE2940828C2 (de) Vorrichtung zum Verhindern von Dampfblasenbildung in einem geschlossenen Leitungssystem
DE706757C (de) Elektrisch beheizter Strahlungsofen
DE1583294B1 (de) Vorrichtung zur Teilmengenentgasung fluessigen Stahles durch Vakuumbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840712

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 26015

Country of ref document: AT

Date of ref document: 19870415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3462711

Country of ref document: DE

Date of ref document: 19870423

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900226

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900614

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910329

Ref country code: AT

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

BERE Be: lapsed

Owner name: BBC A.G. BROWN BOVERI & CIE.

Effective date: 19910331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84103465.5

Effective date: 19891016