EP0122963A1 - Anlage zum Regenerieren einer ammoniakalischen Ätzlösung - Google Patents

Anlage zum Regenerieren einer ammoniakalischen Ätzlösung Download PDF

Info

Publication number
EP0122963A1
EP0122963A1 EP83111152A EP83111152A EP0122963A1 EP 0122963 A1 EP0122963 A1 EP 0122963A1 EP 83111152 A EP83111152 A EP 83111152A EP 83111152 A EP83111152 A EP 83111152A EP 0122963 A1 EP0122963 A1 EP 0122963A1
Authority
EP
European Patent Office
Prior art keywords
etching solution
oxygen
etching
line
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83111152A
Other languages
English (en)
French (fr)
Other versions
EP0122963B1 (de
Inventor
Wolfgang Faul
Leander Fürst
Walter Holzer
Bertel Prof. Dr. Kastening
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to AT83111152T priority Critical patent/ATE34781T1/de
Publication of EP0122963A1 publication Critical patent/EP0122963A1/de
Application granted granted Critical
Publication of EP0122963B1 publication Critical patent/EP0122963B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Definitions

  • the invention relates to a method for regenerating an ammoniacal etching solution, which is supplied for the reoxidation of the etchant containing oxygen in the etching solution in the presence of a catalyst contained in the etching solution and which flows through an electrolysis cell, at least partially for the recovery of etched metal, wherein metal is deposited cathodically and oxygen is generated at the anode of the electrolytic cell.
  • the invention also includes an apparatus for performing the method.
  • Alkaline etchants are used for etching metallic objects, in particular for the production of printed circuit boards, which are also known under the name "printed circuits", especially when the printed circuit boards to be etched are metal parts which are not resistant to acidic etching media, for example made of lead, tin or nickel, exhibit.
  • a re-oxidation of the alkaline etching solution after etching off the metal is carried out with the addition of ammonia gas and / or ammonium chloride in the presence of oxygen or air.
  • the etched metals are deposited in an electrolytic cell.
  • part of the etching solution which has ammonium sulfate, flows through the electrolytic cell.
  • the etched metals are deposited on the cathode of the electrolytic cell, oxygen is generated on the anode.
  • the etching solution containing the catalyst particles is sprayed in air for reoxidation. This is done directly in the etching chamber by spraying the etching solution onto the workpieces to be processed. Back-oxidation with air is not an advantage in all cases. This is not particularly so because ammonia is added to the etching solution to adjust the pH value and odor nuisance) by evaporating ammonia should be kept as low as possible.
  • the object of the invention is to mix the etching solution intensively with a gas having a high oxygen content in a simple manner in a method of the type mentioned.
  • the oxygen formed at the anode of the electrolytic cell is fed to the etching solution.
  • the gas fractions introduced into the etching solution which do not contribute to the reoxidation, such as the nitrogen fractions in air, are low.
  • oxygen is advantageously used, that in the electrolysis cell when the etched metal is recovered) and environmental problems arises.
  • ammonia is added to the etching solution at the same time as the oxygen (claim 2) in order to adjust the pH of the etching solution. As much ammonia must be added to the etching solution as is essentially lost through evaporation during the etching in the etching chamber and when the etching solution is regenerated.
  • the ammonia escaping into the gas space above the electrolyte during regeneration in the electrolysis cell can be returned to the etching solution with the extracted oxygen.
  • the ammonia is introduced into the etching solution with the oxygen and, like the oxygen, is mixed intensively with the etching solution. This intensive mixing and fine distribution of the gases containing oxygen accelerates the reoxidation.
  • a regeneration system is assumed according to claim 3, which has an inlet that can be connected to an etching chamber for etching solution removed from an etching chamber.
  • the etching solution is passed to a filter which is not permeable to catalyst particles which are suspended in the etching solution.
  • the catalyst particles are removed from the filter with the aid of etching solution, which can be reinserted into the etching chamber via a return line.
  • the regeneration system includes an electrolysis cell, into which a connection line connected to the filter for a catalyst that can be obtained as filtrate particle-free etching solution leads.
  • the electrolysis cell has an outlet, which can be connected to the etching chamber, for an etching solution depleted in metal ions, which outlet can be introduced into the etching chamber as a fresh etching solution.
  • an oxygen line opens into the return flow to the etching chamber and is fed with oxygen generated at the anode of the electrolytic cell. Intensive mixing of the oxygen with the etching solution accelerates the reoxidation.
  • a lockable supply for ammonia is then connected to the oxygen line, so that the pH of the etching solution can be regulated at the same time as the oxygen is added.
  • a liquid jet pump which is used in the feed to the etching chamber, is used to introduce the oxygen and ammonia. With the liquid jet pump, faster reoxidation is achieved through fine distribution of the oxygen in the etching solution.
  • the oxygen line opens at the suction port of the liquid jet pump, through which the etching solution containing the catalyst particles flows as working medium.
  • a pressure relief line branches off from the return line and opens into a collecting container for etching solution, which is used for receiving the etching solution removed from the etching chamber is connected to the etching chamber.
  • the collecting container is connected to the etching chamber in such a way that the etching solution flows into the collecting container in a natural gradient.
  • the filter To generate the required working fluid pressure in the liquid jet pump, the filter, the filtrate of which flows to the electrolysis cell, is arranged above the liquid jet pump in such a way that the etching solution containing the catalyst particles enters the liquid jet pump as a working fluid in a natural gradient.
  • the filter expediently has a tubular filter insert which is arranged vertically above the liquid jet pump.
  • the oxygen line connected to the gas space above the electrolyte of the electrolysis cell via a capacitor is in a further embodiment of the invention out in which the gas mixture is cooled and water vapor is excreted.
  • the condensed water is used as rinsing water for the etched workpieces and thus reduces the total amount of detergent required.
  • the condensate line that discharges the condensate from the condenser opens into the last rinsing chamber of the system. It is advantageous that the water separated in the condenser contains ammonia.
  • the amount of water vapor generated in the electrolysis cell depends on the temperature in the electrolysis cell. With increasing electrolyte temperature, the water vapor content in the gas space above the electrolyte increases, and more condensate can then be found in the condenser win. By adjusting the temperature in the electrolysis cell, the amount of condensate to be generated can be regulated, claim 13.
  • the maximum temperature in the electrolysis cell is limited by the required pH value in the electrolyte. The pH value drops with increasing temperature because the ammonia content in the electrolyte drops. The electrolyte must remain alkaline, especially to protect the electrodes.
  • FIG 1 is a regeneration system connected to an etching chamber 1 with rinsing chamber 2 shown schematically.
  • the ammoniacal etching solution to be regenerated which contains ammonium sulfate as an etchant and catalyst particles suspended in the etching solution, flows from the etching chamber 11 through an inlet 3 to a filter 4.
  • the catalyst particles contained in the etching solution serve to increase the etching speed and / or to accelerate the Reoxidation of the etching solution.
  • Activated carbon particles such as those specified in DE-OS 3,031,567 are suitable for catalysis.
  • the inlet 3 is connected to the etching chamber 1 in such a way that the etching solution can first of all flow out of the etching chamber into a collecting container 5. It is guided from the collecting container to the filter 4 by means of a pump 6 via a pressure line 7.
  • the supply of the etching solution to the filter thus includes the supply 3 itself, the collecting container 5, the suspension pump 6 and the pressure line 7.
  • the filter 4 is provided with a filter insert 8 which is impermeable to the catalyst particles suspended in the etching solution.
  • the filter 4 is arranged vertically and the etching solution flows through it with catalyst particles from top to bottom.
  • a return 9 from the filter 4 leads back to the etching chamber 1. In the return line 9, an etching solution containing catalyst particles is passed. ) + in connection with copper tetrammine complex
  • a liquid jet pump 10 is inserted in the return 9, the suction port 11 of which is connected to an oxygen line 12.
  • the liquid jet pump uses the etching solution flowing out of the filter 4 and containing catalyst particles as the working medium.
  • the oxygen line 12 starts from an electrolysis cell 13. A portion of the etching solution flows through the electrolytic cell in order to deposit metal etched off in the etching chamber from cathode 14. Catalyst particle-free etching solution is to be fed to the electrolytic cell. A connecting line 16, 16 ', 16' 'connected between the filtrate outlet 15 on the filter 4 and the electrolysis cell 13 is used for this purpose. Oxygen is generated at the anode 17 of the electrolytic cell.
  • the oxygen line 12 opens into the gas space above the electrolyte of the electrolysis cell and is thus supplied with oxygen during operation of the liquid jet pump 10. In addition to oxygen, there is also ammonia and water vapor in the gas space, which evaporate from the electrolyte according to its vapor pressure.
  • An ammonia line 18 leads to the supply of ammonia in the oxygen line 12 and is connected to a storage container 20 for ammonia which can be closed by means of a shut-off device 19.
  • Fresh liquid ammonia can thus be introduced into the etching solution containing the catalyst particles from the liquid jet pump 10 with the oxygen drawn off from the electrolytic cell in order to regulate the pH of the etching solution.
  • the shut-off device 19 is for this purpose with one inserted in the connecting line 16 pH value measuring device 21 with a measuring electrode in operative connection. If the pH falls below a predetermined permissible limit value, the shut-off device 19 is opened and ammonia is introduced into the etching solution.
  • the pH value measuring device switches the shut-off device 19 with the aid of electrical control units.
  • a pressure relief line 22 opens into the return line 9 and is led to the drainage of etching solution in the collecting container 5.
  • An overflow 24 of etching solution depleted in metal ions leads from the outlet 23 of the electrolytic cell to the etching chamber.
  • the depleted etching solution is mixed in the etching chamber as a fresh etching solution with the etching solution containing catalyst particles.
  • a drain container 25 Underneath the electrolysis cell 13 there is a drain container 25. It serves to empty the electrolysis cell and is connected to the bottom of the electrolysis cell 13 via an outlet 26 which can be shut off by means of a solenoid valve 27. Etching solution can also flow from the electrolysis cell 13 into the drain container 25 via a second overflow 28.
  • the connecting line 16 also contains a device 29 for measuring the metal ion concentration and a flow meter 30.
  • the quantity of etching solution to be conducted to the electrolysis cell 13 is measured by the flow meter 30.
  • the flow meter 30 is in the embodiment in operative connection with two controllable shut-off devices 31 and 32.
  • the flow meter 30 can effect the adjustment of the shut-off devices, for example mechanically, hydraulically, but also electrically. If the latter is desired, solenoid valves 31, 32 are used as shut-off devices.
  • the shut-off device 31 is inserted in the connecting line 16, the shut-off device 32 in a bypass 33 branching off from the connecting line 16 in front of the shut-off device 31.
  • the two shut-off devices are set in such a way that a constant level occurs in the connecting line part 16 'leading to the electrolysis cell Etching solution current sets.
  • the volume of etching solution to be introduced into the electrolysis cell per unit of time depends on the amount of metal which can be deposited in the electrolysis cell in the same unit of time.
  • the metal ion concentration in the etching solution measured by the device 29 determines the mode of operation of the electrolysis cell.
  • the device 29 is operatively connected to a three-way valve 34 inserted at the end of the connecting line part 16 ', to which on the one hand the end piece 1611 of the connecting line 16 leading to the electrolytic cell 13 is connected and on the other hand a bypass line 35 which opens into the bypass 33.
  • the three-way valve 34 is open to the electrolysis cell 13. If the metal ion concentration of the etching solution falls below a predetermined value, the three-way valve 34 is switched over. The etching solution then flows through the bypass line 35. The electrolytic cell is switched off.
  • etching solution in the electrolysis cell le 13 provides a solution pump 36.
  • the solution pump dips with its suction line 37 into the drain container 25, into which the etching solution flows via the overflow 28, and conveys the etching solution back to the electrolysis cell via a filter 38 in its pressure line 39.
  • the etching solution enters the electrolysis cell between cathode 14 and anode 17.
  • the etching solution is emptied into the drain container 25 by opening the solenoid valve 27.
  • the etching solution is conveyed back from the drain container into the electrolysis cell by means of the solution pump 36.
  • an etching solution containing ammonium sulfate and copper tetrammine complex is used for etching copper.
  • the etching solution depleted of metal ions can serve as a rinsing solution for rinsing the workpieces etched in the etching chamber 1 after the end of the etching treatment.
  • the etched workpieces are to be cleaned in particular of catalyst particles still adhering.
  • the amount of etching solution required for this can be found in the overflow 24.
  • a rinsing line 40 which can be connected to the overflow 24 and which leads to the rinsing chamber 2 is shown in broken lines in FIG. Rinsing chamber 2 and etching chamber 1 are connected to one another in such a way that the etching solution can overflow into the etching chamber after the rinsing process.
  • FIG. 1 shows a regeneration system for an etching solution in which catalyst particles are suspended. If the oxygen input via the liquid jet pump and the intensive mixing of the oxygen with the etching solution achieved and its fine distribution are sufficient for rapid reoxidation, the catalyst particles are unnecessary and the system is simplified.
  • the filter 4 used in the pressure line 7 is omitted. Instead, as shown in the exemplary embodiment according to FIG. 2, there remains a simple pipe connection 41 between pressure line 7 and connecting line 16.
  • the regeneration system has individual parts that correspond unchanged to the design shown in FIG. 1, the same reference numerals in FIG. 2 are as in FIG 1 entered. In addition to the system shown in FIG. 1, the system shown in FIG.
  • a condensate line 44 leads from the condenser 42 to the rinsing chamber 2 of the etching system. The water separated in the condenser is used to rinse the etched workpieces.
  • the temperature in the electrolyte is regulated in the electrolysis cell with the device 43.
  • the amount of water vapor contained in the gas mixture increases with the electrolyte temperature.
  • the device 43 essentially serves to cool the electrolysis cell, which heats up during its operation as a result of the passage of current.
  • a high temperature constancy is achieved by designing the electrolysis cell with a cooling jacket through which cooling water flows, claim 14.
  • the amount of cooling water is regulated as a function of the temperature of the electrolyte.
  • an etching solution containing ammonium sulfate and copper tetrammine complex is also used in the system according to FIG. 2 for etching copper.
  • a temperature of 75 ° C. is set in the electrolysis cell by cooling the electrolyte when the etched copper is deposited.
  • About 5 m 3 / h of gas mixture are sucked out of the gas space above the electrolyte by the liquid jet pump from the electrolysis cell.
  • the electrolysis cell is closed, about 1.25 l / h of condensate can be generated from the gas mixture in the condenser as a rinsing agent under these conditions.
  • Approx. S00 l / h of oxygen are generated at the anode of the electrolytic cell at a current of 2400 A.
  • the etching solution containing copper ions introduced into the electrolytic cell was adjusted to a pH of 9.
  • Copper surfaces were etched with a copper tetrammine complex and ammonium sulfate containing etching solution with a copper content of 50 g / 1 and 150 g / 1 (NH 4 ) 2 SO 4 and with a pH value of 9 adjusted with ammonia at a temperature of 50 ° C.
  • the potential of the Cu ++ / Cu + redox system dropped from an initial value of 125 mV to approximately -60 mV within 3 1/2 minutes. The reoxidation began after this etching time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Weting (AREA)

Abstract

Zum Regenerieren einer ammoniakalischen Ätzlösung wird einerseits der Ätzlösung Sauerstoff zur Rückoxidation des in der Ätzlösung enthaltenen Ätzmittels zugeführt und andererseits zumindest ein Teil der Ätzlösung in eine Elektrolysezelle geführt, in der das in der Ätzlösung enthaltene abgeätzte Metall kathodisch abgeschieden wird. An der Anode entsteht Sauerstoff. Um eine intensive Vermengung der Ätzlösung mit einem Sauerstoff enthaltenden Gas zu erreichen, wird der an der Anode gebildete Sauerstoff unmittelbar in die Ätzlösung eingeführt. Hierzu dient eine Flüssigkeitsstrahlpumpe (Figure 1, Bezugszeichen 10), deren Saugstutzen (11) mit einer Sauerstoffleitung (12) verbunden ist, die mit an der Anode (17) der Elektrolysezelle (13) entstehendem Sauerstoff gespeist wird. Als Arbeitsmittel dient der FlüssigkeitsStrahlpumpe (10) die Ätzlösung.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung, der zur Rückoxidation des in der Ätzlösung enthaltenden Ätzmittels Sauerstoff in Gegenwart eines in der Ätzlösung enthaltenen Katalysators zugeführt wird und die zumindest teilweise zur Rückgewinnung abgeätzten Metalls eine Elektrolysezelle durchströmt, wobei kathodisch Metall abgeschieden wird und an der Anode der Elektrolysezelle Sauerstoff entsteht. Die Erfindung umfaßt auch eine Vorrichtung zur Durchführung des Verfahrens.
  • Alkalische Ätzmittel werden zum Ätzen metallischer Gegenstände, insbesondere zur Herstellung von Leiterplatten, die auch unter der Bezeichnung "gedruckte Schaltungen" bekannt sind, vor allem dann verwendet, wenn die zu ätzenden Leiterplatten gegen saure Ätzmedien nichtbeständige Metallteile, beispielsweise aus Blei, Zinn oder Nickel, aufweisen. Eine Rückoxidation der alkalischen Ätzlösung nach Abätzen des Metalls wird unter Zugabe von Ammoniakgas und/oder Ammoniumchlorid in Gegenwart von Sauerstoff bzw. Luft durchgeführt.
  • Aus DE-OS 30 31 567 ist es bekannt, in der Ätzlösung .Katalysatorteilchen zu suspendieren, die das Ätzen selbst, aber auch die Rückoxidation der Ätzlösung beschleunigen und so den Zusatz chemischer Oxidationsmittel ersparen, die zu toxischen Restlösungen führen. Bei dem bekannten Verfahren werden die abgeätzten Metalle in einer Elektrolysezelle abgeschieden. Hierzu durchströmt ein Teil der Ätzlösung,die Ammoniumsulfat aufweist, die Elektrolysezelle. Dabei werden die abgeätzten Metalle an der Kathode der Elektrolysezelle abgeschieden, an der Anode entsteht Sauerstoff.
  • Bei dem bekannten Verfahren wird die die Katalysatorteilchen enthaltende Ätzlösung zur Rückoxidation in Luft versprüht. Dies erfolgt unmittelbar in der Ätzkammer durch Aufsprühen der Ätzlösung auf die zu bearbeitenden Werkstücke. Die Rückoxidation mit Luft ist nicht in allen Fällen von Vorteil. Dies insbesondere deshalb nicht, weil der Ätzlösung Ammoniak zur Einstellung ― des pH-Wertes zugegeben wird und Geruchsbelästigungen)durch verdunstendes Ammoniak so gering wie möglich gehalten werden sollen.
  • Aufgabe der Erfindung ist es, bei einem Verfahren der eingangs genannten Art die Ätzlösung in einfacher Weise intensiv mit einem Gas zu vermengen, das einen hohen Sauerstoffanteil aufweist.
  • Diese Aufgabe wird gemäß der Erfindung durch die in Patentanspruch 1 angegebenen Maßnahmen gelöst. Der Ätzlösung wird der an der Anode der Elektrolysezelle entstehende Sauerstoff zugeführt. Die in die Ätzlösung eingeleiteten Gasanteile, die zur Rückoxidation nichts beitragen, wie beispielsweise die Stickstoffanteile bei Luft, sind gering. In vorteilhafter Weise wird zugleich Sauerstoff genutzt, der in der Elektrolysezelle bei Rückgewinnung des abgeätzten Metalls ) sowie Umweltprobleme entsteht. Zweckmäßig ist es, der Ätzlösung zugleich mit dem Sauerstoff Ammoniak zuzugeben (Patentanspruch 2), um den pH-Wert der Ätzlösung einzustellen. In die Ätzlösung muß so viel Ammoniak zugegeben werden, wie im wesentlichen durch Verdunsten beim Ätzen in der Ätzkammer und beim Regenerieren der Ätzlösung verlorengeht.
  • Das beim Regenerieren in der Elektrolysezelle in den Gasraum oberhalb des Elektrolyten entweichende Ammoniak läßt sich mit dem abgesaugten Sauerstoff in die Ätzlösung zurückführen. Das Ammoniak wird mit dem Sauerstoff in die Ätzlösung eingetragen und wie der Sauerstoff intensiv mit der Ätzlösung vermengt. Diese intensive Vermengung und feine Verteilung der Sauerstoff enthaltenden Gase beschleunigt die Rückoxidation.
  • Zur Durchführung des Verfahrens wird gemäß Patentanspruch 3 von einer Regenerieranlage ausgegangen, die einen an einer Ätzkammer anschließbaren Zulauf für aus einer Ätzkammer entnommene Ätzlösung aufweist. Die Ätzlösung wird zu einem Filter geführt, der für Katalysatorteilchen, die in der Ätzlösung suspendiert sind, nicht durchlässig ist. Die Katalysatorteilchen werden aus dem Filter mit Hilfe von Ätzlösung ausgetragen, die über einen Rücklauf erneut in die Ätzkammer einführbar ist. Zur Regenerieranlage gehört eine Elektrolysezelle, in die eine am Filter angeschlossene Verbindungsleitung für als Filtrat gewinnbare, katalysatorteilchenfreie Ätzlösung führt. Die Elektrolysezelle weist einen an der Ätzkammer anschließbaren Ausgang für an Metallionen abgereicherte Ätzlösung auf, die als frische Ätzlösung in die Ätzkammer einleitbar ist. Zur Zufuhr von Sauerstoff in die die Katalysatorteilchen enthaltende Ätzlösung mündet in den Rücklauf zur Ätzkammer eine Sauerstoffleitung, die mit an der Anode der Elektrolysezelle entstehendem Sauerstoff gespeist wird. Eine intensive Vermengung des Sauerstoffs mit der Ätzlösung beschleunigt die Rückoxidation.
  • Weitere Ausbildungen der Regenerieranlage sind in Patentansprüchen 4 bis 10 angegeben. Danach ist an die Sauerstoffleitung eine absperrbare Zuführung für Ammoniak angeschlossen, so daß zugleich mit der Zugabe des Sauerstoffs der pH-Wert der Ätzlösung reguliert werden kann. Zum Einführen des Sauerstoffs und des Ammoniaks dient eine Flüssigkeitsstrahlpumpe, die im Zulauf zur Ätzkammer eingesetzt ist. Mit der Flüssigkeitsstrahlpumpe wird eine raschere Rückoxidation durch feine Verteilung des Sauerstoffs in der Ätzlösung erreicht. Die Sauerstofleitung mündet am Saugstutzen der Flüssigkeitsstrahlpumpe, die als Arbeitsmittel von der die Katalysatorteilchen enthaltenden Ätzlösung durchströmt wird. In Strömungsrichtung der Ätzlösung gesehen vor der Flüssigkeitsstrahlpumpe ist vom Rücklauf eine Druckentlastungsleitung abgezweigt, die in einem Auffangbehälter für Ätzlösung mündet, der zur Aufnahme der aus der Ätzkammer entnommenen Ätzlösung mit der Ätzkammer verbunden ist. Der Auffangbehälter ist an der Ätzkammer derart angeschlossen, daß die Ätzlösung in den Auffangbehälter in natürlichem Gefälle abfließt.
  • Zur Erzeugung des erforderlichen Arbeitsmitteldruckes in der Flüssigkeitsstrahlpumpe ist der Filter, dessen Filtrat zur Elektrolysezelle fließt, derart oberhalb der Flüssigkeitsstrahlpumpe angeordnet, daß die die Katalysatorteilchen enthaltende Ätzlösung als Arbeitsmittel in natürlichem Gefälle in die Flüssigkeitsstrahlpumpe eintritt. Der Filter weist hierzu zweckmäßig einen rohrförmigen Filtereinsatz auf, der senkrecht über der Flüssigkeitsstrahlpumpe angeordnet ist.
  • Die intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung darin, die insbesondere durch Einleiten des Sauerstoffs aus dem Gasraum der Elektrolysezelle .mittels der Flüssigkeitsstrahlpumpe erreicht werden, beschleunige die RÜckoxidation der Ätzlösung in einer solchen Weise, daß die in die Ätzlösung zusätzlich eingebrachten Katalysatorteilchen für diejenigen Fälle, in denen es nicht auch auf eine geringe Unter- ätzung des beim Ätzen entstehenden Metallprofils ankommt, entbehrlich sind. Dies vereinfacht das Ätzverfahren. Eine dementsprechende Vorrichtung ist in Patentanspruch 11 angegeben. Sind in der Ätzlösung keine Katalysatorteilchen enthalten, entfällt der die Elektrolysezelle vor dem Eindringen von Katalysatorteilchen schützende Filter.
  • Um beim Absaugen des Sauerstoffs und Ammoniaks aus dem Gasraum der Elektrolysezelle mitgeschleppten Wasserdampf, noch bevor das Gasgemisch in die Ätzlösung eingebracht wird, wieder abzuscheiden, ist in weiterer Ausgestaltung der Erfindung nach Patentanspruch 12 die am Gasraum oberhalb des Elektrolyten der Elektrolysezelle angeschlossene Sauerstoffleitung über einen Kondensator geführt, in dem das Gasgemisch gekühlt und Wasserdampf ausgeschieden wird. Das kondensierte Wasser wird als Spülwasser für die geätzten Werkstücke verwendet und verringert so die insgesamt benötigte Spülmittelmenge. Die das Kondensat vom Kondensator abführende Kondensatleitung mündet in der letzten Spülkammer der Anlage. Vorteilhaft ist, daß das im Kondensator abgeschiedene Wasser Ammoniak enthält. Bei Eintritt des Kondensats in die Spülkammer kann so keine Hydrolyse des beispielsweise beim Ätzen von Kupfer in der Ätzlösung enthaltenen Kupfertetramminkomplexes unter Abscheidung von Kupferhydroxid oder basischem Kupfersalz auf der bearbeiteten Werkstückoberfläche eintreten.
  • Die in der Elektrolysezelle entstehende Wasserdampfmenge ist von der Temperatur in der Elektrolysezelle abhängig. Mit steigender Elektrolyttemperatur steigt der Wasserdampfgehalt im Gasraum oberhalb des Elektrolyten, und im Kondensator läßt sich dann mehr Kondensat gewinnen. Durch Einstellen der Temperatur in der Elektrolysezelle ist also die zu erzeugende Kondensatmenge regulierbar, Patentanspruch 13. Die maximale Temperatur in der Elektrolysezelle ist durch den erforderlichen pH-Wert im Elektrolyten begrenzt. Der pH-Wert sinkt mit steigender Temperatur, da der Ammoniakgehalt im Elektrolyten sinkt. Der Elektrolyt muß vor allem zum Schutze der Elektroden alkalisch bleiben.
  • Die Erfindung und weitere Ausgestaltungen der Erfindung werden nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in der Zeichnung schematisch wiedergegeben sind. Es zeigen im einzelnen:
    • Figur 1 Ätzanlage für eine Ätzlösung mit Katalysatorteilchen
    • Figur 2 Ätzanlage für eine katalysatorteilchenfreie Ätzlösung mit Kondensator zur Erzeugung von Spülwasser
    • Figur 3 Rückoxidationszeit für eine Ätzlösung, in die Sauerstoff mittels einer Flüssigkeitsstrahlpumpe eingetragen wird, im Vergleich mit einer durch Versprühen in der Ätzkammer oxidierten Ätzlösung
  • In Figur 1 ist eine an eine Ätzkammer 1 mit Spülkammer 2 angeschlossene Regenerieranlage schematisch dargestellt. Die zu regenerierende ammoniakalische Ätzlösung, die Ammoniumsulfat als Ätzmittel und in der Ätzlösung suspendierte Katalysatorteilchen enthält, fließt aus der Ätzkammer 1 1 über einen Zulauf 3 zu einem Filter 4. Die in der Ätzlösung enthaltenen Katalysatorteilchen dienen zur Erhöhung der Ätzgeschwindigkeit und/oder zur Beschleunigung der Rückoxidation der Ätzlösung. Zur Katalyse geeignet sind beispielsweise Aktivkohleteilchen, wie sie in DE-OS 3 031 567 angegeben sind.
  • Im Ausführungsbeispiel ist der Zulauf 3 an der Ätzkammer 1 derart angeschlossen, daß die Ätzlösung in natürlichem Gefälle aus der Ätzkammer zunächst in einen Auffangbehälter 5 abfließen kann. Vom Auffangbehälter wird sie mittels einer Pumpe 6 über eine Druckleitung 7 zum Filter 4 geführt. Zum Zulauf der Ätzlösung zum Filter gehören somit im Ausführungsbeispiel der Zulauf 3 selbst, der Auffangbehälter 5, die Suspensionspumpe 6 sowie die Druckleitung 7.
  • Der Filter 4 ist mit einem Filtereinsatz 8 versehen, der für die in der Ätzlösung suspendierten Katalysatorteilchen undurchlässig ist. Der Filtereinsatz 8, der im Ausführungsbeispiel zylinderförmig ausgebildet ist, ist in der Zeichnung strichliniert dargestellt. Der Filter 4 ist senkrecht angeordnet und wird von der Ätzlösung mit Katalysatorteilchen von oben nach unten durchströmt. Vom Filter 4 führt ein Rücklauf 9 zur Ätzkammer 1 zurück. Im Rücklauf 9 wird Katalysatorteilchen enthaltende Ätzlösung geführt. )+ in Verbindung mit Kupfertetramminkomplex
  • Zur Rückoxidation der zur Ätzkammer zurückströmenden Ätzlösung wird in die Ätzlösung Sauerstoff eingeführt. Hierzu ist in den Rücklauf 9 eine Flüssigkeitsstrahlpumpe 10 eingesetzt, deren Saugstutzen 11 an eine Sauerstoffleitung 12 angeschlossen ist. Als Arbeitsmittel dient der Flüssigkeitsstrahlpumpe die aus dem Filter 4 abströmende, Katalysatorteilchen enthaltende Ätzlösung.
  • Die Sauerstoffleitung 12 geht von einer Elektrolysezelle 13 aus. Die Elektrolysezelle wird von einem Teil der Ätzlösung zum Abscheiden von in der Ätzkammer abgeätztemMetall an Kathode 14 durchflossen. Der Elektrolysezelle ist katalysatorteilchenfreie Ätzlösung zuzuführen. Hierzu dient eine zwischen Filtratausgang 15 am Filter 4 und Elektrolysezelle 13 angeschlossene Verbindungsleitung 16, 16', 16''. An der Anode 17 der Elektrolysezelle entsteht Sauerstoff. Die Sauerstoffleitung 12 mündet im Gasraum oberhalb des Elektrolyten der Elektrolysezelle und wird so bei Betrieb der Flüssigkeitsstrahlpumpe 10 mit Sauerstoff gespeist. Neben Sauerstoff befinden sich im Gasraum noch Ammoniak und Wasserdampf, die aus dem Elektrolyten ihrem Dampfdruck entsprechend verdunsten.
  • In die Sauerstoffleitung 12 führt zur Zufuhr von Ammoniak eine Ammoniakleitung 18, die an einem mittels einer Absperrvorrichtung 19 verschließbaren Vorratsbehälter 20 für Ammoniak angeschlossen ist. Von der Flüssigkeitsstrahlpumpe 10 ist somit mit dem aus der Elektrolysezelle abgesaugten Sauerstoff zugleich frisches Ammoniak in die die Katalysatorteilchen enthaltende Ätzlösung einleitbar, um den pH-Wert der Ätzlösung zu regulieren. Die Absperrvorrichtung 19 steht zu diesem Zweck mit einem in der Verbindungsleitung 16 eingesetzten pH-Wert-Meßgerät 21 mit einer Meßelektrode in Wirkverbindung. Fällt der pH-Wert unter einen vorgegebenen zulässigen Grenzwertab , so wird die Absperrvorrichtung 19 geöffnet und in die Ätzlösung Ammoniak eingeleitet. Das pH-Wert-Meßgerät schaltet die Absperrvorrichtung 19 mit Hilfe elektrischer Steuereinheiten.
  • Zwischen Filter 4 und Flüssigkeitsstrahlpumpe 10 mündet in den Rücklauf 9 eine Druckentlastungsleitung 22, die zum Ablauf von Ätzlösung in den Auffangbehälter 5 geführt ist.
  • Vom Ausgang 23 der Elektrolysezelle führt ein Überlauf 24 an Metallionen abgereicherte Ätzlösung zur Ätzkammer. Die abgereicherte Ätzlösung wird in der Ätzkammer als frische Ätzlösung mit der Katalysatorteilchen enthaltenden Ätzlösung vermischt.
  • Unterhalb der Elektrolysezelle 13 befindet sich ein Ablaufbehälter 25. Er dient der Entleerung der Elektrolysezelle und ist über einen Auslauf 26, der mittels eines Magnetventils 27 absperrbar ist, am Boden der Elektrolysezelle 13 angeschlossen. Ätzlösung kann aus der Elektrolysezelle 13 in den Ablaufbehälter 25 auch über einen zweiten Überlauf 28 einfließen.
  • In der Verbindungsleitung 16 befinden sich neben dem pH-Wert-Meßgerät 21 noch ein Gerät 29 zur Messung der Metallionenkonzentration und ein Durchflußmesser 30.
  • Vom Durchflußmesser 30 wird die zur Elektrolysezelle 13 zu leitende Ätzlösungsmenge gemessen. Der Durchflußmesser 30 steht im Ausführungsbeispiel in Wirkverbindung mit zwei regelbaren Absperrorganen 31 und 32. Der Durchflußmesser 30 kann das Verstellen der Absperrorgane beispielsweise mechanisch, hydraulisch, aber auch elektrisch bewirken. Falls letzteres erwünscht ist, werden als Absperrorgane 31, 32 Magnetventile eingesetzt. Von den beiden Absperrorganen ist das Absperrorgan 31 in der Verbindungsleitung 16 eingesetzt, das Absperrorgan 32 in einer vor dem Absperrorgan 31 von der Verbindungsleitung 16 abzweigenden Bypaß 33. Die beiden Absperrorgane werden derart eingestellt, daß sich in dem zur Elektrolysezelle geführten Verbindungsleitungsteil 16' ein konstanter Ätzlösungsstrom einstellt. Das in die Elektrolysezelle einzuführende Ätzlösungsvolumen pro Zeiteinheit ist abhängig von in der Elektrolysezelle in der gleichen Zeiteinheit abscheidbaren Metallmenge.
  • Die vom Gerät 29 gemessene Metallionenkonzentration in der Ätzlösung bestimmt die Arbeitsweise der Elektrolysezelle. Das Gerät 29 steht in Wirkverbindung mit einem am Ende des Verbindungsleitungsteils 16' eingesetzten Dreiwegeventil 34, an das einerseits das zur Elektrolysezelle 13 geführte Endstück 1611 der Verbindungsleitung 16 angeschlossen ist und andererseits eine Umgehungsleitung 35, die im Bypaß 33 mündet. Das Dreiwegeventil 34 ist zur Elektrolysezelle 13 hin geöffnet. Fällt die Metallionenkonzentration der Ätzlösung unter einen vorbestimmten Wert, so wird das Dreiwegeventil 34 umgeschaltet. Die Ätzlösung fließt dann über die Umgehungsleitung 35 ab. Die Elektrolysezelle wird abgeschaltet.
  • Für einen Umlauf von Ätzlösung in der Elektrolysezelle 13 sorgt eine Lösungspumpe 36. Die Lösungspumpe taucht mit ihrer Saugleitung 37 in den Ablaufbehälter 25 ein, in den die Ätzlösung über den Überlauf 28 einfließt, und fördert die Ätzlösung über einen Filter 38 in ihrer Druckleitung 39 zurück zur Elektrolysezelle. Die Ätzlösung tritt im Ausführungsbeispiel zwischen Kathode 14 und Anode 17 in die Elektrolysezelle ein. Nach Abschalten der Elektrolysezelle wird die Ätzlösung durch Öffnen des Magnetventils 27 in den Ablaufbehälter 25 entleert. Vor erneutem Betrieb der Elektrolysezelle wird die Ätzlösung aus dem Ablaufbehälter mittels der Lösungspumpe 36 in die Elektrolysezelle zurückbefördert.
  • Im Ausführungsbeispiel wird zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. Nach Abscheiden des abgeätzten Metalls an der Kathode und Bildung von Sauerstoff an der Anode kann die von Metallionen abgereicherte Ätzlösung als Spüllösung zum Spülen der in der Ätzkammer 1 geätzten Werkstücke nach Beendigung der Ätzbehandlung dienen. Die geätzten Werkstücke sind insbesondere von noch anhaftenden Katalysatorteilchen zu reinigen. Die hierfür benötigte Ätzlösungsmenge kann dem Überlauf 24 entnommen werden.Eine am Überlauf 24 anschließbare Spülleitung 40, die zur Spülkammer 2 geführt ist, ist in Figur 1 strichliniert dargestellt. Spülkammer 2 und Ätzkammer 1 sind miteinander derart verbunden, daß die Ätzlösung nach dem Spülvorgang in die Ätzkammer überfließen kann.
  • In Figur 1 ist eine Regenerieranlage für eine Ätzlösung gezeigt, in der Katalysatorteilchen suspendiert sind. Reicht der Sauerstoffeintrag über die Flüssigkeitsstrahlpumpe und die damit erreichte intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung für eine rasche Rückoxidation aus, so sind die Katalysatorteilchen entbehrlich und die Anlage vereinfacht sich. Der in der Druckleitung 7 eingesetzte Filter 4 entfällt. Statt dessen verbleibt, wie im Ausführungsbeispiel nach Figur 2 gezeigt ist, ein einfacher Rohranschluß 41 zwischen Druckleitung 7 und Verbindungsleitung 16. Soweit die Regenerieranlage Einzelteile aufweist, die unverändert der in Figur 1 angegebenen Ausbildung entsprechen, sind in Figur 2 die gleichen Bezugszeichen wie in Figur 1 eingetragen. Ergänzend zu der in Figur 1 dargestellten Anlage enthält die in Figur 2 wiedergegebene Anlage jedoch in der Sauerstoffleitung 12 einen Kondensator 42 und in der Elektrolysezelle 13 eine Einrichtung 43 zur Regelung der Elektrolyttemperatur. Im Kondensator 42 wird Wasserdampf niedergeschlagen, der mit dem noch Sauerstoff und Ammoniak enthaltenden Gasgemisch aus dem Gasraum oberhalb des Elektrolyten der Elektrolysezelle abgesaugt wird. Vom Kondensator 42 führt eine Kondensatleitung 44 zur Spülkammer 2 der Ätzanlage. Das im Kondensator abgeschiedene Wasser wird zum Spülen der geätzten Werkstücke verwendet.
  • Damit im Kondensator 42 eine ausreichende Kondensatmenge durch Abkühlen des abgesaugten Gasgemisches erzeugbar ist, wird in der Elektrolysezelle mit der Einrichtung 43 die Temperatur im Elektrolyten geregelt. Die im Gasgemisch enthaltene Wasserdampfmenge steigt mit der Elektrolyttemperatur. Die Einrichtung 43 dient im wesentlichen zur Kühlung der Elektrolysezelle, die sich während ihres Betriebes infolge des Stromdurchgangs erwärmt. Eine hohe Temperaturkonstanz wird durch Ausbildung der Elektrolysezelle mit einem von Kühlwasser durchströmten Kühlmantel erreicht, Patentanspruch 14. Die Kühlwassermenge wird in Abhängigkeit von der Temperatur des Elektrolyten geregelt.
  • Im Ausführungsbeispiel wird auch in der Anlage nach Figur 2 zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. In der Elektrolysezelle wird durch Abkühlen des Elektrolyten beim Abscheiden des abgeätzten Kupfers eine Temperatur von 75 °C eingestellt. Aus dem Gasraum oberhalb des Elektrolyten werden von der Flüssigkeitsstrahlpumpe aus der Elektrolysezelle etwa 5 m3/h Gasgemisch abgesaugt. Bei geschlossener Elektrolysezelle lassen sich unter diesen Bedingungen aus dem Gasgemisch im Kondensator etwa 1,25 1/h Kondensat als Spülmittel erzeugen. An Sauerstoff entstehen an der Anode der Elektrolysezelle bei einem Strom von 2400 A ca. S00 l/h. Die in die Elektrolysezelle eingeführte, Kupferionen enthaltende Ätzlösung war auf einen pH-Wert von 9 eingestellt.
  • In Figur 3 sind Rückoxidationszeiten angegeben, wobei Kurve A die Rückoxidation der Ätzlösung beim bloßen Versprühen in der Ätzkammer angibt und mit Kurve B die Rückoxidation durch zusätzliches Einbringen von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe wiedergegeben ist. Die Rückoxidation in der Ätzlösung wird über das Potential des Cu++/Cu+-Redoxsystems gegen eine Kalomel-Bezugselektrode (Hg/Hg2C12/ gesättigt KC1) gemessen.
  • Mit einer Kupfertetramminkomplex und Ammoniumsulfat enthaltenden Ätzlösung mit einem Kupferanteil von 50 g/1 sowie 150 g/1 (NH4)2SO4 und mit einem mit Ammoniak eingestellten pH-Wert von 9 wurden bei einer Temperatur von 50 °C Kupferflachen geätzt. Während des Ätzens sank das Potential des Cu++/Cu+-Redoxsystems innerhalb von 3 1/2 Minuten Ätzzeit von einem Anfangswert von 125 mV auf etwa - 60 mV. Nach dieser Ätzzeit begann die Rückoxidation.
  • Aus Figur 3 ist ersichtlich, daß bei gleichem Kupferabtrag mit der Ätzlösung der intensive Eintrag von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe zu einer deutlich rascheren Rückoxidation führt, als dies beim bloßen Versprühen der Ätzlösung im Ätzraum der Fall ist. So wird beim Eintragen von Sauerstoff mittels der Flüssigkeitsstrahlpumpe ein Potential von + 100 mV schon etwa nach 3 1/2 Min. Rückoxidationszeit (Figur 3: nach 7 Min. Gesamtzeit) erreicht, während sich der gleiche Potentialwert beim Versprühen der Ätzlösung in der Ätzkammer erst nach 10 1/2 Min. einstellt. Saugt man mit der Flüssigkeitsstrahlpumpe statt Sauerstoff aus dem Gasraum der Elektrolysezelle Luft an, so verringert sich die Rückoxidationsgeschwindigkeit bei gleichem Kupferabtrag, die Rückoxidation verläuft aber immer noch erheblich rascher, als bei Rückoxidation nach Kurve A. Die intensive Sauerstoffvermengung mit der Ätzlösung verbessert daher die Regeneration der Ätzlösung durch Oxidation erheblich.

Claims (14)

1. Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung, der zur Rückoxidation des in der Ätzlösung enthaltenden Ätzmittels Sauerstoff zugeführt wird und die zumindest teilweise zur Rückgewinnung des abgeätzten Metalls eine Elektrolysezelle durchströmt, wobei kathodisch Metall abgeschieden wird und an der Anode Sauerstoff entsteht, dadurch gekennzeichnet , daß der an der Anode gebildete Sauerstoff in die Ätzlösung eingeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß mit dem Sauerstoff zugleich Ammoniak zugegeben wird.
3. Anlage zum Regenerieren einer ammoniakalischen Ätzlösung,-die zur Rückoxidation unter Zufuhr von Sauerstoff Katalysatorteilchen enthält, mit einem Zulauf für aus einer Ätzkammer entnommene Ätzlösung zu einem Filter, der für Katalysatorteilchen in der Ätzlösung nicht durchlässig ist, und einem Rücklauf für Katalysatorteilchen enthaltende Ätzlösung zur Ätzkammer, sowie mit einer Elektrolysezelle, in die eine am Filter angeschlossene Verbindungsleitung für als Filtrat gewinnbare katalysatorteilchenfreie Ätzlösung mündet und die einen an der Ätzkammer anschließbaren Ausgang für an Metallionen abgereicherte Ätzlösung aufweist, dadurch gekenn-zeichnet, daß in den Rücklauf (9) eine Sauerstoff oder ein Sauerstoff enthaltendes Gasgemisch führende Sauerstoffleitung (12) mündet, die mit an der Anode (17) der Elektrolysezelle (13) entstehendem Sauerstoff gespeist wird.
4. Anlage nach Anspruch 3, dadurch gekennzeichnet , daß an die Sauerstoffleitung (12) eine absperrbare Zuführung (18, 19, 20) für Ammoniak angeschlossen ist.
5. Anlage nach Anspruch 3 oder 4, dadurch gekennzeichnet , daß in den Rücklauf (9) eine Flüssigkeitsstrahlpumpe (10) eingesetzt ist, deren--Ar-beitsmittel die Katalysatorteilchen enthaltende-Ätzlösung ist und deren Saugstutzen (11) mit der Sauerstoffleitung (12) verbunden ist.
6. Anlage nach Anspruch 5, dadurch gekennzeichnet , daß im Rücklauf (9) in Strömungsrichtung der Ätzlösung gesehen vor der Flüssigkeitsstrahlpumpe (10) eine Druckentlastungsleitung (22) mündet.
7. Anlage nach Anspruch 6, dadurch gekennzeichnet , daß die Druckentlastungsleitung (22) in einem Auffangbehälter (5) mündet, der zur Aufnahme von aus der Ätzkammer (1) entnommenen Ätzlösung mit der Ätzkammer (1) verbunden ist.
8. Anlage nach Anspruch 7, dadurch gekennzeichnet , daß der Auffangbehälter (5) derart an der Ätzkammer (1) angeschlossen ist, daß die Ätzlösung in den Auffangbehälter (5) in natürlichem Gefälle abfließt.
9. Anlage nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet , daß der Filter (4) derart oberhalb der Flüssigkeitsstrahlpumpe (10) angeordnet ist, daß die Ätzlösung in die Flüssigkeitsstrahlpumpe (10) in natürlichem Gefälle eintritt.
10. Anlage nach Anspruch 9, dadurch gekennzeichnet , daß der Filter (4) einen zylinderförmigen Filtereinsatz (8) aufweist, der senkrecht über der Flüssigkeitsstrahlpumpe (10) angeordnet ist.
11. Anlage zum Regenerieren einer ammoniakalischen Ätzlösung unter Zufuhr von Sauerstoff mit einem Zulauf für aus einer Ätzkammer entnommene Ätzlösung und einem Rücklauf für die Ätzlösung zur Ätzkammer, sowie mit einer Elektrolysezelle, in die eine am Zulauf angeschlossene Verbindungsleitung für zumindest einen Teil der Ätzlösung mündet und die einen an der Ätzkammer anschließbaren Ausgang für an Metallionen abgereicherte Ätzlösung aufweist, dadurch gekennzeichnet , daß in den Rücklauf (9) eine Flüssigkeitsstrahlpumpe (10) eingesetzt ist, deren Arbeitsmittel die Ätzlösung ist und deren Saugstutzen (11) mit einer Sauerstoff oder ein Sauerstoff enthaltendes Gasgemisch führenden Sauerstoffleitung (12) verbunden ist, die mit an der Anode (17) der Elektro- .lysezelle (13) entstehendem Sauerstoff speisbar ist.
12. Anlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnete daß die Sauerstoffleitung (12) am Gasraum oberhalb des Elektrolyten der Elektrolysezelle (13) angeschlossen ist und über einen Kondensator (42) zur Ausscheidung von Wasserdampf aus dem in der Sauerstoffleitung (12) geführten Gasgemisch zum Saugstutzen (11) geführt ist, und daß eine am Kondensator (42) erzeugtes Kondensat abführende Kondensatleitung (44) in einer der Ätzkammer (1) nachgeschalteten Spülkammer (2) mündet.
13. Anlage nach Anspruch 12, dadurch gekennzeichnet , daß zur Erzeugung einer vorgegebenen Kondensatmenge die Elektro- lysezelle (13) mit einer Einrichtung (43) zur Regelung der Elektrolyttemperatur ausgerüstet ist.
14. Anlage nach Anspruch 13, dadurch gekennzeichnet , daß die Elektrolysezelle (13) von einem von Kühlwasser durchströmten Kühlmantel umgeben ist.
EP83111152A 1983-04-13 1983-11-08 Anlage zum Regenerieren einer ammoniakalischen Ätzlösung Expired EP0122963B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83111152T ATE34781T1 (de) 1983-04-13 1983-11-08 Anlage zum regenerieren einer ammoniakalischen aetzloesung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3313293 1983-04-13
DE3313293 1983-04-13

Publications (2)

Publication Number Publication Date
EP0122963A1 true EP0122963A1 (de) 1984-10-31
EP0122963B1 EP0122963B1 (de) 1988-06-01

Family

ID=6196226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83111152A Expired EP0122963B1 (de) 1983-04-13 1983-11-08 Anlage zum Regenerieren einer ammoniakalischen Ätzlösung

Country Status (4)

Country Link
EP (1) EP0122963B1 (de)
JP (1) JPS6013083A (de)
AT (1) ATE34781T1 (de)
DE (1) DE3376853D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146798A2 (de) * 1983-12-13 1985-07-03 Holzer, Walter, Senator h.c. Dr.h.c.Ing. Verfahren zum umweltfreundlichen Ätzen von Leiterplatten und Vorrichtung zur Ausübung des Arbeitsverfahrens
EP0393270A1 (de) * 1989-04-21 1990-10-24 Ming-Hsing Lee Ätzverfahren für Kupfer mit ammoniakalischen Ätzlösungen und Verfahren zur Auffrischung der verbrauchten Lösung
WO2013050008A1 (de) * 2011-10-08 2013-04-11 Christoph Herkle Ätzvorrichtung zum elektrolytischen ätzen von kupfer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2449164A1 (fr) * 1979-02-14 1980-09-12 Sogreah Bloc artificiel pour structures maritimes et fluviales
US5085730A (en) * 1990-11-16 1992-02-04 Macdermid, Incorporated Process for regenerating ammoniacal chloride etchants
US5248398A (en) * 1990-11-16 1993-09-28 Macdermid, Incorporated Process for direct electrolytic regeneration of chloride-based ammoniacal copper etchant bath

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2008766B2 (de) * 1970-02-23 1971-07-29 Licentia Patent Verwaltungs GmbH, 6000 Frankfurt Verfahren zum regenerieren einer kupferhaltigen aetzloesung insbesondere fuer die herstellung von gedruckten schaltungen
US3705061A (en) * 1971-03-19 1972-12-05 Southern California Chem Co In Continuous redox process for dissolving copper
FR2179267A1 (en) * 1972-04-05 1973-11-16 Hoellmueller Maschbau H Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former
US3785950A (en) * 1972-05-19 1974-01-15 E Newton Regeneration of spent etchant
DE2641905A1 (de) * 1976-09-17 1978-03-23 Kutscherenko Verfahren zur regenerierung verbrauchter aetzloesungen
EP0046522A1 (de) * 1980-08-21 1982-03-03 Forschungszentrum Jülich Gmbh Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2008766B2 (de) * 1970-02-23 1971-07-29 Licentia Patent Verwaltungs GmbH, 6000 Frankfurt Verfahren zum regenerieren einer kupferhaltigen aetzloesung insbesondere fuer die herstellung von gedruckten schaltungen
US3705061A (en) * 1971-03-19 1972-12-05 Southern California Chem Co In Continuous redox process for dissolving copper
FR2179267A1 (en) * 1972-04-05 1973-11-16 Hoellmueller Maschbau H Etching copper - with alkaline soln contg ammonium salt for dissolving copper, and complex former
US3785950A (en) * 1972-05-19 1974-01-15 E Newton Regeneration of spent etchant
DE2641905A1 (de) * 1976-09-17 1978-03-23 Kutscherenko Verfahren zur regenerierung verbrauchter aetzloesungen
EP0046522A1 (de) * 1980-08-21 1982-03-03 Forschungszentrum Jülich Gmbh Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146798A2 (de) * 1983-12-13 1985-07-03 Holzer, Walter, Senator h.c. Dr.h.c.Ing. Verfahren zum umweltfreundlichen Ätzen von Leiterplatten und Vorrichtung zur Ausübung des Arbeitsverfahrens
EP0146798A3 (en) * 1983-12-13 1986-05-21 Walter Holzer Process for the environmentally friendly etching of printed circuits, and apparatus for performing the process
EP0393270A1 (de) * 1989-04-21 1990-10-24 Ming-Hsing Lee Ätzverfahren für Kupfer mit ammoniakalischen Ätzlösungen und Verfahren zur Auffrischung der verbrauchten Lösung
WO2013050008A1 (de) * 2011-10-08 2013-04-11 Christoph Herkle Ätzvorrichtung zum elektrolytischen ätzen von kupfer
CN103975096A (zh) * 2011-10-08 2014-08-06 克里斯托夫·赫克里 用于电解蚀刻铜的蚀刻设备
CN103975096B (zh) * 2011-10-08 2016-08-17 克里斯托夫·赫克里 用于电解蚀刻铜的蚀刻设备

Also Published As

Publication number Publication date
DE3376853D1 (en) 1988-07-07
EP0122963B1 (de) 1988-06-01
ATE34781T1 (de) 1988-06-15
JPS6013083A (ja) 1985-01-23
JPH0429745B2 (de) 1992-05-19

Similar Documents

Publication Publication Date Title
DE3340343C2 (de)
DE2930194C2 (de) Vorrichtung zum Aufbereiten von Abwasser
DE3507370C2 (de) Verfahren zur Behandlung von Abgas
DE2652476C2 (de) Verfahren und Vorrichtung zur Herstellung eines Metallüberzuges auf Metallwerkstücken durch Naß-Aufprallplattieren
DE112012004983T5 (de) Verfahren zum Regenerieren einer Beschichtungsflüssigkeit,Beschichtungsverfahren und Beschichtungsvorrichtung
EP0144742B1 (de) Verfahren und Anlage zum Regenerieren einer ammoniakalischen Ätzlösung
EP0046522B1 (de) Verfahren zum Regenerieren einer ammoniakalischen Ätzlösung
EP0320798B1 (de) Verfahren zur Entschlammung von Phosphatierungsbädern und Vorrichtung für dieses Verfahren
DE10326767B4 (de) Verfahren zur Regenerierung von eisenhaltigen Ätzlösungen zur Verwendung beim Ätzen oder Beizen von Kupfer oder Kupferlegierungen sowie eine Vorrichtung zur Durchführung desselben
EP0122963B1 (de) Anlage zum Regenerieren einer ammoniakalischen Ätzlösung
EP1084002B1 (de) Verfahren und anlage zum reinigen von halbleiterelementen
DE2353469B2 (de) Verfahren zur aufbereitung eines lackwasser-gemisches in lackieranlagen
EP0110111A1 (de) Verfahren und Anlage zur Steuerung von Dosiereinrichtungen für Behandlungsmittel in Abwasserreinigungsanlagen
DE2724724C3 (de) Verfahren und Anlage zum Aufbereiten von schwermetallhaltigen Abwässern unter Rückgewinnung von Schwermetallen
DE3022965A1 (de) Apparat zur elektrochemischen abwasserreinigung
DE2506378A1 (de) Verfahren und vorrichtung zum behandeln von abgasen
DE4141993C2 (de) Verfahren und Vorrichtung zur Aufarbeitung von Öl-Wasser-Emulsionen mit geregelter Gaszufuhr
DE10148632C1 (de) Verfahren und Vorrichtung zum galvanotechnischen Behandeln von Werkstücken mit einer Edelmetalle enthaltenden Flüssigkeit
DE102013112302A1 (de) Vorrichtung zur Herstellung galvanischer Überzüge
WO1995023247A2 (de) Verfahren zur elektrolytischen abscheidung von metallen aus elektrolyten mit prozessorganik
EP3875642A1 (de) Verfahren zum aufbereiten eines spülwassers aus der leiterplatten- und/oder substrat-herstellung
DE8626617U1 (de) Vorrichtung zum Extrahieren von Metallen aus Abwässern
DE10132349A1 (de) Verfahren und Anlage zur elektrophoretischen, insbesondere kataphoretischen, Tauchlackierung von Gegenständen
DE3146953A1 (de) Verfahren und vorrichtung zur behandlung von fluessigkeiten durch magnetische filtration
DE1808471C3 (de) Verfahren zur Rückgewinnung von Gold aus galvanischen Waschwässern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850424

17Q First examination report despatched

Effective date: 19860410

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34781

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3376853

Country of ref document: DE

Date of ref document: 19880707

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83111152.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001018

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001030

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001116

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001122

Year of fee payment: 18

Ref country code: LU

Payment date: 20001122

Year of fee payment: 18

Ref country code: CH

Payment date: 20001122

Year of fee payment: 18

Ref country code: BE

Payment date: 20001122

Year of fee payment: 18

Ref country code: AT

Payment date: 20001122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001123

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011108

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H.

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011108

EUG Se: european patent has lapsed

Ref document number: 83111152.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST