EP0320798B1 - Process for desludging of phosphatizing baths and apparatus for this process - Google Patents

Process for desludging of phosphatizing baths and apparatus for this process Download PDF

Info

Publication number
EP0320798B1
EP0320798B1 EP88120522A EP88120522A EP0320798B1 EP 0320798 B1 EP0320798 B1 EP 0320798B1 EP 88120522 A EP88120522 A EP 88120522A EP 88120522 A EP88120522 A EP 88120522A EP 0320798 B1 EP0320798 B1 EP 0320798B1
Authority
EP
European Patent Office
Prior art keywords
sludge
solution
bath
phosphating
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120522A
Other languages
German (de)
French (fr)
Other versions
EP0320798A1 (en
Inventor
Kurt Hosemann
Karl-Heinz Gottwald
Willi Dr. Wüst
Hubert Dr. Harth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Original Assignee
Gerhard Collardin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH filed Critical Gerhard Collardin GmbH
Priority to AT88120522T priority Critical patent/ATE77663T1/en
Publication of EP0320798A1 publication Critical patent/EP0320798A1/en
Application granted granted Critical
Publication of EP0320798B1 publication Critical patent/EP0320798B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/86Regeneration of coating baths

Definitions

  • the invention relates to a process for desludging phosphating baths and an apparatus for carrying out this process.
  • oxidizing components are usually added to the zinc phosphate solutions used for the application of the phosphate layer, which are intended to accelerate the formation of layers on the metal surfaces.
  • iron is dissolved and kept in solution in the form of Fe (II) ions. This is converted into insoluble iron (III) phosphate by the oxidizing agents in the phosphating bath and such precipitates.
  • the amount of iron (III) phosphate sludge in the phosphating bath increases. Sludge components settle on the metal surfaces to be phosphated and prevent sufficient formation of the phosphate layer.
  • the bath solutions for removing the iron (III) phosphate sludge must either be immobilized and freed from the sludge after it has settled, or they will - depending on the bath size - completely new.
  • phosphating baths usually only have a limited service life. Apart from the fact that the bath cannot be used during the settling phase, a new or partial preparation of the phosphating bath means a considerable expenditure of chemicals. It is also disadvantageous that the amounts of iron phosphate sludge always contain more or less large amounts of zinc phosphate solution. The disposal of the zinc-containing sludge is not only very complex, but also not without problems for ecological reasons.
  • an oxidizing accelerator such as ClO3 ⁇ is added to the phosphating baths in an amount which enables the iron (II) content to be adjusted from 0.05 to 1% by weight.
  • the formation of sludge is not prevented and the problem is not generally solved.
  • DE-A-33 45 498 proposes to prevent sludge formation in the phosphating bath in a process for the production of phosphate coatings on iron or steel surfaces by branching off a partial volume of the phosphating solution from the bath tank and this solution in a separate device for precipitation of iron phosphate are mixed with oxidizing agents and the iron phosphate sludge is removed by filtration before the solution is returned to the bath tank.
  • chlorate or hydrogen peroxide is used as the oxidizing agent, but air is also regarded as a suitable oxidizing agent, but this process is described as unusable for practical use.
  • the reaction proceeds comparatively slowly, unless one works under increased pressure. This requires a pressure-resistant design of the separate reaction vessel. Such an expenditure on equipment is therefore not economical.
  • US Pat. No. 3,992,300 also describes a device or a method for the formation of phosphate sludges by oxidation and for the separation of these sludges from the phosphating solution.
  • the oxidation of the iron (II) ions and the precipitation of the phosphate sludge takes place by supplying air into the actual phosphating bath, which is constantly kept in motion by a stirring unit.
  • Part of the phosphating solution - together with the sludge suspended in it - is continuously removed from the phosphating bath and transferred to four additional containers connected in series. These additional containers are used to sediment the sludge and to separate it from the phosphating solution, which is then returned to the phosphating bath.
  • the first of these containers is also equipped with a stirring unit and a gassing unit. If there is an increased iron content in the phosphating bath, in addition to the air entry in the phosphating bath, further air is introduced into the phosphating solution with stirring in this first container.
  • this first container does not serve as a settling container for the sludge formed, but rather as an additional aeration and precipitation container; the sludge is then sedimented exclusively in the following containers.
  • GB-A-2 114 161 also relates to the separation of phosphate sludges from phosphating solutions.
  • the phosphate sludge is obtained in the actual phosphating bath, which has no separate gassing unit. Part of the phosphating solution together with the sludge suspended therein is continuously drained from the phosphating bath in order to allow the sludge to settle in another container.
  • This sedimentation chamber contains separating surfaces in the manner of a lamella or parallel plate separator. The phosphating solution freed from the sludge is then returned to the actual phosphating bath.
  • the object of the present invention is to develop a method and a device with the aid of which it is possible to branch off phosphating solutions containing iron (II) ions from the bath tank and aerated in a separate, open device.
  • the proposed method makes it possible to prevent the concentration of iron (II) ions in the bath from increasing to the critical value at which precipitation and subsequently sludge formation begin.
  • it works so quickly that the iron phosphate sludge can be completely removed from phosphating solutions, thus not only extending the service life of the phosphating baths, but also extending them as required.
  • the invention also relates to a device for carrying out said method with separate chambers for the oxidation of the oxidizable bath components, devices for supplying the oxidizing agent and for supplying, removing and moving the solution and for removing the iron phosphate sludge formed, which is characterized in that it follows
  • Plant parts comprises: an oxidation chamber (11) with inlet connection (12) and a gassing unit (13), a sludge conditioning chamber (15) which communicates with the oxidation chamber (11) through the overflow (14) and a device (17) for Stirring of the solution comprises devices to force the flow direction (16), a sedimentation chamber (19) which communicates with the sludge conditioning chamber (15) through the overflow (18), the sedimentation of the sludge carried by the flow in a sludge teat ( 20) with separate sludge drain (23) and for separating the sludge has a plurality of separating surfaces (24) arranged essentially parallel to the direction of flow.
  • the process according to the invention serves to desludge phosphating baths which work “on the iron side”, that is to say contain relatively weak oxidizing agents as accelerators, which convert only a small amount of the iron detached from the metal surface into the trivalent state and are thus responsible for only a small amount of sludge formation .
  • relatively weak oxidizing agents as accelerators which convert only a small amount of the iron detached from the metal surface into the trivalent state and are thus responsible for only a small amount of sludge formation .
  • the method according to the invention it is successfully possible to connect a separate device "in the bypass” to the phosphating bath and to continuously branch off a partial volume of the phosphating solution from the bath tank.
  • Which proportion by volume of the actual phosphating bath "in the bypass” is fed to the separate device according to the invention depends on the dimensioning of the bath and, of course, also on the volume of the device. It is preferably dimensioned such that a partial volume of 10 to 30% of the total volume can be branched out of the phosphating bath and this volume is then fed to the separate device.
  • the separate device is dimensioned so that the total bath volume is statistically once can pass through the separate device in the course of a day, whereby dissolved iron (II) is oxidized, precipitated and the precipitated iron (III) phosphate sludge can be separated off.
  • This can be achieved in an advantageous manner that the service life of a phosphating bath can be extended as desired and, in particular, it is no longer necessary to discard the phosphating bath after a certain time in which more or less large amounts of sludge impair the quality of the deposited layers must be or the whole bathroom has to be re-prepared because the deposition of zinc-containing layers in the required quality can no longer be guaranteed.
  • the branched-off partial volume of the phosphating solution is fed to the first chamber 11 of a separate device 1 having three open chambers.
  • the first chamber is commonly referred to as an "oxidation chamber" 11.
  • the supply takes place through the supply opening 12 in an amount which is in equilibrium with the cleaned amounts of phosphating solution running off at the outlet opening 22. It is possible according to the invention to adjust the supply of phosphating solution containing iron (II) phosphate to a volume flow of any size, which ensures complete oxidation of the iron contained in the solution and its precipitation as iron (III) phosphate as well as complete separation of the formed ferrous sludge made possible by sedimentation.
  • the phosphating solution is gassed with a gas containing O2.
  • oxidizing agents for oxidizing iron (II) to iron (III) known from the prior art the procedure has the advantage that no expensive chemicals are required to effect the oxidation process.
  • form of the iron (III) phosphate precipitating under the influence of the oxidizing agent is essentially dependent on the nature of the oxidizing agent.
  • "hard" accelerators such as NO2, ClO3 or H2O2 added as an oxidizing agent
  • zinc-iron-phosphate slurries are formed in the form of large-volume flakes which float in the solution and are very difficult to sediment.
  • the gas containing O2 is fed to the oxidation chamber 11 via a gassing unit 13 with a central flow and a porous surface.
  • This gassing unit can, for example, have a tubular basic shape in which the gas containing O2 flows inside the tube and through more or less large openings in the surface penetrates to the outside.
  • a sintered polypropylene hose is used as the gassing unit.
  • the sintered polypropylene tube used as the gassing unit 13 preferably has an average pore size of 0.10 to 5.0 ⁇ m, with polypropylene tubes having an average pore size of 0.12 to 0.30 ⁇ m being used with particular advantage. This is because they have good permeability and guarantee the formation of gas bubbles in the fineness required for the oxidation process.
  • gases from the group O2 air and air enriched with O2 can be used in preferred embodiments of the method.
  • air is particularly preferred for economic reasons because of its easy availability.
  • the gas containing O2 is supplied in an amount such that the amount of elemental oxygen required for the oxidation process takes place in the range from 0.01 to 100 mol / h.
  • the amount of gas supplied is naturally based on the flow rate of the phosphating solution through the device 1 according to the invention.
  • the oxidation process is illustrated by the following reaction equation:
  • the iron oxidized in the course of the listed reaction equation to iron (III) originating from the metal surface to be phosphated reacts with phosphate anions to form insoluble iron (III) phosphate, which is the essential component of the bath sludge.
  • This, together with the phosphating solution, is fed from below to the device for forcibly guiding the flow direction 16, which can be, for example, a so-called deflecting baffle, at a certain distance above the bottom of the oxidation chamber 11, in which the sludge-containing solution rises.
  • the sludge-containing solution leaves the oxidation chamber 11 and is guided downward in the sludge conditioning chamber 15 by the device for the forced guidance of the flow direction 16. It enters the interior of the sludge conditioning chamber 15 at the lower end of the device 16.
  • the resulting iron phosphate sludge is conditioned in the sludge conditioning chamber 15. This is done to make it more sedimentable.
  • the solution with the iron (III) -phosphate sludge contained therein is in the sludge conditioning chamber 15 touched.
  • any flake-like precipitate agglomerates into more sedimentable grains.
  • such grains must not exceed an average size which would cause the solution to sink, since otherwise the sludge would sediment to a considerable extent in the sludge conditioning chamber.
  • Another advantageous effect of the stirring process in the sludge conditioning chamber 15 can be seen in the fact that the gaseous oxygen contained in the solution is more or less completely expelled.
  • the stirring speed is preferably set to 100 to 300 rpm.
  • the phosphating solution which is conditioned in this way and contains good sedimentable sludge grains then flows through the overflow 18 between the sludge conditioning chamber 15 and the sedimentation chamber 19 again to a device for forced guidance of the flow direction 16, for example a so-called deflection baffle to which the solution feeds the bottom of the sedimentation chamber 19.
  • the device 16 mentioned is also mounted at a certain distance from the bottom of the sedimentation chamber 19.
  • the flow volume which was accelerated by the comparatively small volume of the sludge conditioning chamber 15, is slowed down by the significantly larger volume of the sedimentation chamber 19. It is thereby achieved that in the sedimentation chamber the easily sedimentable sludge grains either sediment immediately into the sludge teat 20 or a more or less large piece with the solution is carried up to the separating surfaces 24 of the sedimentation chamber.
  • This construction similar to a conventional lamella separator, ensures that a relatively rapid flow of flow occurs in the middle between the separating surfaces 24, while the flow is slowed in the vicinity of the separating surfaces and also enables the sedimentable sludge grains to be deposited and gravity along the Slip partitions down.
  • this preferred embodiment of the method in which the separation surfaces 24 in the sedimentation chamber 19 are flowed from below, it is achieved that almost the entire amount of sludge already sits in the lower separation surface region and is not even carried up near the drain opening 22.
  • the well sedimenting sludge gradually collects in the sludge teat 20 and can be drawn off from the sedimentation chamber 19 via a separate sludge drain 23.
  • the sludge-free solution is then discharged via the overflow edge 21, which can be a conventional serrated strip, for example 22 fed and removed by this from the inventive device for desludging phosphating baths 1.
  • This solution which is depleted of layer-forming components, is supplemented with aqueous solutions which make it possible to adjust the acid ratio and the concentrations of the components essential for the layer formation.
  • the desludged solution is mixed with aqueous solutions which adjust the acid ratio to a range from 7 to 15 and the concentrations of phosphoric acid to a range from 10 to 40 g.
  • the phosphoric acid in amounts of 300 to 700 g. l ⁇ 1, nitric acid in amounts of 30 to 300 g. l ⁇ 1, nickel (II) nitrate in amounts of 0 to 50 g. l ⁇ 1, Cu (OH) 2.
  • CuCO3 in amounts of 0 to 3 g.
  • the amount of zinc required for re-sharpening is therefore lower than for the solutions for re-sharpening phosphating solutions described in the prior art, because the process for desludging the phosphating baths according to the invention virtually eliminates the layer-forming component zinc is not withdrawn.
  • the desludged aqueous solution supplemented with the components required for the layer formation is fed back to the phosphating bath, while a partial volume of the same is again branched off and in a continuous process of the separate device having three open chambers is fed.
  • the device 1 shows a top view of the device according to the invention for carrying out the process for desludging phosphating baths.
  • the device 1 consists essentially of three chambers, of which the first chamber is referred to as the oxidation chamber 11, the second chamber as the sludge conditioning chamber 15 and the third chamber as the sedimentation chamber 19.
  • the volume of the three chambers mentioned is different. They have a volume ratio in the range from 1: 0.05: 10 to 1: 1: 1, preferably a volume ratio of 1: 0.5: 5, the volumes of the chambers being in the order of oxidation chamber 11 / sludge conditioning chamber 15 / sedimentation chamber 19 are mentioned.
  • the partial volume of the phosphating solution to be desludged branched off from the phosphating bath is supplied to the oxidation chamber 11 via the feed opening 12.
  • the fumigation takes place with a gas containing O2, which is supplied to the oxidation chamber 11 via the fumigation unit 13.
  • the gassing unit 13 is preferably a tubular device with a central flow and a porous surface. This is connected to a pressure pump which is able to supply the gassing unit 13 an O2-containing gas, air in preferred embodiments.
  • a sintered polypropylene hose is used with particular advantage as the gassing unit 13. Processes for sintering such propylene polymers and the resulting products are known from the prior art and do not require any further explanation here.
  • a hose called Accurel-Rohr® PP from Enka AG has proven itself as a sintered polypropylene material.
  • the sintered polypropylene tube of commercial provenance preferably has an average pore size in the range from 0.10 to 5.0 ⁇ m, with the pore size from 0.12 to 0.30 ⁇ m being particularly preferred.
  • this material is able to supply oxygen or an O2-containing gas in the form of tiny gas bubbles to the oxidation chamber.
  • tiny gas pearls can be used for a practical, rapid oxidation of all the oxidizable iron (II) ions in the phosphating solution to form iron (III), which is subsequently precipitated as iron (III) phosphate.
  • a pressure-resistant apparatus is in no way necessary for this.
  • the pearls of oxygen or gas containing O2 rise at normal pressure in the oxidation chamber 11 of the open apparatus 1 or are dissolved in the aqueous phase until saturation at normal pressure and the operating temperature.
  • the operating temperature is usually in the range of 40 to 60 ° C.
  • the solution saturated with oxygen and containing iron phosphate is transferred via the Device 16 for forcibly guiding the flow direction is fed to the overflow between the oxidation chamber 11 and the sludge conditioning chamber 15 and is guided in this in the downward direction.
  • the devices 16 for forcibly guiding the flow direction are deflection baffles in the form of U-shaped profiles, which are attached at a certain distance from the bottom of the respective chambers and can therefore be flowed from below with the solution.
  • the inner sides of the U-shaped profiles of the devices 16 face the overflow 14, which makes it possible to supply the solution from the bottom to the top of the overflow 14 on the side of the oxidation chamber 11, while from the top to the side of the sludge conditioning chamber 15 is guided below and leaves the device 16 for positive guidance of the flow direction at the lower end and enters the sludge conditioning chamber 15.
  • the sludge conditioning chamber 15 is equipped with a device 17 for stirring the solution.
  • This device preferably consists of a controllable agitator, the number of revolutions to 100 to 300 U. min ⁇ 1 can be set.
  • the sludge-containing solution leaves the sludge conditioning chamber 15 through the overflow 18 located at its upper end. In this case, due to the relatively small volume of the chamber 15, such sludge particles are also entrained comparatively large grains are agglomerated.
  • the solution is guided downward by the device 16 for the forced guidance of the flow direction, which is preferably also a deflection baffle in the form of a U-shaped profile, the inside of the profile facing the overflow 18.
  • This device 16 is also mounted at a certain distance from the bottom of the sedimentation chamber 19, so that the solution can enter the sedimentation chamber 19 at the lower end.
  • FIGS. 2 and 3 A comparable run of the solution up to this point also results from FIGS. 2 and 3, in which the same numbers were used for the same device parts as in FIG. 1.
  • the solution with the conditioned sludge particles enters the sedimentation chamber 19 at the lower end of the device 16 for the forced guidance of the flow direction, where - because of the larger chamber volume, but also because of different possibilities of the flow guidance -
  • the flow of the solution to the sludge conditioning chamber 15 slows down.
  • larger sludge particles can sink into the sludge teat 20 immediately after entering the sedimentation chamber and do not even rise to the separating surfaces 24 of the sedimentation chamber 19.
  • Slightly lighter sludge grains are led through the flow into the area between the separating surfaces 24 of the sedimentation chamber 19.
  • the walls of the mud teat 20 also have an inclination 32 to the bath surface or to an imaginary parallel to the bath surface 30 of ⁇ 35 °.
  • the more or less granular sludge particles sink successively by gravity in the sludge teat 20 down to the sludge outlet 23 and can be separated there separately.
  • the sludge drainage device 23 arranged at the lower end of the sludge teat 20 has its own pressure cleaning system, which makes it possible to remove incrustations or deposits of iron phosphate sludge that may have occurred in the area of the drain 23 under pressure.
  • water is supplied to the pressure cleaning system 23, which enables cleaning in a satisfactory manner.
  • a pressure cleaning system can, for. B. be a cleaning nozzle operated with water under increased pressure.
  • the aqueous bath medium freed from sludge particles runs over the serrated strip 21, which is shown in FIG. 4 in a greatly enlarged form, in particular through the V-shaped valleys 28 of the serrated strip 21, to the outlet opening 22, which also carries the phosphating solution freed from the sludge after re-sharpening feeds the components required for the phosphating back to the phosphating bath.
  • the device 1 according to the invention is manufactured from polypropylene.
  • the main advantage of using polypropylene is that the material is completely hydrophobic and does not allow polar solution components to settle on the surface of the device 1 and thus cause incrustations. This can be seen in contrast to conventional devices, in which it always had to be expected that solution components would undergo chemical reactions with the material of the device and thus irreversibly change or cause incrustations, which would lead to malfunctions in the operation of the device.
  • the polypropylene material of the device is completely smooth on the side that comes into contact with the solution constituents in order to also completely mechanically exclude the possibility of attack by the surface of the solution constituents, in particular the granular iron (III) phosphate deposits.
  • the device according to the invention alone, but also in connection with the method described above, has Compared to the prior art, there are a number of advantages in terms of process technology, some of which have already been explained in detail in the preceding description.
  • the iron (III) phosphate sludge does not arise in the bath, but is, surprisingly, exclusively in the oxidation chamber 11 and by the oxidation with oxygen-containing gases, in particular by air oxidation the sludge conditioning chamber 15 of the device according to the invention.
  • Working according to the invention at ambient pressure has proven to be possible and efficient.
  • the service life of the baths is extended practically indefinitely by the procedure according to the invention.
  • the method according to the invention was also used for the person skilled in the art surprisingly can also re-sharpen the solutions with corresponding aqueous solutions which enable the desired ratios or concentrations to be re-established in the bath. This ensures that the process parameters are fully consistent over the entire phosphating process, and there are always precisely defined phosphating layers that are identical in their layer composition.
  • the process according to the invention and the treatment in the device described in more detail above also ensure that the iron (III) phosphate sludge formed by the oxidation process with fine-bubbled, oxygen-containing gases is easily settled and does not, as usual, form voluminous flakes in the whole solution is distributed and possibly washed out.
  • the treatment with the fine-pearled, oxygen-containing gases produces granular, finely dispersed sludges, which are further improved in their sedimentation properties by the conditioning in the sludge conditioning chamber 15.
  • Another advantage is that in those cases in which the phosphated parts are subsequently subjected to a drawing or pressing process, the surfaces of the metallic bodies are treated with drawing soaps after the phosphating process, which essentially consist of alkali metal stearates.
  • the effect of these is influenced by the entry of Ca2 Maschinen ions (by hard water) and by Fe ions (by iron in an increased concentration in the phosphating solutions), since insoluble calcium or iron stearates form.
  • Such metallic impurities from iron ions are then reduced if the iron concentration is removed by continuous precipitation of the iron formed in the form of iron (III) phosphate.
  • the drawing soaps applied after the phosphating can then take full effect.
  • the phosphating solution contained the components Zn2+, phosphate and nitrate in the following amounts: 21.1 g. l ⁇ 1 Zn2+; 20.6 g. l ⁇ 1 phosphate and 33.0 g. l ⁇ 1 nitrate.
  • the iron (II) content of the bath solution could be brought to 3.0 g by the continuous by-pass operation of the plant according to the invention, described in more detail above. l ⁇ 1 are kept constant.
  • the phosphating solution contained the components Zn2+, phosphate and nitrate, initially in the following amounts: 18.0 g. l ⁇ 1 Zn2+; 30.0 g. l ⁇ 1 phosphate and 22.0 g. l ⁇ 1 nitrate.
  • the concentration of the three components mentioned was maintained by supplementing with resharpening solutions which had the following composition: 192 g. l ⁇ 1 Zn2+; 600 g. l ⁇ 1 phosphate and 80 g. l ⁇ 1 nitrate.
  • iron (II) could be oxidized to iron (III) from the phosphating solutions carried in the by-pass through the apparatus according to the invention, precipitated as iron (III) phosphate and as such via the outlet 23 of the mud teat 20 (see Figures 1 to 3) can be removed.

Abstract

The invention relates to a process for desludging phosphatizing baths, in which a part volume of the phosphatizing solution is fed continuously to an apparatus which has three open chambers and in the oxidation chamber of which an O2-containing gas is passed into the solution, after which the resulting iron phosphate sludge is conditioned in the sludge conditioning chamber and is separated off and disposed of in the sedimentation chamber and thereafter the solution having a lower content of layer-forming components is supplemented with aqueous solutions which permit the acidity and the concentration of the layer-forming components to be adjusted to the desired range. The invention also relates to an apparatus for carrying out the process, which has an oxidation chamber 11 having a gassing unit 13, a sludge conditioning chamber 15 and a sedimentation chamber 19, the individual chambers communicating with one another via overflows 14 and 18, and the sedimentation chamber 19 permitting the deposition of the sludge via several partitions 24 arranged essentially parallel to the direction of flow into a sludge nipple 20 having a separate sludge discharge 23. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Entschlammung von Phosphatierungsbädern und eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a process for desludging phosphating baths and an apparatus for carrying out this process.

In Verfahren zur Aufbringung von Phosphatüberzügen auf Metalloberflächen werden den für die Aufbringung der Phosphatschicht verwendeten Zinkphosphatlösungen üblicherweise oxidierende Komponenten zugesetzt, die die Schichtausbildung auf den Metalloberflächen beschleunigen sollen. Bei der Phosphatierung von Eisen- und Stahloberflächen wird Eisen gelöst und in Form von Fe(II)-Ionen in Lösung gehalten. Dieses wird durch die Oxidationsmittel im Phosphatierungsbad in unlösliches Eisen(III)-Phosphat überführt und solches ausgefällt. Nach einer gewissen Zeit der Anwendung steigt die Menge an Eisen(III)-Phosphat-Schlamm im Phosphatierungsbad. Schlammbestandteile setzen sich auf den zu phosphatierenden Metalloberflächen ab und behindern eine genügende Ausbildung der Phosphatschicht. Um dies zu verhindern, müssen nach mehr oder weniger kurzer Zeit der Verwendung eines Phosphatierungsbads ("Standzeit") die Badlösungen zur Entfernung des Eisen(III)-Phosphatschlamms entweder ruhig gestellt und nach Absitzen des Schlamms von diesem befreit werden, oder sie werden - je nach Badgröße - völlig neu angesetzt.In processes for applying phosphate coatings on metal surfaces, oxidizing components are usually added to the zinc phosphate solutions used for the application of the phosphate layer, which are intended to accelerate the formation of layers on the metal surfaces. When phosphating iron and steel surfaces, iron is dissolved and kept in solution in the form of Fe (II) ions. This is converted into insoluble iron (III) phosphate by the oxidizing agents in the phosphating bath and such precipitates. After a certain period of use, the amount of iron (III) phosphate sludge in the phosphating bath increases. Sludge components settle on the metal surfaces to be phosphated and prevent sufficient formation of the phosphate layer. To do this To prevent, after a more or less short period of use of a phosphating bath ("service life"), the bath solutions for removing the iron (III) phosphate sludge must either be immobilized and freed from the sludge after it has settled, or they will - depending on the bath size - completely new.

Überlicherweise haben Phosphatierungsbäder - in Abhängigkeit vom Materialdurchsatz - nur begrenzte Standzeiten. Abgesehen davon, daß das Bad während der Absetzphase nicht benutzt werden kann, bedeutet ein Neuansetzen oder Teilansetzen des Phosphatierungsbades einen erheblichen Aufwand an Chemikalien. Nachteilig ist es außerdem, daß die anfallenden Mengen an Eisenphosphatschlamm immer mehr oder weniger große Mengen an Zinkphosphat-Lösung enthalten. Die Entsorgung der zinkhaltigen Schlämme ist jedoch nicht nur sehr aufwendig, sondern auch aus ökologischen Gründen nicht unproblematisch.Depending on the material throughput, phosphating baths usually only have a limited service life. Apart from the fact that the bath cannot be used during the settling phase, a new or partial preparation of the phosphating bath means a considerable expenditure of chemicals. It is also disadvantageous that the amounts of iron phosphate sludge always contain more or less large amounts of zinc phosphate solution. The disposal of the zinc-containing sludge is not only very complex, but also not without problems for ecological reasons.

Im Stand der Technik sind zahlreiche Ansätze beschrieben, wie die mit dem Anfallen größerer Eisenphosphat-Schlammengen auftretenden Probleme beseitigt werden könnten. So werden den Bädern verschiedene, den Phosphatiervorgang nicht beeinflussende Komponenten zugesetzt, um eine Schlammbildung zu unterdrücken. So wird beispielsweise gemäß der GB-A- 996 418 Harnstoff zugesetzt, wodurch die Temperatur des Phosphatiervorgangs erhöht werden kann, ohne eine wesentlich stärkere Schlammbildung in Kauf nehmen zu müssen. Dadurch wird zwar der Durchsatz erhöht und damit die auf den Durchsatz bezogene Standzeit verlängert; trotzdem bildet sich im Laufe der Zeit der übliche Eisenphosphatschlamm in gleicher Menge.Numerous approaches have been described in the prior art as to how the problems arising with the accumulation of larger amounts of iron phosphate sludge could be eliminated. For example, various components that do not influence the phosphating process are added to the baths in order to suppress sludge formation. For example, according to GB-A-996 418, urea is added, as a result of which the temperature of the phosphating process can be increased without having to accept much more sludge formation. As a result, the throughput is increased and thus the service life related to the throughput is extended; still forms the usual amount of iron phosphate sludge over time.

Gemäß der EP-A-45 110 wird den Phosphatierungsbädern ein oxidierender Beschleuniger wie ClO₃⁻ in einer Menge zugesetzt, die eine Einstellung des Eisen(II)-Gehalts von 0,05 bis 1 Gew.-% ermöglicht. Auch hierbei wird die Bildung von Schlamm nicht verhindert und damit das Problem nicht generell gelöst.According to EP-A-45 110 an oxidizing accelerator such as ClO₃⁻ is added to the phosphating baths in an amount which enables the iron (II) content to be adjusted from 0.05 to 1% by weight. Here, too, the formation of sludge is not prevented and the problem is not generally solved.

In der DE-A-33 45 498 wird vorgeschlagen, in einem Verfahren zur Herstellung von Phosphatüberzügen auf Eisen- oder Stahloberflächen einer Schlammbildung im Phosphatierungsbad dadurch vorzubeugen, daß man ein Teilvolumen der Phosphatierungslösung aus dem Badbehälter abzweigt und diese Lösung in einer separaten Vorrichtung zur Fällung von Eisenphosphat mit Oxidationsmitteln versetzt und den Eisenphosphatschlamm vor einer Rückführung der Lösung in den Badbehälter durch Filtration entfernt. Entsprechend der genannten Druckschrift wird als Oxidationsmittel Chlorat oder Wasserstoffperoxid verwendet, aber auch Luft als geeignetes Oxidationsmittel angesehen, dieses Verfahren jedoch für die praktische Anwendung als unbrauchbar geschildert. Bei einer Oxidation durch Luft verlaufe die Reaktion vergleichsweise langsam, es sei denn, es werde unter erhöhtem Druck gearbeitet. Dies erfordere eine druckfeste Ausbildung des separaten Reaktionsgefäßes. Ein derartiger apparativer Aufwand sei deswegen nicht wirtschaftlich.DE-A-33 45 498 proposes to prevent sludge formation in the phosphating bath in a process for the production of phosphate coatings on iron or steel surfaces by branching off a partial volume of the phosphating solution from the bath tank and this solution in a separate device for precipitation of iron phosphate are mixed with oxidizing agents and the iron phosphate sludge is removed by filtration before the solution is returned to the bath tank. According to the cited document, chlorate or hydrogen peroxide is used as the oxidizing agent, but air is also regarded as a suitable oxidizing agent, but this process is described as unusable for practical use. In the case of oxidation by air, the reaction proceeds comparatively slowly, unless one works under increased pressure. This requires a pressure-resistant design of the separate reaction vessel. Such an expenditure on equipment is therefore not economical.

In der US-A-3 992 300 wird gleichfalls eine Vorrichtung, beziehungsweise ein Verfahren zur Ausbildung von Phosphatschlämmen durch Oxidation sowie zur Abtrennung dieser Schlämme von der Phosphatierungslösung beschrieben. Die Oxidation der Eisen(II)-Ionen und die Ausfällung der Phosphatschlämme erfolgt hierbei durch Zuführung von Luft in das eigentliche Phosphatierungsbad, welches durch ein Rühraggregat ständig in Bewegung gehalten wird. Kontinuierlich wird ein Teil der Phosphatierungslösung - zusammen mit dem darin suspendierten Schlamm - aus dem Phosphatierungsbad abgeleitet und in vier zusätzliche, hintereinander geschaltete Behälter überführt. Diese zusätzlichen Behälter dienen zur Sedimentation des Schlammes sowie zur Abtrennung desselben von der Phosphatierungslösung, die anschließend wieder in das Phosphatierungsbad zurückgeführt wird. Der erste dieser Behälter ist jedoch gleichfalls mit einem Rühraggregat und einer Begasungseinheit ausgestattet. Bei einem erhöhten Eisengehalt im Phosphatierungsbad wird nämlich - zusätzlich zum Lufteintrag im Phosphatierungsbad - weitere Luft in diesem ersten Behälter in die Phosphatierungslösung unter Rühren eingeleitet. In diesem Falle dient somit dieser erste Behälter nicht als Absetzbehälter für den gebildeten Schlamm, sondern vielmehr als zusätzlicher Belüftungs- und Fällungsbehälter; die Sedimentation des Schlammes erfolgt dann ausschließlich in den nachfolgenden Behältern.US Pat. No. 3,992,300 also describes a device or a method for the formation of phosphate sludges by oxidation and for the separation of these sludges from the phosphating solution. The oxidation of the iron (II) ions and the precipitation of the phosphate sludge takes place by supplying air into the actual phosphating bath, which is constantly kept in motion by a stirring unit. Part of the phosphating solution - together with the sludge suspended in it - is continuously removed from the phosphating bath and transferred to four additional containers connected in series. These additional containers are used to sediment the sludge and to separate it from the phosphating solution, which is then returned to the phosphating bath. However, the first of these containers is also equipped with a stirring unit and a gassing unit. If there is an increased iron content in the phosphating bath, in addition to the air entry in the phosphating bath, further air is introduced into the phosphating solution with stirring in this first container. In this case, this first container does not serve as a settling container for the sludge formed, but rather as an additional aeration and precipitation container; the sludge is then sedimented exclusively in the following containers.

Die GB-A-2 114 161 betrifft ebenfalls die Abtrennung von Phosphatschlämmen aus Phosphatierlösungen. Bei dem hier beschriebenen Verfahren fallen die Phosphatschlämme im eigentlichen Phosphatierbad, das keine separate Begasungseinheit aufweist, an. Kontinuierlich wird ein Teil der Phosphatierlösung zusammen mit dem darin suspendierten Schlamm aus dem Phosphatierbad abgeleitet, um den Schlamm in einem weiteren Behälter absitzen zu lassen. Diese Sedimentationskammer enthält Trennflächen nach Art eines Lamellen- oder Parallelplattenseparators. Anschließend wird die vom Schlamm befreite Phospatierlösung in das eigentliche Phosphatierbad zurückgeführt.GB-A-2 114 161 also relates to the separation of phosphate sludges from phosphating solutions. In the process described here, the phosphate sludge is obtained in the actual phosphating bath, which has no separate gassing unit. Part of the phosphating solution together with the sludge suspended therein is continuously drained from the phosphating bath in order to allow the sludge to settle in another container. This sedimentation chamber contains separating surfaces in the manner of a lamella or parallel plate separator. The phosphating solution freed from the sludge is then returned to the actual phosphating bath.

Demgegenüber ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Vorrichtung zu entwickeln, mit deren Hilfe es möglich ist, Eisen(II)-Ionen enthaltende Phosphatierungslösungen aus dem Badbehälter abzuzweigen und in einer separaten, offenen Vorrichtung mit Luft zu versetzen. Das vorgeschlagene Verfahren ermöglicht es, ein Ansteigen der Konzentration an Eisen(II)-Ionen im Bad bis auf den kritischen Wert, bei dem die Ausfällung und nachfolgend die Schlammbildung beginnt, zu verhindern. Außerdem arbeitet es so schnell, daß der Eisenphosphatschlamm aus Phosphatierungslösungen vollständig entfernt werden kann und damit die Standzeit der Phosphatierungsbäder nicht nur verlängert, sondern beliebig ausgedehnt werden kann.In contrast, the object of the present invention is to develop a method and a device with the aid of which it is possible to branch off phosphating solutions containing iron (II) ions from the bath tank and aerated in a separate, open device. The proposed method makes it possible to prevent the concentration of iron (II) ions in the bath from increasing to the critical value at which precipitation and subsequently sludge formation begin. In addition, it works so quickly that the iron phosphate sludge can be completely removed from phosphating solutions, thus not only extending the service life of the phosphating baths, but also extending them as required.

Die Erfindung betrifft ein Verfahren zur Entschlammung von Phosphatierungsbädern durch Abzweigen eines Teilvolumens der Phosphatierungslösung aus dem Badbehälter, Versetzen des abgezweigten Teilvolumens mit Oxidationsmittel in einer separaten Vorrichtung zwecks Fällung des in der Lösung enthaltenen Eisens als Eisenphosphat und Rückführen der von Eisenphosphatschlamm befreiten Lösung in den Badbehälter unter Einstellen der Badparameter auf die erwünschten Werte, welches dadurch gekennzeichnet ist, daß man

  • (a) kontinuierlich
  • (b) ein Teilvolumen der Phosphatierungslösung einer drei offene Kammern aufweisenden separaten Vorrichtung zuführt, in deren Oxidationskammer die Lösung mit einem O₂ enthaltenden Gas begast wird, wonach in der Schlammkonditionierungskammer der entstandene Eisenphosphatschlamm unter Rühren konditioniert und in der Sedimentationskammer abgetrennt und beseitigt wird und
  • (c) die an schichtbildenden Komponenten verarmte Lösung mit wäßrigen Lösungen ergänzt, die eine Einstellung des Säureverhältnisses und der Konzentrationen an für die Schichtbildung essentiellen Komponenten ermöglichen, und
  • (d) die Lösung anschließend wieder dem Phosphatierungsbad zuführt.
The invention relates to a process for the desludging of phosphating baths by branching off a partial volume of the phosphating solution from the bath tank, placing the branched partial volume with oxidizing agent in a separate device for the purpose of precipitating the iron contained in the solution as iron phosphate and returning the solution freed from iron phosphate sludge to the bath tank below Setting the bath parameters to the desired values, which is characterized in that one
  • (a) continuously
  • (b) a partial volume of the phosphating solution is fed to a separate device having three open chambers, in the oxidation chamber of which the solution is gassed with an O₂-containing gas, after which the resulting iron phosphate sludge is conditioned in the sludge conditioning chamber with stirring and separated and removed in the sedimentation chamber and
  • (c) the solution depleted of layer-forming components is supplemented with aqueous solutions which make it possible to adjust the acid ratio and the concentrations of components essential for layer formation, and
  • (d) the solution is then returned to the phosphating bath.

Die Erfindung betrifft außerdem eine Vorrichtung zur Durchführung des genannten Verfahrens mit getrennten Kammern zur Oxidation der oxidierbaren Badbestandteile, Vorrichtungen zur Zufuhr des Oxidationsmittels und zur Zufuhr, Abfuhr und zum Bewegen der Lösung sowie zur Entfernung des gebildeten Eisenphosphatschlammms, die dadurch gekennzeichnet ist, daß sie folgende Anlagenteile aufweist: eine Oxidationskammer (11) mit Zulaufanschluß (12) und einer Begasungseinheit (13), eine Schlammkonditionierungskammer (15), die mit der Oxidationskammer (11) durch den Überlauf (14) in kommunizierender Verbindung steht und eine Vorrichtung (17) zum Rühren der Lösung umfaßt, Vorrichtungen zur Zwangsführung der Strömungsrichtung (16), eine Sedimentationskammer (19), die mit der Schlammkonditionierungskammer (15) durch den Überlauf (18) in kommunizierender Verbindung steht, die Sedimentation des durch die Strömung mitgeführten Schlammes in einer Schlammzitze (20) mit separatem Schlammablauf (23) ermöglicht und zur Abscheidung des Schlamms mehrere im wesentlichen parallel zur Strömungsrichtung angeordnete Trennflächen (24) aufweist.The invention also relates to a device for carrying out said method with separate chambers for the oxidation of the oxidizable bath components, devices for supplying the oxidizing agent and for supplying, removing and moving the solution and for removing the iron phosphate sludge formed, which is characterized in that it follows Plant parts comprises: an oxidation chamber (11) with inlet connection (12) and a gassing unit (13), a sludge conditioning chamber (15) which communicates with the oxidation chamber (11) through the overflow (14) and a device (17) for Stirring of the solution comprises devices to force the flow direction (16), a sedimentation chamber (19) which communicates with the sludge conditioning chamber (15) through the overflow (18), the sedimentation of the sludge carried by the flow in a sludge teat ( 20) with separate sludge drain (23) and for separating the sludge has a plurality of separating surfaces (24) arranged essentially parallel to the direction of flow.

Das erfindungsgemäße Verfahren zur Entschlammung von Phosphatierungsbädern und die zur Durchführung des Verfahrens vorgesehene erfindungsgemäße Vorrichtung werden nachfolgend anhand der Fig. 1 bis 4 beschrieben. Es zeigen:

Fig. 1
eine Aufsicht von oben auf die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens,
Fig. 2
eine Seitenansicht der Längsseite der Vorrichtung,
Fig. 3
eine Seitenansicht der Querseite der Vorrichtung und
Fig. 4
eine Detailansicht der in den Fig. 1 und 2 schematisch gezeichneten Überlaufkante 21.
The process according to the invention for desludging phosphating baths and the device according to the invention provided for carrying out the process are described below with reference to FIGS. 1 to 4. Show it:
Fig. 1
a top view of the device according to the invention for performing the method,
Fig. 2
a side view of the long side of the device,
Fig. 3
a side view of the transverse side of the device and
Fig. 4
a detailed view of the overflow edge 21 shown schematically in FIGS. 1 and 2.

Das erfindungsgemäße Verfahren dient zur Entschlammung von Phosphatierungsbädern, die "auf der Eisenseite" arbeiten, also relativ schwache Oxidationsmittel als Beschleuniger enthalten, die nur eine geringe Menge des von der Metalloberfläche abgelösten Eisens in den dreiwertigen Zustand überführen und so für eine nur geringe Schlammbildung verantwortlich sind. Mit derartigen Verfahren werden dünne oder auch dicke, zinkhaltige Schichten abgeschieden, wie sie bei der Phosphatierung von Draht, Rohren oder Kaltfließ-Press-Teilen erwünscht werden.The process according to the invention serves to desludge phosphating baths which work “on the iron side”, that is to say contain relatively weak oxidizing agents as accelerators, which convert only a small amount of the iron detached from the metal surface into the trivalent state and are thus responsible for only a small amount of sludge formation . With such methods, thin or thick, zinc-containing layers are deposited, as are desired in the phosphating of wire, tubes or cold extrusion parts.

Entsprechend dem erfindungsgemäßen Verfahren ist es erfolgreich möglich, eine separate Vorrichtung "im Bypass" zum Phosphatierungsbad zu schalten und kontinuierlich ein Teilvolumen der Phosphatierungslösung aus dem Badbehälter abzuzweigen. Welcher Volumenanteil aus dem eigentlichen Phosphatierungsbad "im Bypass" der erfindungsgemäßen separaten Vorrichtung zugeführt wird, hängt von der Dimensionierung des Bades und natürlicherweise auch vom Volumen der Vorrichtung ab. In bevorzugter Weise wird diese so dimensioniert, daß man ein Teilvolumen von 10 bis 30 % des Gesamtvolumens aus dem Phosphatierungsbad abzweigen kann und dieses Volumen dann der separaten Vorrichtung zugeführt wird. Mit besonderem Vorteil wird die separate Vorrichtung so dimensioniert, daß das gesamte Badvolumen statistisch einmal im Verlauf eines Tages die separate Vorrichtung passieren kann, wobei gelöstes Eisen(II) oxidiert, ausgefällt und der ausgefallene Eisen(III)-Phosphatschlamm abgetrennt werden kann. Damit läßt sich in vorteilhafter Weise erreichen, daß die Standzeit eines Phosphatierungsbades beliebig ausgedehnt werden kann und es insbesondere nicht mehr erforderlich ist, das Phosphatierungsbad nach einer gewissen Zeit, in der mehr oder weniger große Schlammengen für eine Beeinträchtigung der Qualität der abgeschiedenen Schichten sorgen, verworfen werden muß oder das ganze Bad neu anzusetzen ist, weil die Abscheidung von zinkhaltigen Schichten in der erforderlichen Qualität nicht mehr gewährleistet werden kann.According to the method according to the invention, it is successfully possible to connect a separate device "in the bypass" to the phosphating bath and to continuously branch off a partial volume of the phosphating solution from the bath tank. Which proportion by volume of the actual phosphating bath "in the bypass" is fed to the separate device according to the invention depends on the dimensioning of the bath and, of course, also on the volume of the device. It is preferably dimensioned such that a partial volume of 10 to 30% of the total volume can be branched out of the phosphating bath and this volume is then fed to the separate device. With particular advantage, the separate device is dimensioned so that the total bath volume is statistically once can pass through the separate device in the course of a day, whereby dissolved iron (II) is oxidized, precipitated and the precipitated iron (III) phosphate sludge can be separated off. This can be achieved in an advantageous manner that the service life of a phosphating bath can be extended as desired and, in particular, it is no longer necessary to discard the phosphating bath after a certain time in which more or less large amounts of sludge impair the quality of the deposited layers must be or the whole bathroom has to be re-prepared because the deposition of zinc-containing layers in the required quality can no longer be guaranteed.

Das abgezweigte Teilvolumen der Phosphatierungslösung wird in einem ersten Verfahrensschritt der ersten Kammer 11 einer drei offene Kammern aufweisenden separaten Vorrichtung 1 zugeführt. Die erste Kammer wird üblicherweise als "Oxidationskammer" 11 bezeichnet. Die Zufuhr erfolgt durch die Zufuhröffnung 12 in einer Menge, die im Gleichgewicht mit der an der Ablauföffnung 22 ablaufenden, gereinigten Mengen an Phosphatierungslösung steht. Dabei ist es erfindungsgemäß möglich, die Zufuhr an Eisen(II)-Phosphat enthaltender Phosphatierungslösung auf einen Volumenstrom beliebiger Größe einzustellen, der eine vollständige Oxidation des in der Lösung enthaltenen Eisens und seine Ausfällung als Eisen(III)-Phosphat sowie eine vollständige Abtrennung des gebildeten eisenhaltigen Schlamms durch Sedimentation ermöglicht.In a first process step, the branched-off partial volume of the phosphating solution is fed to the first chamber 11 of a separate device 1 having three open chambers. The first chamber is commonly referred to as an "oxidation chamber" 11. The supply takes place through the supply opening 12 in an amount which is in equilibrium with the cleaned amounts of phosphating solution running off at the outlet opening 22. It is possible according to the invention to adjust the supply of phosphating solution containing iron (II) phosphate to a volume flow of any size, which ensures complete oxidation of the iron contained in the solution and its precipitation as iron (III) phosphate as well as complete separation of the formed ferrous sludge made possible by sedimentation.

In der Oxidationskammer 11 wird die Phosphatierungslösung mit einem O₂ enthaltenden Gas begast. Diese Verfahrensweise bringt gegenüber der aus dem Stand der Technik bekannten Zugabe von Oxidationsmitteln zur Oxidation des Eisens(II) zu Eisen(III) den Vorteil, daß keine teuren Chemikalien zum Bewirken des Oxidationsvorgangs erforderlich sind. Außerdem ist die Form des unter Einfluß des Oxidationsmittels ausfallenden Eisen(III)-Phosphats wesentlich von der Natur des Oxidationsmittels abhängig. Werden z.B. - wie aus dem Stand der Technik bekannt - "harte" Beschleuniger wie NO₂, ClO₃ oder H₂O₂ als Oxidationsmittel zugegeben, so entstehen Zink-Eisen-Phosphatschlämme in Form großvolumiger Flocken, die in der Lösung schweben und nur sehr schwer sedimentierbar sind. Werden jedoch sogenannte "weiche" Beschleuniger bzw. Oxidationsmittel zugegeben, so entstehen üblicherweise gut sedimentierbare Körnchen von unlöslichem Eisen(III)-Phosphat. Der besondere Vorteil der Oxidation mit sauerstoffhaltigen Gasen besteht darin, daß sehr feine Körner aus Eisen(III)-Phosphat entstehen, die sich mit hoher Geschwindigkeit absetzen und somit gut sedimentieren lassen. Die Form des sedimentierbaren Badschlamms hat außerdem den weiteren Vorteil, daß die Körner nur relativ wenig schichtbildende Bestandteile enthaltende Phosphatierungslösung einschließen und daher der entstehende Badschlamm kaum Zink enthält. Dieses bleibt somit dem Phosphatierungsbad erhalten.In the oxidation chamber 11, the phosphating solution is gassed with a gas containing O₂. These In comparison with the addition of oxidizing agents for oxidizing iron (II) to iron (III) known from the prior art, the procedure has the advantage that no expensive chemicals are required to effect the oxidation process. In addition, the form of the iron (III) phosphate precipitating under the influence of the oxidizing agent is essentially dependent on the nature of the oxidizing agent. For example - as known from the prior art - "hard" accelerators such as NO₂, ClO₃ or H₂O₂ added as an oxidizing agent, zinc-iron-phosphate slurries are formed in the form of large-volume flakes which float in the solution and are very difficult to sediment. However, if so-called "soft" accelerators or oxidizing agents are added, granules of insoluble iron (III) phosphate which are readily sedimentable are usually formed. The particular advantage of oxidation with oxygen-containing gases is that very fine grains of iron (III) phosphate are formed, which settle at high speed and are therefore easy to sediment. The shape of the sedimentable bath sludge also has the further advantage that the grains contain phosphating solution which contains relatively little layer-forming constituents, and therefore the bath sludge which is formed contains hardly any zinc. This remains in the phosphating bath.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der Oxidationskammer 11 das O₂ enthaltende Gas über eine zentral angeströmte, eine poröse Oberfläche aufweisende Begasungseinheit 13 zugeführt. Diese Begasungseinheit kann beispielsweise eine schlauchförmige Grundform haben, in der das O₂ enthaltende Gas im Schlauchinneren strömt und durch mehr oder weniger große Öffnungen in der Oberfläche nach außen dringt. In einer weiter bevorzugten Ausführungsform der Erfindung wird als Begasungseinheit ein gesinterter Polypropylenschlauch verwendet.In a preferred embodiment of the method according to the invention, the gas containing O₂ is fed to the oxidation chamber 11 via a gassing unit 13 with a central flow and a porous surface. This gassing unit can, for example, have a tubular basic shape in which the gas containing O₂ flows inside the tube and through more or less large openings in the surface penetrates to the outside. In a further preferred embodiment of the invention, a sintered polypropylene hose is used as the gassing unit.

Bevorzugt hat der als Begasungseinheit 13 verwendete gesinterte Polypropylenschlauch eine mittlere Porenweite von 0,10 bis 5,0 µm, wobei mit besonderem Vorteil Polypropylenschläuche einer mittleren Porenweite von 0,12 bis 0,30 µm verwendet werden. Diese weisen nämlich eine gute Durchlässigkeit auf und garantieren eine Bildung von Gasblasen in der für den Oxidationsvorgang erforderlichen Feinheit.The sintered polypropylene tube used as the gassing unit 13 preferably has an average pore size of 0.10 to 5.0 μm, with polypropylene tubes having an average pore size of 0.12 to 0.30 μm being used with particular advantage. This is because they have good permeability and guarantee the formation of gas bubbles in the fineness required for the oxidation process.

Als O₂ enthaltendes Gas, das über die Begasungseinheit 13 der Oxidationskammer 11 zugeleitet wird, können in bevorzugten Ausführungsformen des Verfahrens Gase aus der Gruppe O₂, Luft und mit O₂ angereicherte Luft verwendet werden. Von diesen ist aus wirtschaftlichen Gründen wegen der leichten Verfügbarkeit Luft besonders bevorzugt. Das O₂ enthaltende Gas wird in einer solchen Menge zugeführt, daß die für den Oxidationsvorgang erforderliche Menge an elementarem Sauerstoff im Bereich von 0,01 bis 100 Mol/h erfolgt. Dabei wird die zugeführte Gasmenge natürlicherweise auf die Durchflußgeschwindigkeit der Phosphatierungslösung durch die erfindungsgemäße Vorrichtung 1 abgestellt.As O₂-containing gas, which is fed via the gassing unit 13 to the oxidation chamber 11, gases from the group O₂, air and air enriched with O₂ can be used in preferred embodiments of the method. Of these, air is particularly preferred for economic reasons because of its easy availability. The gas containing O₂ is supplied in an amount such that the amount of elemental oxygen required for the oxidation process takes place in the range from 0.01 to 100 mol / h. The amount of gas supplied is naturally based on the flow rate of the phosphating solution through the device 1 according to the invention.

Hinzuweisen ist auf die wesentliche Tatsache, daß die Oxidationsreaktion bei Umgebungsdruck stattfindet. Druckfeste Apparaturen sind also entbehrlich, da überraschend die Reaktion der Eisen(II)-Ionen mit dem O₂ enthaltenden Gas eine weitgehende Überführung in Eisen(III) bewirkt, das als Eisen(III)-Phosphat gefällt wird. Dies wird durch die spezielle Technik der Begasung bewirkt, bei der die für die Oxidationsreaktion erforderliche reaktive Oberfläche der Gasblasen wesentlich vergrößert wird.It is important to note that the oxidation reaction takes place at ambient pressure. Flameproof apparatuses are therefore unnecessary, since surprisingly the reaction of the iron (II) ions with the gas containing O₂ results in extensive conversion into iron (III), which precipitates as iron (III) phosphate becomes. This is brought about by the special technique of gassing, in which the reactive surface of the gas bubbles required for the oxidation reaction is significantly increased.

Der Oxidationsvorgang wird durch die nachfolgende Reaktionsgleichung veranschaulicht:

Figure imgb0001

Das im Zuge der aufgeführten Reaktionsgleichung zu Eisen(III) oxidierte, aus der zu phosphatierenden Metalloberfläche stammende Eisen reagiert mit Phosphat-Anionen zu unlöslichem Eisen(III)-Phosphat, das der wesentliche Bestandteil des Badschlamms ist. Dieser wird, zusammen mit der Phosphatierungslösung, von unten der in gewissem Abstand über dem Boden der Oxidationskammer 11 angebrachten Vorrichtung zur Zwangsführung der Strömungsrichtung 16, die beispielsweise eine sogenannte Umlenkschikane sein kann, zugeführt, worin die schlammhaltige Lösung nach oben steigt. Durch den Überlauf 14 zwischen der Oxidationskammer 11 und der Schlammkonditionierungskammer 15 verläßt die schlammhaltige Lösung die Oxidationskammer 11 und wird durch die Vorrichtung zur Zwangsführung der Strömungsrichtung 16 in der Schlammkonditionierungskammer 15 nach unten geführt. Sie tritt am unteren Ende der Vorrichtung 16 in das Innere der Schlammkonditionierungskammer 15 ein.The oxidation process is illustrated by the following reaction equation:
Figure imgb0001

The iron oxidized in the course of the listed reaction equation to iron (III) originating from the metal surface to be phosphated reacts with phosphate anions to form insoluble iron (III) phosphate, which is the essential component of the bath sludge. This, together with the phosphating solution, is fed from below to the device for forcibly guiding the flow direction 16, which can be, for example, a so-called deflecting baffle, at a certain distance above the bottom of the oxidation chamber 11, in which the sludge-containing solution rises. Through the overflow 14 between the oxidation chamber 11 and the sludge conditioning chamber 15, the sludge-containing solution leaves the oxidation chamber 11 and is guided downward in the sludge conditioning chamber 15 by the device for the forced guidance of the flow direction 16. It enters the interior of the sludge conditioning chamber 15 at the lower end of the device 16.

In der Schlammkonditionierungskammer 15 wird der entstandene Eisenphosphatschlamm konditioniert. Dies geschieht, um ihn besser sedimentierbar zu machen. Dazu wird in der Schlammkonditionierungskammer 15 die Lösung mit dem darin enthaltenen Eisen(III)-Phosphatschlamm gerührt. Dadurch agglomerieren eventuell in Flockenform entstandene Niederschläge zu besser sedimentierbaren Körnern. Derartige Körner dürfen jedoch eine durchschnittliche Größe nicht überschreiten, die ein Absinken in der Lösung bewirken würde, da sonst schon in der Schlammkonditionierungskammer in merklichem Umfang eine Sedimentation der Schlämme stattfinden würde. Eine weitere vorteilhafte Auswirkung des Rührvorgangs in der Schlammkonditionierungskammer 15 ist darin zu sehen, daß der in der Lösung enthaltene gasförmige Sauerstoff mehr oder weniger vollständig ausgetrieben wird. Dies geschieht dadurch, daß er physikalisch aus der Lösung befreit wird und/oder vollständig zur Umsetzung mit noch nicht oxidierten Eisen(II)-Bestandteilen der Lösung gebracht wird. Die dadurch bewirkte Nachreaktion der überwiegend in der Oxidationskammer 11 stattfindenden Oxidationsreaktion verhindert, daß im späten Stadium des Verfahrens erneut eine Reaktion stattfindet und damit eine Lösung aus der Ablauföffnung 22 abfließen würde, die durch erneut gefälltes Eisen(III)-Phosphat getrübt ist.The resulting iron phosphate sludge is conditioned in the sludge conditioning chamber 15. This is done to make it more sedimentable. For this purpose, the solution with the iron (III) -phosphate sludge contained therein is in the sludge conditioning chamber 15 touched. As a result, any flake-like precipitate agglomerates into more sedimentable grains. However, such grains must not exceed an average size which would cause the solution to sink, since otherwise the sludge would sediment to a considerable extent in the sludge conditioning chamber. Another advantageous effect of the stirring process in the sludge conditioning chamber 15 can be seen in the fact that the gaseous oxygen contained in the solution is more or less completely expelled. This is done by physically freeing it from the solution and / or completely converting it to unoxidized iron (II) components of the solution. The subsequent reaction of the oxidation reaction which predominantly takes place in the oxidation chamber 11 prevents a reaction from taking place again in the late stage of the process and thus a solution from the outlet opening 22 which would be clouded by iron (III) phosphate which has precipitated again.

Bevorzugt wird die Rührgeschwindigkeit auf 100 bis 300 Upm eingestellt. Dadurch wird die Bildung gut sedimentierbarer Schlämme in weitem Umfang ermöglicht und erreicht, daß das in der Lösung enthaltene Sauerstoff enthaltende Gas mehr oder weniger ausgetrieben wird.The stirring speed is preferably set to 100 to 300 rpm. As a result, the formation of easily sedimentable sludges is made possible to a large extent and the gas contained in the solution is more or less expelled.

Die so konditionierte, gut sedimentierbare Schlammkörner enthaltende Phosphatierungslösung fließt nun durch den Überlauf 18 zwischen der Schlammkonditionierungskammer 15 und der Sedimentationskammer 19 erneut einer Vorrichtung zur Zwangsführung der Strömungsrichtung 16, beispielsweise einer sogenannten Umlenkschikane zu, die die Lösung dem Boden der Sedimentationskammer 19 zuführt. Die genannte Vorrichtung 16 ist auch hier in gewissem Abstand vom Boden der Sedimentationskammer 19 entfernt montiert.The phosphating solution which is conditioned in this way and contains good sedimentable sludge grains then flows through the overflow 18 between the sludge conditioning chamber 15 and the sedimentation chamber 19 again to a device for forced guidance of the flow direction 16, for example a so-called deflection baffle to which the solution feeds the bottom of the sedimentation chamber 19. The device 16 mentioned is also mounted at a certain distance from the bottom of the sedimentation chamber 19.

Durch das deutlich größere Volumen der Sedimentationskammer 19 wird der Strömungsfluß, der durch das vergleichsweise kleine Volumen der Schlammkonditionierungskammer 15 beschleunigt worden war, verlangsamt. Dadurch wird erreicht, daß in der Sedimentationskammer die gut sedimentierbaren Schlammkörner entweder sofort in die Schlammzitze 20 sedimentieren oder ein mehr oder weniger großes Stück mit der Lösung zu den Trennflächen 24 der Sedimentationskammer hinaufgetragen werden. Durch diese, einem üblichen Lamellenseparator ähnliche Konstruktion wird erreicht, daß mitten zwischen den Trennflächen 24 ein relativ schneller Strömungsfluß erfolgt, während in der Nähe der Trennflächen die Strömung verlangsamt ist und auch hier ermöglicht, daß die sedimentierbaren Schlammkörner abgesetzt werden und durch die Schwerkraft entlang den Trennflächen nach unten rutschen. Entsprechend dieser bevorzugten Ausführungsform des Verfahrens, in der die Trennflächen 24 in der Sedimentationskammer 19 von unten angeströmt werden, wird erreicht, daß schon im unteren Trennflächenbereich nahezu die gesamte Schlammenge absitzt und gar nicht erst in die Nähe der Ablauföffnung 22 emporgetragen wird.The flow volume, which was accelerated by the comparatively small volume of the sludge conditioning chamber 15, is slowed down by the significantly larger volume of the sedimentation chamber 19. It is thereby achieved that in the sedimentation chamber the easily sedimentable sludge grains either sediment immediately into the sludge teat 20 or a more or less large piece with the solution is carried up to the separating surfaces 24 of the sedimentation chamber. This construction, similar to a conventional lamella separator, ensures that a relatively rapid flow of flow occurs in the middle between the separating surfaces 24, while the flow is slowed in the vicinity of the separating surfaces and also enables the sedimentable sludge grains to be deposited and gravity along the Slip partitions down. According to this preferred embodiment of the method, in which the separation surfaces 24 in the sedimentation chamber 19 are flowed from below, it is achieved that almost the entire amount of sludge already sits in the lower separation surface region and is not even carried up near the drain opening 22.

Der gut sedimentierende Schlamm sammelt sich sukzessive in der Schlammzitze 20 und kann über einen separaten Schlammablauf 23 aus der Sedimentationskammer 19 abgezogen werden. Die von Schlamm befreite Lösung wird dann über die Überlaufkante 21, die beispielsweise eine übliche Zackenleiste sein kann, der Ablauföffnung 22 zugeführt und durch diese aus der erfindungsgemäßen Vorrichtung zur Entschlammung von Phosphatierungsbädern 1 entfernt. Diese an schichtbildenden Komponenten verarmte Lösung wird mit wäßrigen Lösungen ergänzt, die eine Einstellung des Säureverhältnisses und der Konzentrationen der für die Schichtbildung essentiellen Komponenten ermöglichen. In bevorzugten Ausführungsformen wird die entschlammte Lösung mit wäßrigen Lösungen versetzt, die eine Einstellung des Säureverhältnisses auf einen Bereich von 7 bis 15 und der Konzentrationen an Phosphorsäure auf einen Bereich von 10 bis 40 g . l⁻¹, an Salpetersäure auf einen Bereich von 10 bis 50 g . l⁻¹, an Ni²⁺-Ionen auf einen Bereich von 0 bis 8 g . l⁻¹, an Cu²⁺-Ionen auf einen Bereich von 0 bis 0,5 g . l⁻¹ und an Zn²⁺-Ionen auf einen Bereich von 3 bis 30 g . l⁻¹ ermöglichen. Bevorzugt wird mit wäßrigen Lösungen nachgeschärft, die Phosphorsäure in Mengen von 300 bis 700 g . l⁻¹, Salpetersäure in Mengen von 30 bis 300 g . l⁻¹, Nickel(II)-Nitrat in Mengen von 0 bis 50 g . l⁻¹, Cu(OH)₂ . CuCO₃ in Mengen von 0 bis 3 g . l⁻¹ und ZnO in Mengen von 100 bis 300 g . l⁻¹ enthalten. Wie aus den angegebenen Zahlenwerten ersichtlich wird, ist die zur Nachschärfung erforderliche Menge an Zink deswegen niedriger als bei den im Stand der Technik beschriebenen Lösungen zum Nachschärfen von Phosphatierungslösungen, weil durch das erfindungsgemäße Verfahren zur Entschlammung der Phosphatierungsbäder diesen die schichtbildende Komponente Zink so gut wie gar nicht entzogen wird.The well sedimenting sludge gradually collects in the sludge teat 20 and can be drawn off from the sedimentation chamber 19 via a separate sludge drain 23. The sludge-free solution is then discharged via the overflow edge 21, which can be a conventional serrated strip, for example 22 fed and removed by this from the inventive device for desludging phosphating baths 1. This solution, which is depleted of layer-forming components, is supplemented with aqueous solutions which make it possible to adjust the acid ratio and the concentrations of the components essential for the layer formation. In preferred embodiments, the desludged solution is mixed with aqueous solutions which adjust the acid ratio to a range from 7 to 15 and the concentrations of phosphoric acid to a range from 10 to 40 g. l⁻¹, of nitric acid in a range of 10 to 50 g. l⁻¹, of Ni²⁺ ions in a range of 0 to 8 g. l⁻¹, on Cu²⁺ ions in a range of 0 to 0.5 g. l⁻¹ and Zn²⁺ ions in a range of 3 to 30 g. enable l¹. Is preferably sharpened with aqueous solutions, the phosphoric acid in amounts of 300 to 700 g. l⁻¹, nitric acid in amounts of 30 to 300 g. l⁻¹, nickel (II) nitrate in amounts of 0 to 50 g. l⁻¹, Cu (OH) ₂. CuCO₃ in amounts of 0 to 3 g. l⁻¹ and ZnO in amounts of 100 to 300 g. l⁻¹ included. As can be seen from the numerical values indicated, the amount of zinc required for re-sharpening is therefore lower than for the solutions for re-sharpening phosphating solutions described in the prior art, because the process for desludging the phosphating baths according to the invention virtually eliminates the layer-forming component zinc is not withdrawn.

Nach Ergänzung der entschlammten Phosphatierungslösung mit den genannten Komponenten auf den als bevorzugt anzusehenden Bereich und die damit gleichzeitig erfolgte Einstellung des Säureverhältnisses (Verhältnis Gesamtsäure : freie Säure) auf den bevorzugten Bereich von 7 bis 15 wird die entschlammte und an den für die Schichtbildung erforderlichen Komponenten ergänzte wäßrige Lösung wieder dem Phosphatierungsbad zugeführt, während ein Teilvolumen desselben wiederum abgezweigt und in kontinuierlicher Verfahrensführung der separaten, drei offene Kammern aufweisenden Vorrichtung zugeführt wird.After replenishing the desludged phosphating solution with the components mentioned in the area to be regarded as preferred and the acid ratio (ratio Total acid: free acid) to the preferred range of 7 to 15, the desludged aqueous solution supplemented with the components required for the layer formation is fed back to the phosphating bath, while a partial volume of the same is again branched off and in a continuous process of the separate device having three open chambers is fed.

Fig. 1 zeigt eine Aufsicht auf die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens zur Entschlammung von Phosphatierungsbädern. Entsprechend Fig. 1 besteht die Vorrichtung 1 im wesentlichen aus drei Kammern, von denen die erste Kammer als Oxidationskammer 11, die zweite Kammer als Schlammkonditionierungskammer 15 und die dritte Kammer als Sedimentationskammer 19 bezeichnet werden. Die drei genannten Kammern sind in ihrem Volumen unterschiedlich. Sie weisen ein Volumenverhältnis im Bereich von 1 : 0,05 : 10 bis 1 : 1 : 1, bevorzugt ein Volumenverhältnis von 1 : 0,5 : 5 auf, wobei die Volumina der Kammern in der Reihenfolge Oxidationskammer 11/Schlammkonditionierungskammer 15/ Sedimentationskammer 19 genannt sind.1 shows a top view of the device according to the invention for carrying out the process for desludging phosphating baths. 1, the device 1 consists essentially of three chambers, of which the first chamber is referred to as the oxidation chamber 11, the second chamber as the sludge conditioning chamber 15 and the third chamber as the sedimentation chamber 19. The volume of the three chambers mentioned is different. They have a volume ratio in the range from 1: 0.05: 10 to 1: 1: 1, preferably a volume ratio of 1: 0.5: 5, the volumes of the chambers being in the order of oxidation chamber 11 / sludge conditioning chamber 15 / sedimentation chamber 19 are mentioned.

Das aus dem Phosphatierungsbad abgezweigte Teilvolumen der zu entschlammenden Phosphatierungslösung wird über die Zufuhröffnung 12 der Oxidationskammer 11 zugeführt. In dieser Kammer findet die Begasung mit einem O₂ enthaltenden Gas statt, das der Oxidationskammer 11 über die Begasungseinheit 13 zugeführt wird. Die Begasungseinheit 13 ist bevorzugt eine zentral angeströmte, eine poröse Oberfläche aufweisende schlauchförmige Vorrichtung. Diese steht mit einer Druckpumpe in Verbindung, die in der Lage ist, der Begasungseinheit 13 ein O₂ enthaltendes Gas, in bevorzugten Ausführungsformen Luft, zuzuführen. Mit besonderem Vorteil wird als Begasungseinheit 13 ein gesinterter Polypropylenschlauch eingesetzt. Verfahren zur Sinterung derartiger Propylenpolymerer und die resultierenden Produkte sind aus dem Stand der Technik bekannt und bedürfen hier keiner weiteren Erläuterung.The partial volume of the phosphating solution to be desludged branched off from the phosphating bath is supplied to the oxidation chamber 11 via the feed opening 12. In this chamber, the fumigation takes place with a gas containing O₂, which is supplied to the oxidation chamber 11 via the fumigation unit 13. The gassing unit 13 is preferably a tubular device with a central flow and a porous surface. This is connected to a pressure pump which is able to supply the gassing unit 13 an O₂-containing gas, air in preferred embodiments. A sintered polypropylene hose is used with particular advantage as the gassing unit 13. Processes for sintering such propylene polymers and the resulting products are known from the prior art and do not require any further explanation here.

In der Praxis hat sich als gesintertes Polypropylenmaterial ein Schlauch mit der Bezeichnung Accurel-Rohr® PP der Firma Enka AG bewährt. Der gesinterte Polypropylenschlauch kommerzieller Provenienz weist bevorzugt eine mittlere Porenweite im Bereich von 0,10 bis 5,0 µm auf, wobei die Porenweite von 0,12 bis 0,30 µm besonders bevorzugt ist. In vorteilhafter Weise ist dieses Material in der Lage, der Oxidationskammer Sauerstoff oder ein O₂ enthaltendes Gas in Form winzig kleiner Gasperlen zuzuführen. Durch derartige winzige Gasperlen läßt sich eine für praktische Zwecke brauchbar schnelle Oxidation der gesamten oxidierbaren Eisen(II)-Ionen in der Phosphatierungslösung unter Bildung von Eisen(III) bewirken, das anschließend als Eisen(III)-Phosphat ausgefällt wird. Eine druckfeste Apparatur ist dafür in keiner Weise erforderlich. Die Perlen des Sauerstoffs bzw. des O₂ enthaltenden Gases steigen bei Normaldruck in der Oxidationskammer 11 der offenen Apparatur 1 auf bzw. werden in der wäßrigen Phase bis zur Sättigung bei Normaldruck und der Betriebstemperatur gelöst. Die Betriebstemperatur liegt üblicherweise im Bereich von 40 bis 60 °C.In practice, a hose called Accurel-Rohr® PP from Enka AG has proven itself as a sintered polypropylene material. The sintered polypropylene tube of commercial provenance preferably has an average pore size in the range from 0.10 to 5.0 μm, with the pore size from 0.12 to 0.30 μm being particularly preferred. Advantageously, this material is able to supply oxygen or an O₂-containing gas in the form of tiny gas bubbles to the oxidation chamber. Such tiny gas pearls can be used for a practical, rapid oxidation of all the oxidizable iron (II) ions in the phosphating solution to form iron (III), which is subsequently precipitated as iron (III) phosphate. A pressure-resistant apparatus is in no way necessary for this. The pearls of oxygen or gas containing O₂ rise at normal pressure in the oxidation chamber 11 of the open apparatus 1 or are dissolved in the aqueous phase until saturation at normal pressure and the operating temperature. The operating temperature is usually in the range of 40 to 60 ° C.

Infolge des Nachführens weiterer zu entschlammender Phosphatierungslösung wird die mit Sauerstoff gesättigte und Eisenphosphat enthaltende Lösung über die Vorrichtung 16 zur Zwangsführung der Strömungsrichtung dem Überlauf zwischen der Oxidationskammer 11 und der Schlammkonditionierungskammer 15 zugeführt und in dieser in Abwärts-Richtung zwangsgeführt. Die Vorrichtungen 16 zur Zwangsführung der Strömungsrichtung sind in bevorzugten Ausführungsformen der Vorrichtung Umlenkschikanen in Form U-förmiger Profile, die mit gewissen Abstand vom Boden der jeweiligen Kammern angebracht sind und dadurch von unten mit der Lösung angeströmt werden können. Die U-förmigen Profile der Vorrichtungen 16 sind mit ihren Innenseiten dem Überlauf 14 zugewandt, wodurch es möglich ist, auf der Seite der Oxidationskammer 11 die Lösung von unten nach oben dem Überlauf 14 zuzuführen, während sie auf der Seite der Schlammkonditionierungskammer 15 von oben nach unten geführt wird und die Vorrichtung 16 zur Zwangsführung der Strömungsrichtung am unteren Ende verläßt und in die Schlammkonditionierungskammer 15 eintritt.As a result of the tracking of further phosphating solution to be desludged, the solution saturated with oxygen and containing iron phosphate is transferred via the Device 16 for forcibly guiding the flow direction is fed to the overflow between the oxidation chamber 11 and the sludge conditioning chamber 15 and is guided in this in the downward direction. In preferred embodiments of the device, the devices 16 for forcibly guiding the flow direction are deflection baffles in the form of U-shaped profiles, which are attached at a certain distance from the bottom of the respective chambers and can therefore be flowed from below with the solution. The inner sides of the U-shaped profiles of the devices 16 face the overflow 14, which makes it possible to supply the solution from the bottom to the top of the overflow 14 on the side of the oxidation chamber 11, while from the top to the side of the sludge conditioning chamber 15 is guided below and leaves the device 16 for positive guidance of the flow direction at the lower end and enters the sludge conditioning chamber 15.

Die Schlammkonditionierungskammer 15 ist mit einer Vorrichtung 17 zum Rühren der Lösung bestückt. Diese Vorrichtung besteht in bevorzugter Weise in einem regelbaren Rührwerk, dessen Umdrehungszahl auf 100 bis 300 U . min⁻¹ eingestellt werden kann. Nach Konditionierung der Schlammpartikel in der oben beschriebenen Weise in der Schlammkonditionierungskammer 15 verläßt die schlammhaltige Lösung die Schlammkonditionierungskammer 15 durch den an ihrem oberen Ende befindlichen Überlauf 18. Dabei werden - aufgrund des relativ geringen Volumens der Kammer 15 - auch solche Schlammpartikel schon mitgerissen, die zu vergleichsweise großen Körnern agglomeriert sind. Vom Überlauf 18 wird die Lösung durch die Vorrichtung 16 zur Zwangsführung der Strömungsrichtung abwärts geführt, die bevorzugt ebenfalls eine Umlenkschikane in Form eines U-förmigen Profils ist, wobei die Innenseite des Profils dem Überlauf 18 zugewandt ist. Auch diese Vorrichtung 16 ist in gewissem Abstand zum Boden der Sedimentationskammer 19 montiert, so daß die Lösung am unteren Ende in die Sedimentationskammer 19 eintreten kann.The sludge conditioning chamber 15 is equipped with a device 17 for stirring the solution. This device preferably consists of a controllable agitator, the number of revolutions to 100 to 300 U. min⁻¹ can be set. After conditioning the sludge particles in the manner described above in the sludge conditioning chamber 15, the sludge-containing solution leaves the sludge conditioning chamber 15 through the overflow 18 located at its upper end. In this case, due to the relatively small volume of the chamber 15, such sludge particles are also entrained comparatively large grains are agglomerated. From the overflow 18, the solution is guided downward by the device 16 for the forced guidance of the flow direction, which is preferably also a deflection baffle in the form of a U-shaped profile, the inside of the profile facing the overflow 18. This device 16 is also mounted at a certain distance from the bottom of the sedimentation chamber 19, so that the solution can enter the sedimentation chamber 19 at the lower end.

Ein vergleichbarer Lauf der Lösung bis zu diesem Punkt ergibt sich auch aus den Fig. 2 und 3, in denen für die gleichen Vorrichtungsteile dieselben Zahlen verwendet wurden wie in Fig. 1.A comparable run of the solution up to this point also results from FIGS. 2 and 3, in which the same numbers were used for the same device parts as in FIG. 1.

Wie am besten aus Fig. 2 zu ersehen, tritt also die Lösung mit den konditionierten Schlammpartikeln am unteren Ende der Vorrichtung 16 zur Zwangsführung der Strömungsrichtung in die Sedimentationskammer 19 ein, wo sich - schon aufgrund des größeren Kammervolumens, aber auch aufgrund unterschiedlicher Möglichkeiten der Strömungsführung - der Lauf der Lösung gegenüber der Schlammkonditionierungskammer 15 verlangsamt. Dadurch können größere Schlammpartikel schon unmittelbar nach Eintritt in die Sedimentationskammer in die Schlammzitze 20 absinken und steigen erst gar nicht zu den Trennflächen 24 der Sedimentationskammer 19 auf. Etwas leichtere Schlammkörner werden durch die Strömung in den Bereich zwischen den Trennflächen 24 der Sedimentationskammer 19 geführt. Im Bereich mitten zwischen den Trennflächen wird - wie allgemein bekannt - ein schnellerer Lösungsstrom beobachtet, während mit zunehmender Annäherung an die Trennflächen 24 die Strömungsgeschwindigkeit absinkt. Die mehr oder weniger schweren Schlammkörner werden automatisch in den Bereich sinkender Strömungsgeschwindigkeit, also auf die Trennflächen 24 hin, geführt und sinken auf diese ab. Größere Agglomerate von Schlammpartikeln rutschen dann langsam entlang der geneigten Trennflächen 24 nach unten in Richtung auf die Schlammzitze 20.As can best be seen from FIG. 2, the solution with the conditioned sludge particles enters the sedimentation chamber 19 at the lower end of the device 16 for the forced guidance of the flow direction, where - because of the larger chamber volume, but also because of different possibilities of the flow guidance - The flow of the solution to the sludge conditioning chamber 15 slows down. As a result, larger sludge particles can sink into the sludge teat 20 immediately after entering the sedimentation chamber and do not even rise to the separating surfaces 24 of the sedimentation chamber 19. Slightly lighter sludge grains are led through the flow into the area between the separating surfaces 24 of the sedimentation chamber 19. As is generally known, a faster flow of solution is observed in the area in the middle between the separating surfaces, while the flow velocity decreases with increasing proximity to the separating surfaces 24. The more or less heavy sludge grains are automatically guided into the area of decreasing flow velocity, ie towards the separating surfaces 24, and sink onto them from. Larger agglomerates of sludge particles then slowly slide downwards along the inclined separating surfaces 24 in the direction of the sludge teat 20.

Es wurde herausgefunden, daß eine die gewünschte Sedimentation der Schlammkörner optimal ermöglichende Neigung der Trennflächen dann gegeben ist, wenn diese einen Winkel 31 zur Badoberfläche 30 von ≧ 35 ° aufweisen und einen Abstand zueinander im Bereich von 5 bis 30 cm haben. Dadurch ist es gewährleistet, daß keine Schlammreste an die oberen Kanten der Trennflächen bzw. über diese hinaus weiter in Strömungsrichtung auf die Überlaufkante oder Zackenleiste 21 zu bzw. durch die Ablauföffnung 22 geführt werden.It was found that there is an inclination of the separating surfaces which optimally enables the desired sedimentation of the sludge grains if they have an angle 31 to the bath surface 30 of ≧ 35 ° and are at a distance from one another in the range of 5 to 30 cm. This ensures that no sludge residues are guided to the upper edges of the separating surfaces or beyond them further in the flow direction to the overflow edge or serrated strip 21 to or through the drain opening 22.

In einer weiteren bevorzugten Ausführungsform der Vorrichtung weisen auch die Wände der Schlammzitze 20 eine Neigung 32 zur Badoberfläche bzw. zu einer zur Badoberfläche 30 gedachten Parallele von ≧ 35 ° auf. Dadurch sinken die mehr oder weniger körnigen Schlammteilchen sukzessive durch die Schwerkraft in der Schlammzitze 20 nach unten auf den Schlammablauf 23 hin und können dort separat abgeschieden werden.In a further preferred embodiment of the device, the walls of the mud teat 20 also have an inclination 32 to the bath surface or to an imaginary parallel to the bath surface 30 of ≧ 35 °. As a result, the more or less granular sludge particles sink successively by gravity in the sludge teat 20 down to the sludge outlet 23 and can be separated there separately.

In einer weiteren bevorzugten Ausführungsform weist die am unteren Ende der Schlammzitze 20 angeordnete Schlammablaufvorrichtung 23 eine eigene Druckreinigungsanlage auf, die es ermöglicht, gegebenenfalls im Bereich des Ablaufs 23 aufgetretene Verkrustungen oder Ablagerungen von Eisenphosphatschlamm unter Druck zu beseitigen. Dazu wird der Druckreinigungsanlage 23 Wasser zugeführt, das die Reinigung in befriedigender Weise ermöglicht. Eine derartige Druckreinigungsanlage kann z. B. eine mit Wasser unter erhöhtem Druck betriebene Reinigungsdüse sein.In a further preferred embodiment, the sludge drainage device 23 arranged at the lower end of the sludge teat 20 has its own pressure cleaning system, which makes it possible to remove incrustations or deposits of iron phosphate sludge that may have occurred in the area of the drain 23 under pressure. For this purpose, water is supplied to the pressure cleaning system 23, which enables cleaning in a satisfactory manner. Such a pressure cleaning system can, for. B. be a cleaning nozzle operated with water under increased pressure.

Das von Schlammpartikeln befreite wäßrige Badmedium läuft über die Zackenleiste 21, die in Fig. 4 in stark vergrößerter Form dargestellt wird, insbesondere durch die V-förmigen Täler 28 der Zackenleiste 21, der Ablauföffnung 22 zu, die die vom Schlamm befreite Phosphatierungslösung nach Nachschärfen mit den für die Phosphatierung erforderlichen Komponenten wieder dem Phosphatierungsbad zuführt.The aqueous bath medium freed from sludge particles runs over the serrated strip 21, which is shown in FIG. 4 in a greatly enlarged form, in particular through the V-shaped valleys 28 of the serrated strip 21, to the outlet opening 22, which also carries the phosphating solution freed from the sludge after re-sharpening feeds the components required for the phosphating back to the phosphating bath.

Die erfindungsgemäße Vorrichtung 1 wird in einer bevorzugten Ausführungsform aus Polypropylen gefertigt. Der wesentliche Vorteil einer Verwendung von Polypropylen ist darin zu sehen, daß das Material vollständig hydrophob ist und es nicht erlaubt, daß sich polare Lösungsbestandteile auf der Oberfläche der Vorrichtung 1 absetzen und damit Verkrustungen verursachen. Dies ist im Gegensatz zu herkömmlichen Vorrichtungen zu sehen, bei denen immer damit gerechnet werden mußte, daß Lösungsbestandteile mit dem Material der Vorrichtung chemische Reaktionen eingingen und damit den Werkstoff irreversibel veränderten bzw. Verkrustungen hervorriefen, die zu Störungen im Betrieb der Vorrichtung führten. In besonders bevorzugten Ausführungsformen ist das Polypropylenmaterial der Vorrichtung auf der mit den Lösungsbestandteilen in Kontakt kommenden Seite völlig glatt, um Angriffsmöglichkeiten der Lösungsbestandteile, insbesondere der kornförmigen Eisen(III)-Phosphatniederschläge, mit der Oberfläche auch mechanisch vollständig auszuschließen.In a preferred embodiment, the device 1 according to the invention is manufactured from polypropylene. The main advantage of using polypropylene is that the material is completely hydrophobic and does not allow polar solution components to settle on the surface of the device 1 and thus cause incrustations. This can be seen in contrast to conventional devices, in which it always had to be expected that solution components would undergo chemical reactions with the material of the device and thus irreversibly change or cause incrustations, which would lead to malfunctions in the operation of the device. In particularly preferred embodiments, the polypropylene material of the device is completely smooth on the side that comes into contact with the solution constituents in order to also completely mechanically exclude the possibility of attack by the surface of the solution constituents, in particular the granular iron (III) phosphate deposits.

Die erfindungsgemäße Vorrichtung allein, aber auch in Verbindung mit dem oben beschriebenen Verfahren, weist gegenüber dem Stand der Technik eine Reihe von verfahrenstechnisch wesentlichen Vorteilen auf, die teilweise schon in der vorangehenden Beschreibung detailliert ausgeführt wurden. So entsteht durch Abzweigen eines Teilvolumens des Phosphatierungsbades und Behandeln in einer separaten Vorrichtung gemäß der Erfindung der Eisen(III)-Phosphatschlamm nicht im Bad, sondern wird durch die Oxidation mit sauerstoffhaltigen Gasen, insbesondere durch Luftoxidation, in überraschender Weise ausschließlich in der Oxidationskammer 11 und der Schlammkonditionierungskammer 15 der erfindungsgemäßen Vorrichtung gebildet. Das erfindungsgemäße Arbeiten bei Umgebungsdruck hat sich als möglich und effizient erwiesen. Durch die erfindungsgemäße Verfahrensweise wird die Standzeit der Bäder praktisch unbegrenzt ausgedehnt. Es ist also nicht mehr erforderlich, Teile des Phosphatierungsbades zu verwerfen oder das Phosphatierungsbad völlig neu anzusetzen. Damit werden nicht nur wesentliche Mengen an Chemikalien eingespart, die bei einem Verwerfen zumindest von Teilen des Bades aufgewendet werden müssen. Letzteres gilt auch für das Nachschärfen zum Erreichen der gewünschten Zn²⁺-Ionen Konzentration. Durch die Luftoxidation werden nur vergleichsweise geringe Zinkmengen aus der Lösung ausgefällt (1 bis 4 % Zn²⁺ gegenüber 8 bis 15 % bei vorbekannten Verfahren). Die Erhaltung der verfahrensnotwendigen Zinkionen-Konzentration erfordert also nur die Zugabe einer wesentlich geringeren Menge an Zinkoxid. Zum ersten Male wurde außerdem mit dem erfindungsgemäßen Verfahren in für den Fachmann überraschender Weise auch die Nachschärfung der Lösungen mit entsprechenden wäßrigen Lösungen möglich, die eine Wiedereinstellung der gewünschten Verhältnisse bzw. Konzentrationen im Bad ermöglichen. Dadurch ist eine Konstanz der Verfahrensparameter über den gesamten Phosphatierungsvorgang in vollem Umfang gewährleistet, und es entstehen immer genau definierte, in ihrer Schichtzusammentsetzung identische Phosphatierungsschichten.The device according to the invention alone, but also in connection with the method described above, has Compared to the prior art, there are a number of advantages in terms of process technology, some of which have already been explained in detail in the preceding description. Thus, by branching off a partial volume of the phosphating bath and treating it in a separate device according to the invention, the iron (III) phosphate sludge does not arise in the bath, but is, surprisingly, exclusively in the oxidation chamber 11 and by the oxidation with oxygen-containing gases, in particular by air oxidation the sludge conditioning chamber 15 of the device according to the invention. Working according to the invention at ambient pressure has proven to be possible and efficient. The service life of the baths is extended practically indefinitely by the procedure according to the invention. It is therefore no longer necessary to discard parts of the phosphating bath or to completely recreate the phosphating bath. This not only saves substantial amounts of chemicals that have to be used if at least parts of the bath are discarded. The latter also applies to resharpening to achieve the desired Zn²⁺ ion concentration. Air oxidation causes only comparatively small amounts of zinc to precipitate out of the solution (1 to 4% Zn²⁺ compared to 8 to 15% in previously known processes). Maintaining the zinc ion concentration necessary for the process therefore only requires the addition of a significantly smaller amount of zinc oxide. For the first time, the method according to the invention was also used for the person skilled in the art surprisingly can also re-sharpen the solutions with corresponding aqueous solutions which enable the desired ratios or concentrations to be re-established in the bath. This ensures that the process parameters are fully consistent over the entire phosphating process, and there are always precisely defined phosphating layers that are identical in their layer composition.

Das erfindungsgemäße Verfahren und die Behandlung in der oben genauer beschriebenen Vorrichtung sorgen außerdem dafür, daß der durch den Oxidationsvorgang mit feinperligen, sauerstoffhaltigen Gasen gebildete Eisen(III)-Phosphatschlamm leicht absetzbar ist und sich nicht wie üblich in Form von voluminösen Flocken in der ganzen Lösung verteilt und gegebenenfalls mit ausgeschwemmt wird. Durch die Behandlung mit den feinperligen, sauerstoffhaltigen Gasen entstehen körnige, feindisperse Schlämme, die durch die Konditionierung in der Schlammkonditionierungskammer 15 noch weiter in ihren Sedimentationseigenschaften verbessert werden.The process according to the invention and the treatment in the device described in more detail above also ensure that the iron (III) phosphate sludge formed by the oxidation process with fine-bubbled, oxygen-containing gases is easily settled and does not, as usual, form voluminous flakes in the whole solution is distributed and possibly washed out. The treatment with the fine-pearled, oxygen-containing gases produces granular, finely dispersed sludges, which are further improved in their sedimentation properties by the conditioning in the sludge conditioning chamber 15.

Ein weiterer Vorteil ist darin zu sehen, daß in denjenigen Fällen, in denen die phosphatierten Teile anschließend einem Zieh- oder Preßverfahren unterworfen werden, die Oberflächen der metallischen Körper nach dem Phosphatiervorgang mit Ziehseifen beaufschlagt werden, die im wesentlichen aus Alkalimetallstearaten bestehen. Diese werden in ihrer Wirkung durch Einträge von Ca²⁺-Ionen (durch hartes Wasser) und durch Fe-Ionen (durch Eisen in erhöhter Konzentration in den Phosphatierungslösungen) beeinflußt, da sich unlösliche Calzium- bzw. Eisenstearate bilden. Derartige metallische Verunreinigungen durch Eisenionen werden dann verringert, wenn die Eisenkonzentration durch kontinuierliches Ausfällen des gebildeten Eisens in Form von Eisen(III)-Phosphat entfernt wird. Die nach dem Phosphatieren aufgebrachten Ziehseifen können dann ihre Wirkung in vollem Umfang entfalten.Another advantage is that in those cases in which the phosphated parts are subsequently subjected to a drawing or pressing process, the surfaces of the metallic bodies are treated with drawing soaps after the phosphating process, which essentially consist of alkali metal stearates. The effect of these is influenced by the entry of Ca² durch ions (by hard water) and by Fe ions (by iron in an increased concentration in the phosphating solutions), since insoluble calcium or iron stearates form. Such metallic impurities from iron ions are then reduced if the iron concentration is removed by continuous precipitation of the iron formed in the form of iron (III) phosphate. The drawing soaps applied after the phosphating can then take full effect.

Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert.The invention is illustrated by the following examples.

Beispiel 1example 1

Stahldraht der Qualität 34 Cr Mo 4 wurde gemäß dem nachfolgend in den Einzelschritten beschriebenen Verfahren durch Eintauchen in die bei den einzelnen Verfahrensschritten beschriebenen Lösungen behandelt:

  • a) Beizen in 15 %iger HCl bei Raumtemperatur über 10 min;
  • b) Spülen mit Betriebswasser beim Raumtemperatur über 1 min;
  • c) Aktivieren mit einer wäßrigen Dispersion von Titanorthophosphat und Polyphosphaten (0,1 %ig) bei 40 °C über 10 min;
  • d) Phosphatieren mit einer 15 %igen wäßrigen Lösung, die Cu²⁺, Ni²⁺, Zn²⁺, Phosphat und Nitrat enthielt, bei 48 °C über 15 min;
  • e) Spülen mit Betriebswasser bei Raumtemperatur über 1 min;
  • f) Neutralisieren mit einer wäßrigen Natriumborat-/Natriumhydrogencarbonat-Lösung (0,1 %ig) bei 70 °C;
  • g) Beseifen mit einer wäßrigen Lösung von Natriumstearat (7 %ig) bei 85 °C über 15 min;
  • h) Trocknung an der Luft und
  • i) Reduktion des Drahtes über einen Ziehstein auf Sollmaß.
Steel wire of quality 34 Cr Mo 4 was treated in accordance with the process described in the individual steps below by immersion in the solutions described in the individual process steps:
  • a) pickling in 15% HCl at room temperature for 10 min;
  • b) rinsing with process water at room temperature for 1 min;
  • c) activation with an aqueous dispersion of titanium orthophosphate and polyphosphates (0.1%) at 40 ° C for 10 min;
  • d) phosphating with a 15% aqueous solution containing Cu²⁺, Ni²⁺, Zn²⁺, phosphate and nitrate at 48 ° C for 15 min;
  • e) rinsing with process water at room temperature for 1 min;
  • f) neutralizing with an aqueous sodium borate / sodium hydrogen carbonate solution (0.1%) at 70 ° C;
  • g) soaping with an aqueous solution of sodium stearate (7%) at 85 ° C. for 15 min;
  • h) air drying and
  • i) Reduction of the wire to the target size using a drawing die.

Die Phosphatierungslösung enthielt beim Ansatz die Komponenten Zn²⁺, Phosphat und Nitrat in folgenden Mengen:
21,1 g . l⁻¹ Zn²⁺;
20,6 g . l⁻¹ Phosphat und
33,0 g . l⁻¹ Nitrat.
The phosphating solution contained the components Zn²⁺, phosphate and nitrate in the following amounts:
21.1 g. l⁻¹ Zn²⁺;
20.6 g. l⁻¹ phosphate and
33.0 g. l⁻¹ nitrate.

Um die Gesamtsäure-Punktzahl (in ml bemessene Menge 0,1 N NaOH-Lösung, Verbrauch bei der Titration einer 10-ml-Badprobe, verdünnt mit Wasser auf 50 ml, gegen 0,1 %ige alkoholische Phenolphthalin-Lösung) und die gleichmäßige Phosphatierung zu gewährleisten, wurde mit einer Ergänzungslösung folgender Zusammensetzung nachgeschärft:
129 g . l⁻¹ Zn²⁺;
410 g . l⁻¹ Phosphat und
43 g . l⁻¹ Nitrat.
By the total acid score (amount measured in ml, 0.1 N NaOH solution, consumption when titrating a 10 ml bath sample, diluted with water to 50 ml, against 0.1% alcoholic phenolphthalene solution) and the uniform To ensure phosphating, a supplement solution with the following composition was used:
129 g. l⁻¹ Zn²⁺;
410 g. l⁻¹ phosphate and
43 g. l⁻¹ nitrate.

Während der Behandlung des Drahtes konnte durch den kontinuierlichen By-pass-Betrieb der erfindungsgemäßen, oben näher beschriebenen Anlage der Eisen(II)-Gehalt der Badlösung auf 3,0 g . l⁻¹ konstant gehalten werden.During the treatment of the wire, the iron (II) content of the bath solution could be brought to 3.0 g by the continuous by-pass operation of the plant according to the invention, described in more detail above. l⁻¹ are kept constant.

Die erfindungsgemäße Apparatur wurde unter Zugrundelegung folgender Betriebsparameter betrieben:

Volumendurchsatz an Badlösung:
B = 380 l . h⁻¹;
Volumendurchsatz Druckluft:
L = 2,0 m³ . h⁻¹.
The apparatus according to the invention was operated on the basis of the following operating parameters:
Volume throughput of bathroom solution:
B = 380 l. h⁻¹;
Volume throughput of compressed air:
L = 2.0 m³. h⁻¹.

Unter diesen Bedingungen wurde das in der abgezweigten Lösung gelöste Eisen(II) (400 g . h⁻¹) in Eisen(III) überführt, als Eisen(III)-Phosphat ausgefällt und über den Ablauf 23 der Schlammzitze 20 (vergleiche Figuren 1, 2 und 3) entfernt.Under these conditions, the iron (II) (400 g. H⁻¹) dissolved in the branched solution was converted into iron (III), precipitated as iron (III) phosphate and over the outlet 23 of the mud teat 20 (see Figures 1, 2 and 3) removed.

Beispiel 2Example 2

Kaltfließpreßteile aus dem Material Cq 15 wurden nach folgendem Verfahrensgang durch Eintauchen in die nachfolgend näher beschriebenen Lösungen behandelt:

  • a) Entfetten und Reinigen mit einer wäßrigen, stark alkalischen (NaOH) silikat- und tensidhaltigen Reinigungslösung (5 Gew.-%ig) bei 85 °C über 15 min.;
  • b) Spülen mit Betriebswasser bei Raumtemperatur über 1 min;
  • c) Spülen mit Betriebswasser bei 70 °C über 3 min;
  • d) Phosphatieren mit einer 15 %igen wäßrigen Lösung, die Cu²⁺, Ni²⁺, Zn²⁺, Phosphat und Nitrat enthielt, bei 55 °C über 15 min;
  • e) Spülen mit Betriebswasser bei Raumtemperatur über 1 min;
  • f) Neutralisieren mit einer wäßrigen Natriumborat-/Natriumhydrogencarbonat-Lösung;
  • g) Beseifen mit einer wäßrigen Lösung eines Gemisches aus Natriumstearat und einer Mischung langkettiger Fettsäuren mit 12 bis 18 C-Atomen (10 Gew.-%) bei 85 °C über 10 min;
  • h) Trocknung an der Luft und
  • i) Weiterverarbeitung auf einer Presse.
Cold extruded parts made of material C q 15 were treated by immersing them in the solutions described below in the following procedure:
  • a) degreasing and cleaning with an aqueous, strongly alkaline (NaOH) silicate and surfactant-containing cleaning solution (5% by weight) at 85 ° C. for 15 minutes;
  • b) rinsing with process water at room temperature for 1 min;
  • c) rinsing with process water at 70 ° C for 3 min;
  • d) phosphating with a 15% aqueous solution containing Cu²⁺, Ni²⁺, Zn²⁺, phosphate and nitrate at 55 ° C for 15 min;
  • e) rinsing with process water at room temperature for 1 min;
  • f) neutralizing with an aqueous sodium borate / sodium hydrogen carbonate solution;
  • g) soaping with an aqueous solution of a mixture of sodium stearate and a mixture of long-chain fatty acids with 12 to 18 carbon atoms (10% by weight) at 85 ° C. for 10 minutes;
  • h) air drying and
  • i) Further processing on a press.

Die Phosphatierungslösung enthielt die Komponenten Zn²⁺, Phosphat und Nitrat, anfänglich in folgenden Mengen:
18,0 g . l⁻¹ Zn²⁺;
30,0 g . l⁻¹ Phosphat und
22,0 g . l⁻¹ Nitrat.
The phosphating solution contained the components Zn²⁺, phosphate and nitrate, initially in the following amounts:
18.0 g. l⁻¹ Zn²⁺;
30.0 g. l⁻¹ phosphate and
22.0 g. l⁻¹ nitrate.

Die Konzentration an den drei genannten Komponenten wurde aufrecht erhalten durch Ergänzung mit Nachschärflösungen, die folgende Zusammensetzung aufwiesen:
192 g . l⁻¹ Zn²⁺;
600 g . l⁻¹ Phosphat und
80 g . l⁻¹ Nitrat.
The concentration of the three components mentioned was maintained by supplementing with resharpening solutions which had the following composition:
192 g. l⁻¹ Zn²⁺;
600 g. l⁻¹ phosphate and
80 g. l⁻¹ nitrate.

Bei Nachschärfen der Lösungen nach Durchgang durch die erfindungsgemäße Apparatur konnte die Konzentration aller genannten Komponenten sowie auch die Gesamtsäure-Punktzahl konstant gehalten werden. Dabei ergab sich eine gleichmäßige Qualität der Phosphatierungs-Schichten.When the solutions were resharpened after passing through the apparatus according to the invention, the concentration of all of the components mentioned and also the total acid score could be kept constant. This resulted in a uniform quality of the phosphating layers.

Die erfindungsgemäße Apparatur wurde unter Zugrundelegung folgender Betriebsdaten betrieben:
Volumendurchsatz an Badlösung: V̇B = 120 l . h⁻¹;
Volumendurchsatz an Druckluft: V̇L = 1 m³ . h⁻¹.
The apparatus according to the invention was operated on the basis of the following operating data:
Volume throughput of bath solution: V̇ B = 120 l. h⁻¹;
Volume flow rate of compressed air: V̇ L = 1 m³. h⁻¹.

Aus den im By-Pass durch die erfindungsgemäße Apparatur geführten Phosphatierungslösungen konnten unter den oben genannten Bedingungen pro Stunde 330 g Eisen(II) zu Eisen(III) oxidiert, als Eisen(III)-Phosphat ausgefällt und als solches über den Ablauf 23 der Schlammzitze 20 (siehe Figuren 1 bis 3) entfernt werden.Under the conditions mentioned above, 330 g of iron (II) could be oxidized to iron (III) from the phosphating solutions carried in the by-pass through the apparatus according to the invention, precipitated as iron (III) phosphate and as such via the outlet 23 of the mud teat 20 (see Figures 1 to 3) can be removed.

Claims (24)

  1. A process for removing sludge from phospating baths by branching off a partial volume of the phospating solution from the bath container, adding oxidizing agent to the partial volume branched off in a separate unit to precipitate the iron present in the solution as iron phosphate and returning the solution freed from iron phosphate sludge to the bath container with adjustment of the bath parameters to the desired values, characterized in that,
    (a) in a continuous sequence,
    (b) a partial volume of the phosphating solution is fed to a separate unit which has three open compartments and in the oxidation compartment of which the solution is aerated with an O₂-containing gas, after which the iron phosphate sludge formed is conditioned with stirring in the sludge conditioning compartment and is separated off in the sedimentation compartment and removed and
    (c) the solution reduced in its content of layer-forming components is made up with aqueous solutions which enable both the acid ratio and the concentration of components essential to layer formation to be adjusted and
    (d) the solution is subsequently returned to the phosphating bath.
  2. A process as claimed in claim 1, characterized in that a partial volume of 10 to 30% of the total volume is fed to the separate unit.
  3. A process as claimed in claims 1 and 2, characterized in that a partial volume of the phosphating bath is fed to a unit of which the compartments have a ratio by volume of 1:0.05:10 to 1:1:1 and preferably 1:0.5:5.
  4. A process as claimed in claims 1 to 3, characterized in that an O₂-containing gas is delivered to the oxidation compartment through a centrally impinged aeration unit having a porous surface.
  5. A process as claimed in claim 4, characterized in that a sintered polypropylene hose is used as the aeration unit.
  6. A process as claimed in claims 4 and 5, characterized in that a sintered polypropylene hose having an average pore width of 0.10 to 5.0 µm is used as the aeration unit.
  7. A process as claimed in claims 4 to 6, characterized in that a sintered polypropylene hose having a pore width of 0.12 to 0.30 µm is used as the aeration unit.
  8. A process as claimed in claims 1 to 7, characterized in that the oxidation chamber is aerated with a gas from the group consisting of O₂, air, O₂-enriched air, preferably air.
  9. A process as claimed in claims 1 to 8, characterized in that the O₂-containing gas is introduced in a quantity corresponding to an oxygen input of 0.01 to 100 mol O₂·h⁻¹.
  10. A process as claimed in claims 1 to 9, characterized in that the iron phosphate sludge formed is conditioned with stirring in the sludge conditioning compartment, the stirring speed being adjusted to 100 to 300 revolutions · min⁻¹.
  11. A process as claimed in claims 1 to 10, characterized in that the solution containing the sludge is delivered to the sedimentation compartment in such a way that it impinges on the lamellae of the sedimentation compartment from below.
  12. A process as claimed in claims 1 to 11, characterized in that the sedimenting sludge is separated from the solution through a separate outlet and is optionally freed from bath liquid present therein.
  13. A process as claimed in claims 1 to 12, characterized in that the sludge-free solution is delivered to the phosphating bath with addition of aqueous solutions which enable the acid ratio to be adjusted to a value of 7 to 15 and the concentrations of H₃PO₄, HNO₃, Ni²⁺, Cu²⁺ and Zn²⁺ to values in the following ranges:
    10 to 40 g · 1⁻¹ for H₃PO₄
    10 to 50 g · 1⁻¹ for HNO₃
    0 to 8.0 g · 1⁻¹ for Ni²⁺
    0 to 0.5 g · 1⁻¹ for Cu²⁺ and
    3 to 30 g · 1⁻¹ for Zn²⁺.
  14. A process as claimed in claims 1 to 13, characterized in that the sludge-free solution is returned to the phosphating bath with addition of aqueous solution containing
    H₃PO₄   in quantities of 300 to 700 g · 1⁻¹,
    HNO₃   in quantities of 30 to 300 g · 1⁻¹,
    Ni(NO₃)₂   in quantities of 0 to 50 g · 1⁻¹,
    Cu(OH)₂·CuCO₃   in quantities of 0 to 3.0 g · 1⁻¹ and
    ZnO   in quantities of 100 to 300 g · 1⁻¹.
  15. An apparatus for carrying out the process claimed in claims 1 to 14 having separate compartments for oxidation of the oxidizable bath constituents, means for supplying the oxidizing agent and for supplying, removing and stirring the solution and also for removing the iron phosphate sludge formed, characterized in that it comprises the following parts: an oxidation compartment (11) with an inflow connection (12) and an aeration unit (13), a sediment conditioning compartment (15) which communicates with the oxidation compartment (11) through the overflow (14) and comprises a stirrer (17) for stirring the solution, means for controlling the flow direction (16), a sedimentation compartment (19) which communicates with the sludge conditioning compartment (15) through the overflow (18), enables the sludge entrained by the flow to sediment in a sludge nipple (20) with a separate sludge outlet (23) and, for separation of the sludge, comprises several separation surfaces (24) arranged substantially parallel to the flow direction.
  16. An apparatus as claimed in claim 15, characterized in that the aeration unit (13) is a hose-like device with a porous surface against which the solution centrally impinges.
  17. An apparatus as claimed in claims 15 and 16, characterized in that the aeration unit (13) is a sintered polypropylene hose.
  18. An apparatus as claimed in claims 15 to 17, characterized in that the aeration unit (13) is a sintered polypropylene hose having an average pore width of 0.10 to 5.0 µm.
  19. An apparatus as claimed in claims 15 to 18, characterized in that the aeration unit (13) is a sintered polypropylene hose having a pore width of 0.12 to 0.30 µm.
  20. An apparatus as claimed in claims 15 to 19, characterized in that the devices (16) for controlling the flow direction are deflection chicanes in the form of U-shaped profiles of which the inside faces the overflows (14,18).
  21. An apparatus as claimed in claims 15 to 20, characterized in that the separation surfaces (24) are arranged at a distance of 5 to 30 cm from one another and at an angle (31) to the bath surface (30) of ≧ 35°.
  22. An apparatus as claimed in claims 15 to 21, characterized in that the walls of the sludge nipple (20) are inclined at an angle (32) of ≧ 35° to the bath surface (30).
  23. An apparatus as claimed in claims 15 to 22, characterized in that it comprises a sludge outlet (23) provided with a pressure cleaning facility at the lower end of the sludge nipple (2).
  24. An apparatus as claimed in claims 15 to 23, characterized in that it is made of polypropylene.
EP88120522A 1987-12-16 1988-12-08 Process for desludging of phosphatizing baths and apparatus for this process Expired - Lifetime EP0320798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88120522T ATE77663T1 (en) 1987-12-16 1988-12-08 PROCESS FOR DESILING FROM PHOSPHATION BATHS AND DEVICE FOR THE PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873742634 DE3742634A1 (en) 1987-12-16 1987-12-16 METHOD FOR THE COLLIGHTING OF PHOSPHATING BAEDERS AND DEVICE FOR THIS METHOD
DE3742634 1987-12-16

Publications (2)

Publication Number Publication Date
EP0320798A1 EP0320798A1 (en) 1989-06-21
EP0320798B1 true EP0320798B1 (en) 1992-06-24

Family

ID=6342737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120522A Expired - Lifetime EP0320798B1 (en) 1987-12-16 1988-12-08 Process for desludging of phosphatizing baths and apparatus for this process

Country Status (9)

Country Link
US (1) US4968360A (en)
EP (1) EP0320798B1 (en)
JP (1) JPH01198488A (en)
AT (1) ATE77663T1 (en)
AU (1) AU605658B2 (en)
BR (1) BR8806633A (en)
DE (2) DE3742634A1 (en)
ES (1) ES2032938T3 (en)
TR (1) TR23893A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913089A1 (en) * 1989-04-21 1990-10-25 Henkel Kgaa CHLORATE- AND NITRITE-FREE METHOD FOR THE PRODUCTION OF NICKEL- AND MANGANE-CONTAINING ZINC PHOSPHATE LAYERS
US5273667A (en) * 1991-09-12 1993-12-28 Gill Colman A Recovery and utilization of phosphate sludge
DE4226080A1 (en) * 1992-08-06 1994-02-10 Henkel Kgaa Preparation of aqueous rinse solutions from zinc phosphating processes
US5376342A (en) * 1993-04-09 1994-12-27 Waite; Michael D. Process for recovering zinc phosphating make-up feed from zinc phosphate sludge
EP0974682A1 (en) 1998-07-18 2000-01-26 Henkel Kommanditgesellschaft auf Aktien Method and apparatus for the chemical treatment of metalsurfaces
DE10208400B4 (en) 2001-02-28 2018-03-29 Volkswagen Ag Process for phosphating metallic surfaces and use of the process
US7569148B2 (en) 2006-08-23 2009-08-04 Siemens Water Technologies Corp. Continuous membrane filtration and solids reduction
JP5126659B2 (en) * 2007-10-04 2013-01-23 新日鐵住金株式会社 Chemical treatment apparatus and chemical treatment method for metal pipe
JP5974489B2 (en) * 2012-01-11 2016-08-23 マツダ株式会社 Method for extending the life of phosphate coating solution
BR112015019200B1 (en) * 2013-03-06 2021-07-20 Ppg Industries Ohio, Inc. METHOD FOR REMOVING IRON FROM A PRE-TREATMENT BATH
CN105384297B (en) * 2015-12-28 2018-03-02 徐州市城区水资源管理处 A kind of catalyst heating synergy processing mine water middle and high concentration ferrimanganic apparatus and method
CN108163827A (en) * 2018-01-17 2018-06-15 靖西湘潭电化新能源材料有限公司 A kind of method that nano ferric phosphate is prepared by phosphatization slag
CN112921315B (en) * 2021-01-13 2022-12-13 苏州瑞弗曼智能科技有限公司 Preparation process of high-strength fastener
CN114525503A (en) * 2022-03-22 2022-05-24 上海照潇环保科技有限公司 External deslagging system of phosphating solution tank
CN116040598B (en) * 2023-03-31 2023-06-16 沧州彩客锂能有限公司 Preparation device of ferric phosphate and application method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB996418A (en) * 1964-03-31 1965-06-30 Pyrene Co Ltd Improvements relating to the phosphate coating of metals
US3874951A (en) * 1972-09-27 1975-04-01 Trw Inc Method for controlling iron content of a zinc phosphating bath
US3992300A (en) * 1972-09-27 1976-11-16 Trw Inc. Apparatus for controlling iron content of a zinc phosphating bath
GB2080835B (en) * 1980-07-25 1984-08-30 Pyrene Chemical Services Ltd Prevention of sludge in phosphating baths
GB2114161B (en) * 1982-01-20 1986-03-12 Nihon Parkerizing Phosphate immersion treatment of steel sheet structures
DE3345498A1 (en) * 1983-12-16 1985-06-27 Metallgesellschaft Ag, 6000 Frankfurt Process for producing phosphate coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Abwassertechnik, Bd. 3, S 153-155, Verlag von Wilhelm Ernst & Sohn, Berlin-München, 1983. *

Also Published As

Publication number Publication date
DE3872363D1 (en) 1992-07-30
JPH01198488A (en) 1989-08-10
ES2032938T3 (en) 1993-03-01
ATE77663T1 (en) 1992-07-15
US4968360A (en) 1990-11-06
AU605658B2 (en) 1991-01-17
BR8806633A (en) 1989-08-29
TR23893A (en) 1990-10-17
EP0320798A1 (en) 1989-06-21
DE3742634A1 (en) 1989-06-29
AU2689588A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
EP0320798B1 (en) Process for desludging of phosphatizing baths and apparatus for this process
DE2363589C3 (en) Process for removing sulfur dioxide from industrial waste gases
EP0728853B1 (en) Process and apparatus for regenerating a sulfate electrolyte in galvanizing steel strips
DE3507370A1 (en) METHOD FOR TREATING EXHAUST GAS
DE4132679A1 (en) REMOVAL OF HEAVY METALS FROM WATERWATER FROM THE TITANIUM DIOXIDE INDUSTRY
DE1417619A1 (en) Process for the recovery of metal ions from a slurry containing them
EP0372591B1 (en) Process for phosphatizing metal surfaces
DE2316047A1 (en) METHOD AND DEVICE FOR WASTEWATER TREATMENT, IN PARTICULAR OF INDUSTRIAL WASTE WATER FOR SEPARATION AND POSSIBLE RECOVERY OF HEAVY METAL IONS
EP1567689A1 (en) Method for phosphatizing metal surfaces with improved phosphate recovery
WO2014037234A1 (en) Method for corrosion-protective serial surface treatment of metallic components
DE2713684A1 (en) METHOD FOR TREATMENT OF WASTE WATER
EP0167736B1 (en) Method of transfering metal ions by use of microporous membranes
DE3031755A1 (en) Continuous chemical treatment of effluents - esp. from laundries, contg. dissolved, emulsified or colloidal contaminants
DE3633864A1 (en) Process and apparatus for extracting metals from waste waters
DE3318109A1 (en) METHOD FOR PRODUCING ZINC
DE19810859A1 (en) Treating galvanic bath
DE4235833C2 (en) Device and method for water purification
DE3832046C2 (en)
WO1999048819A1 (en) Treatment of waste water during phosphating
WO2016075183A1 (en) Method for the selective removal of zinc ions from alkali bath solutions in the serial surface treatment of metal components
WO2003078684A1 (en) Method for the phosphating of metal surfaces with improved recovery of valuable substances
DE10236293A1 (en) Process for phosphating metal surfaces with improved recovery of valuable materials
DE665947C (en) Process for processing waste water containing copper
DE102018125680A1 (en) Process for the precipitation of arsenic and heavy metal from acidic process water
DE2045308A1 (en) Process for the transfer of molybdenum disulphide&gt; n molybdenum oxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19910228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 77663

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3872363

Country of ref document: DE

Date of ref document: 19920730

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032938

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EAL Se: european patent in force in sweden

Ref document number: 88120522.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951219

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961209

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19961209

EUG Se: european patent has lapsed

Ref document number: 88120522.3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011212

Year of fee payment: 14

Ref country code: FR

Payment date: 20011212

Year of fee payment: 14

Ref country code: AT

Payment date: 20011212

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020109

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020215

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021208

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

BERE Be: lapsed

Owner name: *GERHARD COLLARDIN G.M.B.H.

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051208