EP0122963A1 - Apparatus for regenerating an ammoniacal etching solution - Google Patents
Apparatus for regenerating an ammoniacal etching solution Download PDFInfo
- Publication number
- EP0122963A1 EP0122963A1 EP83111152A EP83111152A EP0122963A1 EP 0122963 A1 EP0122963 A1 EP 0122963A1 EP 83111152 A EP83111152 A EP 83111152A EP 83111152 A EP83111152 A EP 83111152A EP 0122963 A1 EP0122963 A1 EP 0122963A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- etching solution
- oxygen
- etching
- line
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005530 etching Methods 0.000 title claims abstract description 188
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 70
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 70
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000003054 catalyst Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 26
- 238000010405 reoxidation reaction Methods 0.000 claims abstract description 24
- 239000003792 electrolyte Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 9
- 239000000706 filtrate Substances 0.000 claims abstract description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 44
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 42
- 239000007788 liquid Substances 0.000 claims description 27
- 229910021529 ammonia Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 230000008929 regeneration Effects 0.000 claims description 9
- 238000011069 regeneration method Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract 1
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 104
- 239000010949 copper Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000008237 rinsing water Substances 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical group [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/46—Regeneration of etching compositions
Definitions
- the invention relates to a method for regenerating an ammoniacal etching solution, which is supplied for the reoxidation of the etchant containing oxygen in the etching solution in the presence of a catalyst contained in the etching solution and which flows through an electrolysis cell, at least partially for the recovery of etched metal, wherein metal is deposited cathodically and oxygen is generated at the anode of the electrolytic cell.
- the invention also includes an apparatus for performing the method.
- Alkaline etchants are used for etching metallic objects, in particular for the production of printed circuit boards, which are also known under the name "printed circuits", especially when the printed circuit boards to be etched are metal parts which are not resistant to acidic etching media, for example made of lead, tin or nickel, exhibit.
- a re-oxidation of the alkaline etching solution after etching off the metal is carried out with the addition of ammonia gas and / or ammonium chloride in the presence of oxygen or air.
- the etched metals are deposited in an electrolytic cell.
- part of the etching solution which has ammonium sulfate, flows through the electrolytic cell.
- the etched metals are deposited on the cathode of the electrolytic cell, oxygen is generated on the anode.
- the etching solution containing the catalyst particles is sprayed in air for reoxidation. This is done directly in the etching chamber by spraying the etching solution onto the workpieces to be processed. Back-oxidation with air is not an advantage in all cases. This is not particularly so because ammonia is added to the etching solution to adjust the pH value and odor nuisance) by evaporating ammonia should be kept as low as possible.
- the object of the invention is to mix the etching solution intensively with a gas having a high oxygen content in a simple manner in a method of the type mentioned.
- the oxygen formed at the anode of the electrolytic cell is fed to the etching solution.
- the gas fractions introduced into the etching solution which do not contribute to the reoxidation, such as the nitrogen fractions in air, are low.
- oxygen is advantageously used, that in the electrolysis cell when the etched metal is recovered) and environmental problems arises.
- ammonia is added to the etching solution at the same time as the oxygen (claim 2) in order to adjust the pH of the etching solution. As much ammonia must be added to the etching solution as is essentially lost through evaporation during the etching in the etching chamber and when the etching solution is regenerated.
- the ammonia escaping into the gas space above the electrolyte during regeneration in the electrolysis cell can be returned to the etching solution with the extracted oxygen.
- the ammonia is introduced into the etching solution with the oxygen and, like the oxygen, is mixed intensively with the etching solution. This intensive mixing and fine distribution of the gases containing oxygen accelerates the reoxidation.
- a regeneration system is assumed according to claim 3, which has an inlet that can be connected to an etching chamber for etching solution removed from an etching chamber.
- the etching solution is passed to a filter which is not permeable to catalyst particles which are suspended in the etching solution.
- the catalyst particles are removed from the filter with the aid of etching solution, which can be reinserted into the etching chamber via a return line.
- the regeneration system includes an electrolysis cell, into which a connection line connected to the filter for a catalyst that can be obtained as filtrate particle-free etching solution leads.
- the electrolysis cell has an outlet, which can be connected to the etching chamber, for an etching solution depleted in metal ions, which outlet can be introduced into the etching chamber as a fresh etching solution.
- an oxygen line opens into the return flow to the etching chamber and is fed with oxygen generated at the anode of the electrolytic cell. Intensive mixing of the oxygen with the etching solution accelerates the reoxidation.
- a lockable supply for ammonia is then connected to the oxygen line, so that the pH of the etching solution can be regulated at the same time as the oxygen is added.
- a liquid jet pump which is used in the feed to the etching chamber, is used to introduce the oxygen and ammonia. With the liquid jet pump, faster reoxidation is achieved through fine distribution of the oxygen in the etching solution.
- the oxygen line opens at the suction port of the liquid jet pump, through which the etching solution containing the catalyst particles flows as working medium.
- a pressure relief line branches off from the return line and opens into a collecting container for etching solution, which is used for receiving the etching solution removed from the etching chamber is connected to the etching chamber.
- the collecting container is connected to the etching chamber in such a way that the etching solution flows into the collecting container in a natural gradient.
- the filter To generate the required working fluid pressure in the liquid jet pump, the filter, the filtrate of which flows to the electrolysis cell, is arranged above the liquid jet pump in such a way that the etching solution containing the catalyst particles enters the liquid jet pump as a working fluid in a natural gradient.
- the filter expediently has a tubular filter insert which is arranged vertically above the liquid jet pump.
- the oxygen line connected to the gas space above the electrolyte of the electrolysis cell via a capacitor is in a further embodiment of the invention out in which the gas mixture is cooled and water vapor is excreted.
- the condensed water is used as rinsing water for the etched workpieces and thus reduces the total amount of detergent required.
- the condensate line that discharges the condensate from the condenser opens into the last rinsing chamber of the system. It is advantageous that the water separated in the condenser contains ammonia.
- the amount of water vapor generated in the electrolysis cell depends on the temperature in the electrolysis cell. With increasing electrolyte temperature, the water vapor content in the gas space above the electrolyte increases, and more condensate can then be found in the condenser win. By adjusting the temperature in the electrolysis cell, the amount of condensate to be generated can be regulated, claim 13.
- the maximum temperature in the electrolysis cell is limited by the required pH value in the electrolyte. The pH value drops with increasing temperature because the ammonia content in the electrolyte drops. The electrolyte must remain alkaline, especially to protect the electrodes.
- FIG 1 is a regeneration system connected to an etching chamber 1 with rinsing chamber 2 shown schematically.
- the ammoniacal etching solution to be regenerated which contains ammonium sulfate as an etchant and catalyst particles suspended in the etching solution, flows from the etching chamber 11 through an inlet 3 to a filter 4.
- the catalyst particles contained in the etching solution serve to increase the etching speed and / or to accelerate the Reoxidation of the etching solution.
- Activated carbon particles such as those specified in DE-OS 3,031,567 are suitable for catalysis.
- the inlet 3 is connected to the etching chamber 1 in such a way that the etching solution can first of all flow out of the etching chamber into a collecting container 5. It is guided from the collecting container to the filter 4 by means of a pump 6 via a pressure line 7.
- the supply of the etching solution to the filter thus includes the supply 3 itself, the collecting container 5, the suspension pump 6 and the pressure line 7.
- the filter 4 is provided with a filter insert 8 which is impermeable to the catalyst particles suspended in the etching solution.
- the filter 4 is arranged vertically and the etching solution flows through it with catalyst particles from top to bottom.
- a return 9 from the filter 4 leads back to the etching chamber 1. In the return line 9, an etching solution containing catalyst particles is passed. ) + in connection with copper tetrammine complex
- a liquid jet pump 10 is inserted in the return 9, the suction port 11 of which is connected to an oxygen line 12.
- the liquid jet pump uses the etching solution flowing out of the filter 4 and containing catalyst particles as the working medium.
- the oxygen line 12 starts from an electrolysis cell 13. A portion of the etching solution flows through the electrolytic cell in order to deposit metal etched off in the etching chamber from cathode 14. Catalyst particle-free etching solution is to be fed to the electrolytic cell. A connecting line 16, 16 ', 16' 'connected between the filtrate outlet 15 on the filter 4 and the electrolysis cell 13 is used for this purpose. Oxygen is generated at the anode 17 of the electrolytic cell.
- the oxygen line 12 opens into the gas space above the electrolyte of the electrolysis cell and is thus supplied with oxygen during operation of the liquid jet pump 10. In addition to oxygen, there is also ammonia and water vapor in the gas space, which evaporate from the electrolyte according to its vapor pressure.
- An ammonia line 18 leads to the supply of ammonia in the oxygen line 12 and is connected to a storage container 20 for ammonia which can be closed by means of a shut-off device 19.
- Fresh liquid ammonia can thus be introduced into the etching solution containing the catalyst particles from the liquid jet pump 10 with the oxygen drawn off from the electrolytic cell in order to regulate the pH of the etching solution.
- the shut-off device 19 is for this purpose with one inserted in the connecting line 16 pH value measuring device 21 with a measuring electrode in operative connection. If the pH falls below a predetermined permissible limit value, the shut-off device 19 is opened and ammonia is introduced into the etching solution.
- the pH value measuring device switches the shut-off device 19 with the aid of electrical control units.
- a pressure relief line 22 opens into the return line 9 and is led to the drainage of etching solution in the collecting container 5.
- An overflow 24 of etching solution depleted in metal ions leads from the outlet 23 of the electrolytic cell to the etching chamber.
- the depleted etching solution is mixed in the etching chamber as a fresh etching solution with the etching solution containing catalyst particles.
- a drain container 25 Underneath the electrolysis cell 13 there is a drain container 25. It serves to empty the electrolysis cell and is connected to the bottom of the electrolysis cell 13 via an outlet 26 which can be shut off by means of a solenoid valve 27. Etching solution can also flow from the electrolysis cell 13 into the drain container 25 via a second overflow 28.
- the connecting line 16 also contains a device 29 for measuring the metal ion concentration and a flow meter 30.
- the quantity of etching solution to be conducted to the electrolysis cell 13 is measured by the flow meter 30.
- the flow meter 30 is in the embodiment in operative connection with two controllable shut-off devices 31 and 32.
- the flow meter 30 can effect the adjustment of the shut-off devices, for example mechanically, hydraulically, but also electrically. If the latter is desired, solenoid valves 31, 32 are used as shut-off devices.
- the shut-off device 31 is inserted in the connecting line 16, the shut-off device 32 in a bypass 33 branching off from the connecting line 16 in front of the shut-off device 31.
- the two shut-off devices are set in such a way that a constant level occurs in the connecting line part 16 'leading to the electrolysis cell Etching solution current sets.
- the volume of etching solution to be introduced into the electrolysis cell per unit of time depends on the amount of metal which can be deposited in the electrolysis cell in the same unit of time.
- the metal ion concentration in the etching solution measured by the device 29 determines the mode of operation of the electrolysis cell.
- the device 29 is operatively connected to a three-way valve 34 inserted at the end of the connecting line part 16 ', to which on the one hand the end piece 1611 of the connecting line 16 leading to the electrolytic cell 13 is connected and on the other hand a bypass line 35 which opens into the bypass 33.
- the three-way valve 34 is open to the electrolysis cell 13. If the metal ion concentration of the etching solution falls below a predetermined value, the three-way valve 34 is switched over. The etching solution then flows through the bypass line 35. The electrolytic cell is switched off.
- etching solution in the electrolysis cell le 13 provides a solution pump 36.
- the solution pump dips with its suction line 37 into the drain container 25, into which the etching solution flows via the overflow 28, and conveys the etching solution back to the electrolysis cell via a filter 38 in its pressure line 39.
- the etching solution enters the electrolysis cell between cathode 14 and anode 17.
- the etching solution is emptied into the drain container 25 by opening the solenoid valve 27.
- the etching solution is conveyed back from the drain container into the electrolysis cell by means of the solution pump 36.
- an etching solution containing ammonium sulfate and copper tetrammine complex is used for etching copper.
- the etching solution depleted of metal ions can serve as a rinsing solution for rinsing the workpieces etched in the etching chamber 1 after the end of the etching treatment.
- the etched workpieces are to be cleaned in particular of catalyst particles still adhering.
- the amount of etching solution required for this can be found in the overflow 24.
- a rinsing line 40 which can be connected to the overflow 24 and which leads to the rinsing chamber 2 is shown in broken lines in FIG. Rinsing chamber 2 and etching chamber 1 are connected to one another in such a way that the etching solution can overflow into the etching chamber after the rinsing process.
- FIG. 1 shows a regeneration system for an etching solution in which catalyst particles are suspended. If the oxygen input via the liquid jet pump and the intensive mixing of the oxygen with the etching solution achieved and its fine distribution are sufficient for rapid reoxidation, the catalyst particles are unnecessary and the system is simplified.
- the filter 4 used in the pressure line 7 is omitted. Instead, as shown in the exemplary embodiment according to FIG. 2, there remains a simple pipe connection 41 between pressure line 7 and connecting line 16.
- the regeneration system has individual parts that correspond unchanged to the design shown in FIG. 1, the same reference numerals in FIG. 2 are as in FIG 1 entered. In addition to the system shown in FIG. 1, the system shown in FIG.
- a condensate line 44 leads from the condenser 42 to the rinsing chamber 2 of the etching system. The water separated in the condenser is used to rinse the etched workpieces.
- the temperature in the electrolyte is regulated in the electrolysis cell with the device 43.
- the amount of water vapor contained in the gas mixture increases with the electrolyte temperature.
- the device 43 essentially serves to cool the electrolysis cell, which heats up during its operation as a result of the passage of current.
- a high temperature constancy is achieved by designing the electrolysis cell with a cooling jacket through which cooling water flows, claim 14.
- the amount of cooling water is regulated as a function of the temperature of the electrolyte.
- an etching solution containing ammonium sulfate and copper tetrammine complex is also used in the system according to FIG. 2 for etching copper.
- a temperature of 75 ° C. is set in the electrolysis cell by cooling the electrolyte when the etched copper is deposited.
- About 5 m 3 / h of gas mixture are sucked out of the gas space above the electrolyte by the liquid jet pump from the electrolysis cell.
- the electrolysis cell is closed, about 1.25 l / h of condensate can be generated from the gas mixture in the condenser as a rinsing agent under these conditions.
- Approx. S00 l / h of oxygen are generated at the anode of the electrolytic cell at a current of 2400 A.
- the etching solution containing copper ions introduced into the electrolytic cell was adjusted to a pH of 9.
- Copper surfaces were etched with a copper tetrammine complex and ammonium sulfate containing etching solution with a copper content of 50 g / 1 and 150 g / 1 (NH 4 ) 2 SO 4 and with a pH value of 9 adjusted with ammonia at a temperature of 50 ° C.
- the potential of the Cu ++ / Cu + redox system dropped from an initial value of 125 mV to approximately -60 mV within 3 1/2 minutes. The reoxidation began after this etching time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Weting (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung, der zur Rückoxidation des in der Ätzlösung enthaltenden Ätzmittels Sauerstoff in Gegenwart eines in der Ätzlösung enthaltenen Katalysators zugeführt wird und die zumindest teilweise zur Rückgewinnung abgeätzten Metalls eine Elektrolysezelle durchströmt, wobei kathodisch Metall abgeschieden wird und an der Anode der Elektrolysezelle Sauerstoff entsteht. Die Erfindung umfaßt auch eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for regenerating an ammoniacal etching solution, which is supplied for the reoxidation of the etchant containing oxygen in the etching solution in the presence of a catalyst contained in the etching solution and which flows through an electrolysis cell, at least partially for the recovery of etched metal, wherein metal is deposited cathodically and oxygen is generated at the anode of the electrolytic cell. The invention also includes an apparatus for performing the method.
Alkalische Ätzmittel werden zum Ätzen metallischer Gegenstände, insbesondere zur Herstellung von Leiterplatten, die auch unter der Bezeichnung "gedruckte Schaltungen" bekannt sind, vor allem dann verwendet, wenn die zu ätzenden Leiterplatten gegen saure Ätzmedien nichtbeständige Metallteile, beispielsweise aus Blei, Zinn oder Nickel, aufweisen. Eine Rückoxidation der alkalischen Ätzlösung nach Abätzen des Metalls wird unter Zugabe von Ammoniakgas und/oder Ammoniumchlorid in Gegenwart von Sauerstoff bzw. Luft durchgeführt.Alkaline etchants are used for etching metallic objects, in particular for the production of printed circuit boards, which are also known under the name "printed circuits", especially when the printed circuit boards to be etched are metal parts which are not resistant to acidic etching media, for example made of lead, tin or nickel, exhibit. A re-oxidation of the alkaline etching solution after etching off the metal is carried out with the addition of ammonia gas and / or ammonium chloride in the presence of oxygen or air.
Aus DE-OS 30 31 567 ist es bekannt, in der Ätzlösung .Katalysatorteilchen zu suspendieren, die das Ätzen selbst, aber auch die Rückoxidation der Ätzlösung beschleunigen und so den Zusatz chemischer Oxidationsmittel ersparen, die zu toxischen Restlösungen führen. Bei dem bekannten Verfahren werden die abgeätzten Metalle in einer Elektrolysezelle abgeschieden. Hierzu durchströmt ein Teil der Ätzlösung,die Ammoniumsulfat aufweist, die Elektrolysezelle. Dabei werden die abgeätzten Metalle an der Kathode der Elektrolysezelle abgeschieden, an der Anode entsteht Sauerstoff.From DE-OS 30 31 567 it is known to suspend catalyst particles in the etching solution, which accelerate the etching itself, but also the reoxidation of the etching solution and thus the addition of chemical ones Spare oxidants that lead to toxic residual solutions. In the known method, the etched metals are deposited in an electrolytic cell. For this purpose, part of the etching solution, which has ammonium sulfate, flows through the electrolytic cell. The etched metals are deposited on the cathode of the electrolytic cell, oxygen is generated on the anode.
Bei dem bekannten Verfahren wird die die Katalysatorteilchen enthaltende Ätzlösung zur Rückoxidation in Luft versprüht. Dies erfolgt unmittelbar in der Ätzkammer durch Aufsprühen der Ätzlösung auf die zu bearbeitenden Werkstücke. Die Rückoxidation mit Luft ist nicht in allen Fällen von Vorteil. Dies insbesondere deshalb nicht, weil der Ätzlösung Ammoniak zur Einstellung ― des pH-Wertes zugegeben wird und Geruchsbelästigungen)durch verdunstendes Ammoniak so gering wie möglich gehalten werden sollen.In the known method, the etching solution containing the catalyst particles is sprayed in air for reoxidation. This is done directly in the etching chamber by spraying the etching solution onto the workpieces to be processed. Back-oxidation with air is not an advantage in all cases. This is not particularly so because ammonia is added to the etching solution to adjust the pH value and odor nuisance) by evaporating ammonia should be kept as low as possible.
Aufgabe der Erfindung ist es, bei einem Verfahren der eingangs genannten Art die Ätzlösung in einfacher Weise intensiv mit einem Gas zu vermengen, das einen hohen Sauerstoffanteil aufweist.The object of the invention is to mix the etching solution intensively with a gas having a high oxygen content in a simple manner in a method of the type mentioned.
Diese Aufgabe wird gemäß der Erfindung durch die in Patentanspruch 1 angegebenen Maßnahmen gelöst. Der Ätzlösung wird der an der Anode der Elektrolysezelle entstehende Sauerstoff zugeführt. Die in die Ätzlösung eingeleiteten Gasanteile, die zur Rückoxidation nichts beitragen, wie beispielsweise die Stickstoffanteile bei Luft, sind gering. In vorteilhafter Weise wird zugleich Sauerstoff genutzt, der in der Elektrolysezelle bei Rückgewinnung des abgeätzten Metalls ) sowie Umweltprobleme entsteht. Zweckmäßig ist es, der Ätzlösung zugleich mit dem Sauerstoff Ammoniak zuzugeben (Patentanspruch 2), um den pH-Wert der Ätzlösung einzustellen. In die Ätzlösung muß so viel Ammoniak zugegeben werden, wie im wesentlichen durch Verdunsten beim Ätzen in der Ätzkammer und beim Regenerieren der Ätzlösung verlorengeht.This object is achieved according to the invention by the measures specified in
Das beim Regenerieren in der Elektrolysezelle in den Gasraum oberhalb des Elektrolyten entweichende Ammoniak läßt sich mit dem abgesaugten Sauerstoff in die Ätzlösung zurückführen. Das Ammoniak wird mit dem Sauerstoff in die Ätzlösung eingetragen und wie der Sauerstoff intensiv mit der Ätzlösung vermengt. Diese intensive Vermengung und feine Verteilung der Sauerstoff enthaltenden Gase beschleunigt die Rückoxidation.The ammonia escaping into the gas space above the electrolyte during regeneration in the electrolysis cell can be returned to the etching solution with the extracted oxygen. The ammonia is introduced into the etching solution with the oxygen and, like the oxygen, is mixed intensively with the etching solution. This intensive mixing and fine distribution of the gases containing oxygen accelerates the reoxidation.
Zur Durchführung des Verfahrens wird gemäß Patentanspruch 3 von einer Regenerieranlage ausgegangen, die einen an einer Ätzkammer anschließbaren Zulauf für aus einer Ätzkammer entnommene Ätzlösung aufweist. Die Ätzlösung wird zu einem Filter geführt, der für Katalysatorteilchen, die in der Ätzlösung suspendiert sind, nicht durchlässig ist. Die Katalysatorteilchen werden aus dem Filter mit Hilfe von Ätzlösung ausgetragen, die über einen Rücklauf erneut in die Ätzkammer einführbar ist. Zur Regenerieranlage gehört eine Elektrolysezelle, in die eine am Filter angeschlossene Verbindungsleitung für als Filtrat gewinnbare, katalysatorteilchenfreie Ätzlösung führt. Die Elektrolysezelle weist einen an der Ätzkammer anschließbaren Ausgang für an Metallionen abgereicherte Ätzlösung auf, die als frische Ätzlösung in die Ätzkammer einleitbar ist. Zur Zufuhr von Sauerstoff in die die Katalysatorteilchen enthaltende Ätzlösung mündet in den Rücklauf zur Ätzkammer eine Sauerstoffleitung, die mit an der Anode der Elektrolysezelle entstehendem Sauerstoff gespeist wird. Eine intensive Vermengung des Sauerstoffs mit der Ätzlösung beschleunigt die Rückoxidation.In order to carry out the method, a regeneration system is assumed according to
Weitere Ausbildungen der Regenerieranlage sind in Patentansprüchen 4 bis 10 angegeben. Danach ist an die Sauerstoffleitung eine absperrbare Zuführung für Ammoniak angeschlossen, so daß zugleich mit der Zugabe des Sauerstoffs der pH-Wert der Ätzlösung reguliert werden kann. Zum Einführen des Sauerstoffs und des Ammoniaks dient eine Flüssigkeitsstrahlpumpe, die im Zulauf zur Ätzkammer eingesetzt ist. Mit der Flüssigkeitsstrahlpumpe wird eine raschere Rückoxidation durch feine Verteilung des Sauerstoffs in der Ätzlösung erreicht. Die Sauerstofleitung mündet am Saugstutzen der Flüssigkeitsstrahlpumpe, die als Arbeitsmittel von der die Katalysatorteilchen enthaltenden Ätzlösung durchströmt wird. In Strömungsrichtung der Ätzlösung gesehen vor der Flüssigkeitsstrahlpumpe ist vom Rücklauf eine Druckentlastungsleitung abgezweigt, die in einem Auffangbehälter für Ätzlösung mündet, der zur Aufnahme der aus der Ätzkammer entnommenen Ätzlösung mit der Ätzkammer verbunden ist. Der Auffangbehälter ist an der Ätzkammer derart angeschlossen, daß die Ätzlösung in den Auffangbehälter in natürlichem Gefälle abfließt.Further designs of the regeneration system are specified in claims 4 to 10. A lockable supply for ammonia is then connected to the oxygen line, so that the pH of the etching solution can be regulated at the same time as the oxygen is added. A liquid jet pump, which is used in the feed to the etching chamber, is used to introduce the oxygen and ammonia. With the liquid jet pump, faster reoxidation is achieved through fine distribution of the oxygen in the etching solution. The oxygen line opens at the suction port of the liquid jet pump, through which the etching solution containing the catalyst particles flows as working medium. Seen in the direction of flow of the etching solution in front of the liquid jet pump, a pressure relief line branches off from the return line and opens into a collecting container for etching solution, which is used for receiving the etching solution removed from the etching chamber is connected to the etching chamber. The collecting container is connected to the etching chamber in such a way that the etching solution flows into the collecting container in a natural gradient.
Zur Erzeugung des erforderlichen Arbeitsmitteldruckes in der Flüssigkeitsstrahlpumpe ist der Filter, dessen Filtrat zur Elektrolysezelle fließt, derart oberhalb der Flüssigkeitsstrahlpumpe angeordnet, daß die die Katalysatorteilchen enthaltende Ätzlösung als Arbeitsmittel in natürlichem Gefälle in die Flüssigkeitsstrahlpumpe eintritt. Der Filter weist hierzu zweckmäßig einen rohrförmigen Filtereinsatz auf, der senkrecht über der Flüssigkeitsstrahlpumpe angeordnet ist.To generate the required working fluid pressure in the liquid jet pump, the filter, the filtrate of which flows to the electrolysis cell, is arranged above the liquid jet pump in such a way that the etching solution containing the catalyst particles enters the liquid jet pump as a working fluid in a natural gradient. For this purpose, the filter expediently has a tubular filter insert which is arranged vertically above the liquid jet pump.
Die intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung darin, die insbesondere durch Einleiten des Sauerstoffs aus dem Gasraum der Elektrolysezelle .mittels der Flüssigkeitsstrahlpumpe erreicht werden, beschleunige die RÜckoxidation der Ätzlösung in einer solchen Weise, daß die in die Ätzlösung zusätzlich eingebrachten Katalysatorteilchen für diejenigen Fälle, in denen es nicht auch auf eine geringe Unter- ätzung des beim Ätzen entstehenden Metallprofils ankommt, entbehrlich sind. Dies vereinfacht das Ätzverfahren. Eine dementsprechende Vorrichtung ist in Patentanspruch 11 angegeben. Sind in der Ätzlösung keine Katalysatorteilchen enthalten, entfällt der die Elektrolysezelle vor dem Eindringen von Katalysatorteilchen schützende Filter.The intensive mixing of oxygen with the etching solution and the fine distribution therein, which are achieved in particular by the introduction of oxygen from the gas space of the electrolysis cell .mittels the liquid jet pump, Accelerati g e is the reoxidation of the etching solution in such a manner that the addition in the etching solution introduced catalyst particles are unnecessary for those cases in which it is not also a matter of a slight under-etching of the metal profile formed during the etching. This simplifies the etching process. A corresponding device is specified in claim 11. If there are no catalyst particles in the etching solution, the electrolytic cell is eliminated before catalyst particles penetrate protective filters.
Um beim Absaugen des Sauerstoffs und Ammoniaks aus dem Gasraum der Elektrolysezelle mitgeschleppten Wasserdampf, noch bevor das Gasgemisch in die Ätzlösung eingebracht wird, wieder abzuscheiden, ist in weiterer Ausgestaltung der Erfindung nach Patentanspruch 12 die am Gasraum oberhalb des Elektrolyten der Elektrolysezelle angeschlossene Sauerstoffleitung über einen Kondensator geführt, in dem das Gasgemisch gekühlt und Wasserdampf ausgeschieden wird. Das kondensierte Wasser wird als Spülwasser für die geätzten Werkstücke verwendet und verringert so die insgesamt benötigte Spülmittelmenge. Die das Kondensat vom Kondensator abführende Kondensatleitung mündet in der letzten Spülkammer der Anlage. Vorteilhaft ist, daß das im Kondensator abgeschiedene Wasser Ammoniak enthält. Bei Eintritt des Kondensats in die Spülkammer kann so keine Hydrolyse des beispielsweise beim Ätzen von Kupfer in der Ätzlösung enthaltenen Kupfertetramminkomplexes unter Abscheidung von Kupferhydroxid oder basischem Kupfersalz auf der bearbeiteten Werkstückoberfläche eintreten.In order to separate water vapor entrained in the gas space of the electrolysis cell when the oxygen and ammonia are sucked out, before the gas mixture is introduced into the etching solution, the oxygen line connected to the gas space above the electrolyte of the electrolysis cell via a capacitor is in a further embodiment of the invention out in which the gas mixture is cooled and water vapor is excreted. The condensed water is used as rinsing water for the etched workpieces and thus reduces the total amount of detergent required. The condensate line that discharges the condensate from the condenser opens into the last rinsing chamber of the system. It is advantageous that the water separated in the condenser contains ammonia. When the condensate enters the rinsing chamber, hydrolysis of the copper tetrammine complex, for example when etching copper in the etching solution, with the deposition of copper hydroxide or basic copper salt on the machined workpiece surface cannot occur.
Die in der Elektrolysezelle entstehende Wasserdampfmenge ist von der Temperatur in der Elektrolysezelle abhängig. Mit steigender Elektrolyttemperatur steigt der Wasserdampfgehalt im Gasraum oberhalb des Elektrolyten, und im Kondensator läßt sich dann mehr Kondensat gewinnen. Durch Einstellen der Temperatur in der Elektrolysezelle ist also die zu erzeugende Kondensatmenge regulierbar, Patentanspruch 13. Die maximale Temperatur in der Elektrolysezelle ist durch den erforderlichen pH-Wert im Elektrolyten begrenzt. Der pH-Wert sinkt mit steigender Temperatur, da der Ammoniakgehalt im Elektrolyten sinkt. Der Elektrolyt muß vor allem zum Schutze der Elektroden alkalisch bleiben.The amount of water vapor generated in the electrolysis cell depends on the temperature in the electrolysis cell. With increasing electrolyte temperature, the water vapor content in the gas space above the electrolyte increases, and more condensate can then be found in the condenser win. By adjusting the temperature in the electrolysis cell, the amount of condensate to be generated can be regulated, claim 13. The maximum temperature in the electrolysis cell is limited by the required pH value in the electrolyte. The pH value drops with increasing temperature because the ammonia content in the electrolyte drops. The electrolyte must remain alkaline, especially to protect the electrodes.
Die Erfindung und weitere Ausgestaltungen der Erfindung werden nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in der Zeichnung schematisch wiedergegeben sind. Es zeigen im einzelnen:
Figur 1 Ätzanlage für eine Ätzlösung mit KatalysatorteilchenFigur 2 Ätzanlage für eine katalysatorteilchenfreie Ätzlösung mit Kondensator zur Erzeugung von SpülwasserFigur 3 Rückoxidationszeit für eine Ätzlösung, in die Sauerstoff mittels einer Flüssigkeitsstrahlpumpe eingetragen wird, im Vergleich mit einer durch Versprühen in der Ätzkammer oxidierten Ätzlösung
- Figure 1 etching system for an etching solution with catalyst particles
- Figure 2 etching system for a catalyst particle-free etching solution with a capacitor for generating rinsing water
- FIG. 3 reoxidation time for an etching solution, into which oxygen is introduced by means of a liquid jet pump, in comparison with an etching solution oxidized by spraying in the etching chamber
In Figur 1 ist eine an eine Ätzkammer 1 mit Spülkammer 2 angeschlossene Regenerieranlage schematisch dargestellt. Die zu regenerierende ammoniakalische Ätzlösung, die Ammoniumsulfat als Ätzmittel und in der Ätzlösung suspendierte Katalysatorteilchen enthält, fließt aus der Ätzkammer 1 1 über einen Zulauf 3 zu einem Filter 4. Die in der Ätzlösung enthaltenen Katalysatorteilchen dienen zur Erhöhung der Ätzgeschwindigkeit und/oder zur Beschleunigung der Rückoxidation der Ätzlösung. Zur Katalyse geeignet sind beispielsweise Aktivkohleteilchen, wie sie in DE-OS 3 031 567 angegeben sind.In Figure 1 is a regeneration system connected to an
Im Ausführungsbeispiel ist der Zulauf 3 an der Ätzkammer 1 derart angeschlossen, daß die Ätzlösung in natürlichem Gefälle aus der Ätzkammer zunächst in einen Auffangbehälter 5 abfließen kann. Vom Auffangbehälter wird sie mittels einer Pumpe 6 über eine Druckleitung 7 zum Filter 4 geführt. Zum Zulauf der Ätzlösung zum Filter gehören somit im Ausführungsbeispiel der Zulauf 3 selbst, der Auffangbehälter 5, die Suspensionspumpe 6 sowie die Druckleitung 7.In the exemplary embodiment, the
Der Filter 4 ist mit einem Filtereinsatz 8 versehen, der für die in der Ätzlösung suspendierten Katalysatorteilchen undurchlässig ist. Der Filtereinsatz 8, der im Ausführungsbeispiel zylinderförmig ausgebildet ist, ist in der Zeichnung strichliniert dargestellt. Der Filter 4 ist senkrecht angeordnet und wird von der Ätzlösung mit Katalysatorteilchen von oben nach unten durchströmt. Vom Filter 4 führt ein Rücklauf 9 zur Ätzkammer 1 zurück. Im Rücklauf 9 wird Katalysatorteilchen enthaltende Ätzlösung geführt. )+ in Verbindung mit KupfertetramminkomplexThe filter 4 is provided with a filter insert 8 which is impermeable to the catalyst particles suspended in the etching solution. The filter insert 8, which is cylindrical in the exemplary embodiment, is shown in broken lines in the drawing. The filter 4 is arranged vertically and the etching solution flows through it with catalyst particles from top to bottom. A
Zur Rückoxidation der zur Ätzkammer zurückströmenden Ätzlösung wird in die Ätzlösung Sauerstoff eingeführt. Hierzu ist in den Rücklauf 9 eine Flüssigkeitsstrahlpumpe 10 eingesetzt, deren Saugstutzen 11 an eine Sauerstoffleitung 12 angeschlossen ist. Als Arbeitsmittel dient der Flüssigkeitsstrahlpumpe die aus dem Filter 4 abströmende, Katalysatorteilchen enthaltende Ätzlösung.To reoxidize the etching solution flowing back to the etching chamber, oxygen is introduced into the etching solution. For this purpose, a
Die Sauerstoffleitung 12 geht von einer Elektrolysezelle 13 aus. Die Elektrolysezelle wird von einem Teil der Ätzlösung zum Abscheiden von in der Ätzkammer abgeätztemMetall an Kathode 14 durchflossen. Der Elektrolysezelle ist katalysatorteilchenfreie Ätzlösung zuzuführen. Hierzu dient eine zwischen Filtratausgang 15 am Filter 4 und Elektrolysezelle 13 angeschlossene Verbindungsleitung 16, 16', 16''. An der Anode 17 der Elektrolysezelle entsteht Sauerstoff. Die Sauerstoffleitung 12 mündet im Gasraum oberhalb des Elektrolyten der Elektrolysezelle und wird so bei Betrieb der Flüssigkeitsstrahlpumpe 10 mit Sauerstoff gespeist. Neben Sauerstoff befinden sich im Gasraum noch Ammoniak und Wasserdampf, die aus dem Elektrolyten ihrem Dampfdruck entsprechend verdunsten.The
In die Sauerstoffleitung 12 führt zur Zufuhr von Ammoniak eine Ammoniakleitung 18, die an einem mittels einer Absperrvorrichtung 19 verschließbaren Vorratsbehälter 20 für Ammoniak angeschlossen ist. Von der Flüssigkeitsstrahlpumpe 10 ist somit mit dem aus der Elektrolysezelle abgesaugten Sauerstoff zugleich frisches Ammoniak in die die Katalysatorteilchen enthaltende Ätzlösung einleitbar, um den pH-Wert der Ätzlösung zu regulieren. Die Absperrvorrichtung 19 steht zu diesem Zweck mit einem in der Verbindungsleitung 16 eingesetzten pH-Wert-Meßgerät 21 mit einer Meßelektrode in Wirkverbindung. Fällt der pH-Wert unter einen vorgegebenen zulässigen Grenzwertab , so wird die Absperrvorrichtung 19 geöffnet und in die Ätzlösung Ammoniak eingeleitet. Das pH-Wert-Meßgerät schaltet die Absperrvorrichtung 19 mit Hilfe elektrischer Steuereinheiten.An
Zwischen Filter 4 und Flüssigkeitsstrahlpumpe 10 mündet in den Rücklauf 9 eine Druckentlastungsleitung 22, die zum Ablauf von Ätzlösung in den Auffangbehälter 5 geführt ist.Between the filter 4 and the
Vom Ausgang 23 der Elektrolysezelle führt ein Überlauf 24 an Metallionen abgereicherte Ätzlösung zur Ätzkammer. Die abgereicherte Ätzlösung wird in der Ätzkammer als frische Ätzlösung mit der Katalysatorteilchen enthaltenden Ätzlösung vermischt.An
Unterhalb der Elektrolysezelle 13 befindet sich ein Ablaufbehälter 25. Er dient der Entleerung der Elektrolysezelle und ist über einen Auslauf 26, der mittels eines Magnetventils 27 absperrbar ist, am Boden der Elektrolysezelle 13 angeschlossen. Ätzlösung kann aus der Elektrolysezelle 13 in den Ablaufbehälter 25 auch über einen zweiten Überlauf 28 einfließen.Underneath the
In der Verbindungsleitung 16 befinden sich neben dem pH-Wert-Meßgerät 21 noch ein Gerät 29 zur Messung der Metallionenkonzentration und ein Durchflußmesser 30.In addition to the pH
Vom Durchflußmesser 30 wird die zur Elektrolysezelle 13 zu leitende Ätzlösungsmenge gemessen. Der Durchflußmesser 30 steht im Ausführungsbeispiel in Wirkverbindung mit zwei regelbaren Absperrorganen 31 und 32. Der Durchflußmesser 30 kann das Verstellen der Absperrorgane beispielsweise mechanisch, hydraulisch, aber auch elektrisch bewirken. Falls letzteres erwünscht ist, werden als Absperrorgane 31, 32 Magnetventile eingesetzt. Von den beiden Absperrorganen ist das Absperrorgan 31 in der Verbindungsleitung 16 eingesetzt, das Absperrorgan 32 in einer vor dem Absperrorgan 31 von der Verbindungsleitung 16 abzweigenden Bypaß 33. Die beiden Absperrorgane werden derart eingestellt, daß sich in dem zur Elektrolysezelle geführten Verbindungsleitungsteil 16' ein konstanter Ätzlösungsstrom einstellt. Das in die Elektrolysezelle einzuführende Ätzlösungsvolumen pro Zeiteinheit ist abhängig von in der Elektrolysezelle in der gleichen Zeiteinheit abscheidbaren Metallmenge.The quantity of etching solution to be conducted to the
Die vom Gerät 29 gemessene Metallionenkonzentration in der Ätzlösung bestimmt die Arbeitsweise der Elektrolysezelle. Das Gerät 29 steht in Wirkverbindung mit einem am Ende des Verbindungsleitungsteils 16' eingesetzten Dreiwegeventil 34, an das einerseits das zur Elektrolysezelle 13 geführte Endstück 1611 der Verbindungsleitung 16 angeschlossen ist und andererseits eine Umgehungsleitung 35, die im Bypaß 33 mündet. Das Dreiwegeventil 34 ist zur Elektrolysezelle 13 hin geöffnet. Fällt die Metallionenkonzentration der Ätzlösung unter einen vorbestimmten Wert, so wird das Dreiwegeventil 34 umgeschaltet. Die Ätzlösung fließt dann über die Umgehungsleitung 35 ab. Die Elektrolysezelle wird abgeschaltet.The metal ion concentration in the etching solution measured by the
Für einen Umlauf von Ätzlösung in der Elektrolysezelle 13 sorgt eine Lösungspumpe 36. Die Lösungspumpe taucht mit ihrer Saugleitung 37 in den Ablaufbehälter 25 ein, in den die Ätzlösung über den Überlauf 28 einfließt, und fördert die Ätzlösung über einen Filter 38 in ihrer Druckleitung 39 zurück zur Elektrolysezelle. Die Ätzlösung tritt im Ausführungsbeispiel zwischen Kathode 14 und Anode 17 in die Elektrolysezelle ein. Nach Abschalten der Elektrolysezelle wird die Ätzlösung durch Öffnen des Magnetventils 27 in den Ablaufbehälter 25 entleert. Vor erneutem Betrieb der Elektrolysezelle wird die Ätzlösung aus dem Ablaufbehälter mittels der Lösungspumpe 36 in die Elektrolysezelle zurückbefördert.For one circulation of etching solution in the
Im Ausführungsbeispiel wird zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. Nach Abscheiden des abgeätzten Metalls an der Kathode und Bildung von Sauerstoff an der Anode kann die von Metallionen abgereicherte Ätzlösung als Spüllösung zum Spülen der in der Ätzkammer 1 geätzten Werkstücke nach Beendigung der Ätzbehandlung dienen. Die geätzten Werkstücke sind insbesondere von noch anhaftenden Katalysatorteilchen zu reinigen. Die hierfür benötigte Ätzlösungsmenge kann dem Überlauf 24 entnommen werden.Eine am Überlauf 24 anschließbare Spülleitung 40, die zur Spülkammer 2 geführt ist, ist in Figur 1 strichliniert dargestellt. Spülkammer 2 und Ätzkammer 1 sind miteinander derart verbunden, daß die Ätzlösung nach dem Spülvorgang in die Ätzkammer überfließen kann.In the exemplary embodiment, an etching solution containing ammonium sulfate and copper tetrammine complex is used for etching copper. After the etched metal has been deposited on the cathode and oxygen has formed on the anode, the etching solution depleted of metal ions can serve as a rinsing solution for rinsing the workpieces etched in the
In Figur 1 ist eine Regenerieranlage für eine Ätzlösung gezeigt, in der Katalysatorteilchen suspendiert sind. Reicht der Sauerstoffeintrag über die Flüssigkeitsstrahlpumpe und die damit erreichte intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung für eine rasche Rückoxidation aus, so sind die Katalysatorteilchen entbehrlich und die Anlage vereinfacht sich. Der in der Druckleitung 7 eingesetzte Filter 4 entfällt. Statt dessen verbleibt, wie im Ausführungsbeispiel nach Figur 2 gezeigt ist, ein einfacher Rohranschluß 41 zwischen Druckleitung 7 und Verbindungsleitung 16. Soweit die Regenerieranlage Einzelteile aufweist, die unverändert der in Figur 1 angegebenen Ausbildung entsprechen, sind in Figur 2 die gleichen Bezugszeichen wie in Figur 1 eingetragen. Ergänzend zu der in Figur 1 dargestellten Anlage enthält die in Figur 2 wiedergegebene Anlage jedoch in der Sauerstoffleitung 12 einen Kondensator 42 und in der Elektrolysezelle 13 eine Einrichtung 43 zur Regelung der Elektrolyttemperatur. Im Kondensator 42 wird Wasserdampf niedergeschlagen, der mit dem noch Sauerstoff und Ammoniak enthaltenden Gasgemisch aus dem Gasraum oberhalb des Elektrolyten der Elektrolysezelle abgesaugt wird. Vom Kondensator 42 führt eine Kondensatleitung 44 zur Spülkammer 2 der Ätzanlage. Das im Kondensator abgeschiedene Wasser wird zum Spülen der geätzten Werkstücke verwendet.FIG. 1 shows a regeneration system for an etching solution in which catalyst particles are suspended. If the oxygen input via the liquid jet pump and the intensive mixing of the oxygen with the etching solution achieved and its fine distribution are sufficient for rapid reoxidation, the catalyst particles are unnecessary and the system is simplified. The filter 4 used in the pressure line 7 is omitted. Instead, as shown in the exemplary embodiment according to FIG. 2, there remains a simple pipe connection 41 between pressure line 7 and connecting
Damit im Kondensator 42 eine ausreichende Kondensatmenge durch Abkühlen des abgesaugten Gasgemisches erzeugbar ist, wird in der Elektrolysezelle mit der Einrichtung 43 die Temperatur im Elektrolyten geregelt. Die im Gasgemisch enthaltene Wasserdampfmenge steigt mit der Elektrolyttemperatur. Die Einrichtung 43 dient im wesentlichen zur Kühlung der Elektrolysezelle, die sich während ihres Betriebes infolge des Stromdurchgangs erwärmt. Eine hohe Temperaturkonstanz wird durch Ausbildung der Elektrolysezelle mit einem von Kühlwasser durchströmten Kühlmantel erreicht, Patentanspruch 14. Die Kühlwassermenge wird in Abhängigkeit von der Temperatur des Elektrolyten geregelt.So that a sufficient amount of condensate in the
Im Ausführungsbeispiel wird auch in der Anlage nach Figur 2 zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. In der Elektrolysezelle wird durch Abkühlen des Elektrolyten beim Abscheiden des abgeätzten Kupfers eine Temperatur von 75 °C eingestellt. Aus dem Gasraum oberhalb des Elektrolyten werden von der Flüssigkeitsstrahlpumpe aus der Elektrolysezelle etwa 5 m3/h Gasgemisch abgesaugt. Bei geschlossener Elektrolysezelle lassen sich unter diesen Bedingungen aus dem Gasgemisch im Kondensator etwa 1,25 1/h Kondensat als Spülmittel erzeugen. An Sauerstoff entstehen an der Anode der Elektrolysezelle bei einem Strom von 2400 A ca. S00 l/h. Die in die Elektrolysezelle eingeführte, Kupferionen enthaltende Ätzlösung war auf einen pH-Wert von 9 eingestellt.In the exemplary embodiment, an etching solution containing ammonium sulfate and copper tetrammine complex is also used in the system according to FIG. 2 for etching copper. A temperature of 75 ° C. is set in the electrolysis cell by cooling the electrolyte when the etched copper is deposited. About 5 m 3 / h of gas mixture are sucked out of the gas space above the electrolyte by the liquid jet pump from the electrolysis cell. When the electrolysis cell is closed, about 1.25 l / h of condensate can be generated from the gas mixture in the condenser as a rinsing agent under these conditions. Approx. S00 l / h of oxygen are generated at the anode of the electrolytic cell at a current of 2400 A. The etching solution containing copper ions introduced into the electrolytic cell was adjusted to a pH of 9.
In Figur 3 sind Rückoxidationszeiten angegeben, wobei Kurve A die Rückoxidation der Ätzlösung beim bloßen Versprühen in der Ätzkammer angibt und mit Kurve B die Rückoxidation durch zusätzliches Einbringen von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe wiedergegeben ist. Die Rückoxidation in der Ätzlösung wird über das Potential des Cu++/Cu+-Redoxsystems gegen eine Kalomel-Bezugselektrode (Hg/Hg2C12/ gesättigt KC1) gemessen.Reoxidation times are given in FIG. 3, curve A indicating the reoxidation of the etching solution when spraying in the etching chamber and curve B representing the reoxidation by additionally introducing oxygen into the etching solution by means of the liquid jet pump. The reoxidation in the etching solution is measured via the potential of the Cu ++ / Cu + redox system against a calomel reference electrode ( Hg / Hg 2 C1 2 / g saturated KC1).
Mit einer Kupfertetramminkomplex und Ammoniumsulfat enthaltenden Ätzlösung mit einem Kupferanteil von 50 g/1 sowie 150 g/1 (NH4)2SO4 und mit einem mit Ammoniak eingestellten pH-Wert von 9 wurden bei einer Temperatur von 50 °C Kupferflachen geätzt. Während des Ätzens sank das Potential des Cu++/Cu+-Redoxsystems innerhalb von 3 1/2 Minuten Ätzzeit von einem Anfangswert von 125 mV auf etwa - 60 mV. Nach dieser Ätzzeit begann die Rückoxidation.Copper surfaces were etched with a copper tetrammine complex and ammonium sulfate containing etching solution with a copper content of 50 g / 1 and 150 g / 1 (NH 4 ) 2 SO 4 and with a pH value of 9 adjusted with ammonia at a temperature of 50 ° C. During the etching, the potential of the Cu ++ / Cu + redox system dropped from an initial value of 125 mV to approximately -60 mV within 3 1/2 minutes. The reoxidation began after this etching time.
Aus Figur 3 ist ersichtlich, daß bei gleichem Kupferabtrag mit der Ätzlösung der intensive Eintrag von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe zu einer deutlich rascheren Rückoxidation führt, als dies beim bloßen Versprühen der Ätzlösung im Ätzraum der Fall ist. So wird beim Eintragen von Sauerstoff mittels der Flüssigkeitsstrahlpumpe ein Potential von + 100 mV schon etwa nach 3 1/2 Min. Rückoxidationszeit (Figur 3: nach 7 Min. Gesamtzeit) erreicht, während sich der gleiche Potentialwert beim Versprühen der Ätzlösung in der Ätzkammer erst nach 10 1/2 Min. einstellt. Saugt man mit der Flüssigkeitsstrahlpumpe statt Sauerstoff aus dem Gasraum der Elektrolysezelle Luft an, so verringert sich die Rückoxidationsgeschwindigkeit bei gleichem Kupferabtrag, die Rückoxidation verläuft aber immer noch erheblich rascher, als bei Rückoxidation nach Kurve A. Die intensive Sauerstoffvermengung mit der Ätzlösung verbessert daher die Regeneration der Ätzlösung durch Oxidation erheblich.It can be seen from FIG. 3 that with the same copper removal with the etching solution, the intensive introduction of oxygen into the etching solution by means of the liquid jet pump leads to a significantly faster reoxidation than is the case when the spraying of the etching solution in the etching space is the case. Thus, when oxygen is introduced by means of the liquid jet pump, a potential of + 100 mV is already reached after about 3 1/2 minutes of reoxidation time (FIG. 3: after 7 minutes of total time), while the same potential value when spraying the etching solution in the etching chamber only after 10 1/2 minutes. If air is sucked in with the liquid jet pump instead of oxygen from the gas space of the electrolytic cell, the reoxidation rate decreases with the same copper removal, but the reoxidation is still considerably faster than with reoxidation according to curve A. The intensive oxygen mixing with the etching solution therefore improves regeneration the etching solution by oxidation considerably.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83111152T ATE34781T1 (en) | 1983-04-13 | 1983-11-08 | PLANT FOR REGENERATION OF AN AMMONIA CAUSTIC SOLUTION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3313293 | 1983-04-13 | ||
DE3313293 | 1983-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0122963A1 true EP0122963A1 (en) | 1984-10-31 |
EP0122963B1 EP0122963B1 (en) | 1988-06-01 |
Family
ID=6196226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111152A Expired EP0122963B1 (en) | 1983-04-13 | 1983-11-08 | Apparatus for regenerating an ammoniacal etching solution |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0122963B1 (en) |
JP (1) | JPS6013083A (en) |
AT (1) | ATE34781T1 (en) |
DE (1) | DE3376853D1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0146798A2 (en) * | 1983-12-13 | 1985-07-03 | Holzer, Walter, Senator h.c. Dr.h.c.Ing. | Process for the environmentally friendly etching of printed circuits, and apparatus for performing the process |
EP0393270A1 (en) * | 1989-04-21 | 1990-10-24 | Ming-Hsing Lee | Process for etching copper with ammoniacal etchant solution and reconditioning the used etchant solution |
WO2013050008A1 (en) * | 2011-10-08 | 2013-04-11 | Christoph Herkle | Etching device for the electrolytic etching of copper |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2449164A1 (en) * | 1979-02-14 | 1980-09-12 | Sogreah | ARTIFICIAL BLOCK FOR MARITIME AND RIVER STRUCTURES |
US5085730A (en) * | 1990-11-16 | 1992-02-04 | Macdermid, Incorporated | Process for regenerating ammoniacal chloride etchants |
US5248398A (en) * | 1990-11-16 | 1993-09-28 | Macdermid, Incorporated | Process for direct electrolytic regeneration of chloride-based ammoniacal copper etchant bath |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2008766B2 (en) * | 1970-02-23 | 1971-07-29 | Licentia Patent Verwaltungs GmbH, 6000 Frankfurt | Regenerating cupric chloride etching - solution enriched with cuprous chloride |
US3705061A (en) * | 1971-03-19 | 1972-12-05 | Southern California Chem Co In | Continuous redox process for dissolving copper |
FR2179267A1 (en) * | 1972-04-05 | 1973-11-16 | Hoellmueller Maschbau H | Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former |
US3785950A (en) * | 1972-05-19 | 1974-01-15 | E Newton | Regeneration of spent etchant |
DE2641905A1 (en) * | 1976-09-17 | 1978-03-23 | Kutscherenko | Electrolytic regeneration of spent etchant - contg. iron and copper chloride(s), esp. from printed circuit boards mfr. to avoid pollution and increase etching power |
EP0046522A1 (en) * | 1980-08-21 | 1982-03-03 | Forschungszentrum Jülich Gmbh | Method for the regeneration of an ammoniacal etchant |
-
1983
- 1983-11-08 DE DE8383111152T patent/DE3376853D1/en not_active Expired
- 1983-11-08 EP EP83111152A patent/EP0122963B1/en not_active Expired
- 1983-11-08 AT AT83111152T patent/ATE34781T1/en active
-
1984
- 1984-04-13 JP JP59073102A patent/JPS6013083A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2008766B2 (en) * | 1970-02-23 | 1971-07-29 | Licentia Patent Verwaltungs GmbH, 6000 Frankfurt | Regenerating cupric chloride etching - solution enriched with cuprous chloride |
US3705061A (en) * | 1971-03-19 | 1972-12-05 | Southern California Chem Co In | Continuous redox process for dissolving copper |
FR2179267A1 (en) * | 1972-04-05 | 1973-11-16 | Hoellmueller Maschbau H | Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former |
US3785950A (en) * | 1972-05-19 | 1974-01-15 | E Newton | Regeneration of spent etchant |
DE2641905A1 (en) * | 1976-09-17 | 1978-03-23 | Kutscherenko | Electrolytic regeneration of spent etchant - contg. iron and copper chloride(s), esp. from printed circuit boards mfr. to avoid pollution and increase etching power |
EP0046522A1 (en) * | 1980-08-21 | 1982-03-03 | Forschungszentrum Jülich Gmbh | Method for the regeneration of an ammoniacal etchant |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0146798A2 (en) * | 1983-12-13 | 1985-07-03 | Holzer, Walter, Senator h.c. Dr.h.c.Ing. | Process for the environmentally friendly etching of printed circuits, and apparatus for performing the process |
EP0146798A3 (en) * | 1983-12-13 | 1986-05-21 | Walter Holzer | Process for the environmentally friendly etching of printed circuits, and apparatus for performing the process |
EP0393270A1 (en) * | 1989-04-21 | 1990-10-24 | Ming-Hsing Lee | Process for etching copper with ammoniacal etchant solution and reconditioning the used etchant solution |
WO2013050008A1 (en) * | 2011-10-08 | 2013-04-11 | Christoph Herkle | Etching device for the electrolytic etching of copper |
CN103975096A (en) * | 2011-10-08 | 2014-08-06 | 克里斯托夫·赫克里 | Etching device for the electrolytic etching of copper |
CN103975096B (en) * | 2011-10-08 | 2016-08-17 | 克里斯托夫·赫克里 | Etching machines for electrolytic etching copper |
Also Published As
Publication number | Publication date |
---|---|
DE3376853D1 (en) | 1988-07-07 |
EP0122963B1 (en) | 1988-06-01 |
ATE34781T1 (en) | 1988-06-15 |
JPS6013083A (en) | 1985-01-23 |
JPH0429745B2 (en) | 1992-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3340343C2 (en) | ||
DE2930194C2 (en) | Device for treating waste water | |
DE3507370C2 (en) | Process for treating exhaust gas | |
DE2652476C2 (en) | Method and device for producing a metal coating on metal workpieces by wet impingement plating | |
DE112012004983T5 (en) | Process for regenerating a coating liquid, coating method and coating apparatus | |
EP0144742B1 (en) | Process and apparatus for regenerating an ammoniacal etching solution | |
EP0046522B1 (en) | Method for the regeneration of an ammoniacal etchant | |
EP0320798B1 (en) | Process for desludging of phosphatizing baths and apparatus for this process | |
DE10326767B4 (en) | A method of regenerating ferrous etchant solutions for use in etching or pickling copper or copper alloys, and an apparatus for performing the same | |
EP0122963B1 (en) | Apparatus for regenerating an ammoniacal etching solution | |
EP1084002B1 (en) | Method and system for cleaning semiconductor elements | |
DE2353469B2 (en) | PROCESS FOR PREPARING A PAINT WATER MIXTURE IN PAINTING PLANTS | |
EP0110111A1 (en) | Method and apparatus for controlling additive dispensers in waste water treatment systems | |
DE2724724C3 (en) | Process and system for treating wastewater containing heavy metals while recovering heavy metals | |
DE3022965A1 (en) | ELECTROCHEMICAL WASTE WATER TREATMENT APPARATUS | |
DE2506378A1 (en) | METHOD AND DEVICE FOR TREATMENT OF EXHAUST GAS | |
DE4141993C2 (en) | Process and device for processing oil-water emulsions with controlled gas supply | |
DE10148632C1 (en) | Method and device for the galvanotechnical treatment of workpieces with a liquid containing precious metals | |
DE102013112302A1 (en) | Device for producing galvanic coatings | |
WO1995023247A2 (en) | Method of electrolytically depositing metals from electrolytes containing organic additives | |
EP3875642A1 (en) | Method for preparing rinsing water from printed circuit board and / or substrate production | |
DE8626617U1 (en) | Device for extracting metals from waste water | |
DE10132349A1 (en) | Vehicle bodywork electrophoretic painting, controls acid removal by dialysis independently, such that anolyte acid can be re-used | |
DE3146953A1 (en) | METHOD AND DEVICE FOR TREATING LIQUIDS BY MAGNETIC FILTRATION | |
DE1808471C3 (en) | Process for the recovery of gold from galvanic washing water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19850424 |
|
17Q | First examination report despatched |
Effective date: 19860410 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 34781 Country of ref document: AT Date of ref document: 19880615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3376853 Country of ref document: DE Date of ref document: 19880707 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 83111152.1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001018 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001030 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001116 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20001122 Year of fee payment: 18 Ref country code: LU Payment date: 20001122 Year of fee payment: 18 Ref country code: CH Payment date: 20001122 Year of fee payment: 18 Ref country code: BE Payment date: 20001122 Year of fee payment: 18 Ref country code: AT Payment date: 20001122 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001123 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
BERE | Be: lapsed |
Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H. Effective date: 20011130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20011108 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83111152.1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |