EP0122963B1 - Apparatus for regenerating an ammoniacal etching solution - Google Patents
Apparatus for regenerating an ammoniacal etching solution Download PDFInfo
- Publication number
- EP0122963B1 EP0122963B1 EP83111152A EP83111152A EP0122963B1 EP 0122963 B1 EP0122963 B1 EP 0122963B1 EP 83111152 A EP83111152 A EP 83111152A EP 83111152 A EP83111152 A EP 83111152A EP 0122963 B1 EP0122963 B1 EP 0122963B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- etching solution
- oxygen
- line
- etching
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005530 etching Methods 0.000 title claims abstract description 167
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 60
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 24
- 238000010405 reoxidation reaction Methods 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 8
- 238000007599 discharging Methods 0.000 claims abstract 3
- 230000001376 precipitating effect Effects 0.000 claims abstract 3
- 238000005406 washing Methods 0.000 claims abstract 3
- 239000000706 filtrate Substances 0.000 claims abstract 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 36
- 229910021529 ammonia Inorganic materials 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 94
- 238000005868 electrolysis reaction Methods 0.000 description 39
- 239000007788 liquid Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- QKSIFUGZHOUETI-UHFFFAOYSA-N copper;azane Chemical compound N.N.N.N.[Cu+2] QKSIFUGZHOUETI-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008237 rinsing water Substances 0.000 description 2
- 0 C*N*I(C)IC Chemical compound C*N*I(C)IC 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical group [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/46—Regeneration of etching compositions
Definitions
- the invention relates to a system for regenerating an ammoniacal etching solution.
- Oxygen is fed to the etching solution for the re-oxidation of the etchant contained in the etching solution, optionally in the presence of a catalyst contained in the etching solution.
- a catalyst contained in the etching solution In order to recover etched metal, at least part of the etching solution flows through an electrolysis cell, metal being deposited cathodically and oxygen being produced at the anode of the electrolysis cell.
- Alkaline etchants are used for etching metallic objects, in particular for the production of printed circuit boards, which are also known under the name “printed circuits”, especially when the printed circuit boards to be etched are metal parts which are not resistant to acidic etching media, for example made of lead, tin or nickel, exhibit.
- a reoxidation of the alkaline etching solution after etching off the metal is carried out with the addition of ammonia gas and / or ammonium chloride in the presence of oxygen or air.
- the etching solution containing the catalyst particles is sprayed in air for reoxidation. This is done directly in the etching chamber by spraying the etching solution onto the workpieces to be processed.
- the reoxidation with air is not an advantage in all cases. This is particularly not the case because ammonia is added to the etching solution to adjust the pH and odor nuisances and environmental problems caused by evaporating ammonia should be kept as low as possible.
- the object of the invention is to mix the etching solution intensively in a simple manner with a gas having a high oxygen content in a system of the type mentioned.
- the oxygen formed at the anode of the electrolytic cell is fed to the etching solution.
- the gas fractions introduced into the etching solution which do not contribute to the reoxidation, such as the nitrogen fractions in air, are low.
- oxygen is advantageously used which arises in the electrolysis cell when the etched metal is recovered.
- a liquid jet pump serves for the entry, the working medium of which is the etching solution and the suction nozzle of which is connected to an oxygen line connected to the electrolysis cell. With the liquid jet pump, rapid reoxidation is achieved through intensive mixing and fine distribution of the gases containing oxygen.
- the oxygen line connected to the gas space above the electrolyte of the electrolysis cell is guided over a condenser in which the gas mixture is cooled and Water vapor is excreted.
- the condensed water is used as rinsing water for the etched workpieces and thus reduces the total amount of detergent required.
- the condensate line leading away the condensate from the condenser expediently opens into the last rinsing chamber of the system. It is advantageous that the water separated in the condenser contains ammonia.
- ammonia it is expedient to add ammonia to the etching solution at the same time as the oxygen (claim 2) in order to adjust the pH of the etching solution. As much ammonia must be added to the etching solution as is essentially lost through evaporation during the etching in the etching chamber and when the etching solution is regenerated.
- the ammonia escaping into the gas space above the electrolyte during regeneration in the electrolysis cell can be returned to the etching solution with the extracted oxygen.
- the ammonia is introduced into the etching solution with the oxygen and, like the oxygen, is mixed intensively with the etching solution.
- a pressure relief line branches off from the return in front of the liquid jet pump and opens into a collecting container for etching solution, which is connected to the etching chamber for receiving the etching solution removed from the etching chamber.
- the collecting container is connected to the etching chamber in such a way that the etching solution flows into the collecting container in a natural gradient.
- the filter protecting the electrolytic cell from the ingress of catalyst particles is not required.
- the amount of water vapor generated in the electrolysis cell depends on the temperature in the electrolysis cell. With increasing electrolyte temperature, the water vapor content in the gas space above the electrolyte increases, and more condensate can then be obtained in the condenser. By adjusting the temperature in the electrolysis cell, the amount of condensate to be generated can be regulated, claim 6.
- the maximum temperature in the electrolysis cell is limited by the required pH in the electrolyte. The pH value drops with increasing temperature because the ammonia content in the electrolyte drops. The electrolyte must remain alkaline, especially to protect the electrodes.
- a regeneration system connected to an etching chamber 1 with a rinsing chamber 2 is shown schematically in FIG.
- the ammoniacal etching solution to be regenerated which contains ammonium sulfate in conjunction with copper tetrammine complex as an etchant and catalyst particles suspended in the etching solution, flows from the etching chamber 1 via an inlet 3 to a filter 4.
- the catalyst particles contained in the etching solution serve to increase the etching speed and / or to accelerate the reoxidation of the etching solution.
- activated carbon particles as described in DE-A 3 031 567 are suitable for catalysis.
- the inlet 3 is connected to the etching chamber 1 in such a way that the etching solution can first of all flow out of the etching chamber into a collecting container 5. It is guided from the collecting container to the filter 4 by means of a pump 6 via a pressure line 7.
- the supply of the etching solution to the filter thus includes the supply 3 itself, the collecting container 5, the suspension pump 6 and the pressure line 7.
- the filter 4 is provided with a filter insert 8 which is impermeable to the catalyst particles suspended in the etching solution.
- the filter 4 is arranged vertically and the etching solution flows through it with catalyst particles from top to bottom.
- a return 9 from the filter 4 leads back to the etching chamber 1. In the reflux 9, an etching solution containing catalyst particles is passed.
- a liquid jet pump 10 is inserted in the return 9, the suction port 11 of which is connected to an oxygen line 12.
- the liquid jet pump uses the etching solution flowing out of the filter 4 and containing catalyst particles as the working medium.
- the oxygen line 12 starts from an electrolysis cell 13. A portion of the etching solution flows through the electrolytic cell to deposit metal etched off in the etching chamber at cathode 14. Catalyst particle-free etching solution is to be fed to the electrolytic cell. A connecting line 16, 16 ′, 16 ′′ connected to the filter 4 and the electrolysis cell 13 is used for this purpose. Oxygen is produced at the anode 17 of the electrolysis cell.
- the oxygen line 12 opens into the gas space above the electrolyte of the electrolysis cell and thus becomes operational when the liquid jet pump 10 is in operation In addition to oxygen, there is also ammonia and water vapor in the gas space, which evaporate from the electrolyte according to its vapor pressure.
- An ammonia line 18 leads to the supply of ammonia in the oxygen line 12 and is connected to a storage container 20 for ammonia which can be closed by means of a shut-off device 19.
- Fresh liquid ammonia can thus be introduced into the etching solution containing the catalyst particles from the liquid jet pump 10 with the oxygen drawn off from the electrolytic cell in order to regulate the pH of the etching solution.
- the shut-off device 19 is operatively connected to a pH value measuring device 21 inserted in the connecting line 16 with a measuring electrode. If the pH falls below a predetermined permissible limit value, the shut-off device 19 is opened and ammonia is introduced into the etching solution.
- the pH value measuring device switches the shut-off device 19 with the aid of electrical control units.
- a pressure relief line 22 opens into the return line 9 and is led to the drainage of etching solution in the collecting container 5.
- An overflow 24 of etching solution depleted in metal ions leads from the outlet 23 of the electrolytic cell to the etching chamber.
- the depleted ⁇ tzlö solution is mixed in the etching chamber as a fresh etching solution with the etching solution containing catalyst particles.
- a drain container 25 Underneath the electrolysis cell 13 there is a drain container 25. It serves to empty the electrolysis cell and is connected to the bottom of the electrolysis cell 13 via an outlet 26 which can be shut off by means of a solenoid valve 27. Etching solution can also flow from the electrolysis cell 13 into the drain container 25 via a second overflow 28.
- the quantity of etching solution to be conducted to the electrolytic cell 13 is measured by the flow meter 30.
- the flow meter 30 is operatively connected to two controllable shut-off devices 31 and 32.
- the flow meter 30 can effect the adjustment of the shut-off devices, for example mechanically, hydraulically, but also electrically. If the latter is desired, solenoid valves 31, 32 are used as shut-off devices.
- the shut-off element 31 is inserted in the connecting line 16, the shut-off element 32 in a bypass 33 branching off from the connecting line 16 in front of the shut-off element 31.
- the two shut-off elements are set in such a way that there is a constant in the connecting line part 16 'leading to the electrolysis cell Etching solution current sets.
- the volume of etching solution to be introduced into the electrolysis cell per unit of time depends on the amount of metal that can be deposited in the electrolysis cell in the same unit of time.
- the metal ion concentration in the etching solution measured by the device 29 determines the mode of operation of the electrolysis cell.
- the device 29 is operatively connected to a three-way valve 34 inserted at the end of the connecting line part 16 ', to which on the one hand the end piece 16 "of the connecting line 16 leading to the electrolytic cell 13 is connected and on the other hand a bypass line 35 which opens into the bypass 33.
- the three-way valve 34 opened toward the electrolysis cell 13. If the metal ion concentration of the etching solution falls below a predetermined value, the three-way valve 34 is switched over, and the etching solution then flows off via the bypass line 35. The electrolysis cell is switched off.
- a solution pump 36 ensures circulation of the etching solution in the electrolysis cell 13.
- the solution pump dips with its suction line 37 into the drain container 25, into which the etching solution flows via the overflow 28, and conveys the etching solution back in its pressure line 39 via a filter 38 to the electrolytic cell.
- the etching solution enters the electrolysis cell between cathode 14 and anode 17.
- the etching solution is emptied into the drain container 25 by opening the solenoid valve 27.
- the etching solution is conveyed back from the drain container into the electrolysis cell by means of the solution pump 36.
- an etching solution containing ammonium sulfate and copper tetrammine complex is used for etching copper.
- the etching solution depleted of metal ions can serve as a rinsing solution for rinsing the workpieces etched in the etching chamber 1 after the end of the etching treatment.
- the etched workpieces are to be cleaned in particular of catalyst particles still adhering.
- the amount of etching solution required for this can be found in the overflow 24.
- a rinsing line 40 which can be connected to the overflow 24 and which leads to the rinsing chamber 2 is shown in broken lines in FIG.
- the rinsing chamber 2 and the etching chamber 1 are connected to one another in such a way that the etching solution can flow into the etching chamber after the rinsing process.
- the system shown in FIG. 1 is to be supplemented by the condensation device shown in FIG.
- the condensation device is the subject of both exemplary embodiments.
- a condenser 42 is provided in the oxygen line 12 and a device 43 for regulating the electrolyte temperature is provided in the electrolysis cell 13.
- a condensate line 44 leads from the condenser 42 to the rinsing chamber 2 of the etching system. The water separated in the condenser is used to rinse the etched workpieces.
- the temperature in the electrolyte is regulated in the electrolytic cell by means of the device 43.
- the amount of water vapor contained in the gas mixture increases with the electrolyte temperature.
- the device 43 essentially serves to cool the electrolysis cell, which heats up during its operation as a result of the passage of current.
- a high temperature constancy is achieved by designing the electrolysis cell with a cooling jacket through which cooling water flows, claim 14.
- the amount of cooling water is regulated as a function of the temperature of the electrolyte.
- FIG. 1 shows a regeneration system for an etching solution in which catalyst particles are suspended. If the oxygen input via the liquid jet pump and the intensive mixing of the oxygen with the etching solution and its fine distribution achieved is sufficient for rapid reoxidation, the catalyst particles are unnecessary and the system is simplified.
- the filter 4 used in the pressure line 7 is omitted. Instead, as shown in the exemplary embodiment according to FIG. 2, a simple pipe connection 41 remains between the pressure line 7 and connecting line 16.
- the regeneration system has individual parts which unchanged correspond to the design shown in FIG. 1, the same reference numerals as in FIG. 1 are entered in FIG.
- an etching solution containing ammonium sulfate and copper tetrammine complex is also used in the system according to FIG. 2 for etching copper.
- a temperature of 75 ° C. is set in the electrolysis cell by cooling the electrolyte when the etched copper is deposited.
- About 5 m 3 / h of gas mixture are sucked out of the gas space above the electrolyte by the liquid jet pump from the electrolysis cell.
- the electrolysis cell is closed, around 1.25 l / h of condensate can be generated from the gas mixture in the condenser as a rinsing agent under these conditions.
- Approx. 500 l / h of oxygen are generated at the anode of the electrolysis cell at a current of 2400 A.
- the etching solution containing copper ions introduced into the electrolytic cell was adjusted to a pH of 9.
- curve A indicating the reoxidation of the etching solution when biospraying in the etching chamber
- curve B representing the reoxidation by additionally introducing oxygen into the etching solution by means of the liquid jet pump.
- the reoxidation in the etching solution is measured via the potential of the Cu ++ / Cu + - redox system against a calomel reference electrode (Hg / Hg 2 Cl 2 / saturated KCI).
- Copper surfaces were etched with a copper tetrammine complex and ammonium sulfate containing etching solution with a copper content of 50 g / I and 150 g / I (NH 4 ) 2 S0 4 and with a pH value of 9 adjusted with ammonia at a temperature of 50 ° C.
- the potential of the Cu ++ / Cu + redox system dropped from an initial value of 125 mV to approximately -60 mV within 3% minutes of the etching time. The reoxidation began after this etching time.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Weting (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Anlage zum Regenerieren einer ammoniakalischen Ätzlösung. Der Ätzlösung wird zur Rückoxidation des in der Ätzlösung enthaltenden Ätzmittels Sauerstoff gegebenenfalls in Gegenwart eines in der Ätzlösung enthaltenen Katalysators zugeführt. Zur Rückgewinnung abgeätzten Metalls durchströmt zumindest ein Teil der Ätzlösung eine Elektrolysezelle, wobei kathodisch Metall abgeschieden wird und an der Anode der Elektrolysezelle Sauerstoff entsteht. Die Anlagenmerkmale, von der die Erfindung ausgeht, sind in den Oberbegriffen der Patentansprüche 1 und 8 angegeben.The invention relates to a system for regenerating an ammoniacal etching solution. Oxygen is fed to the etching solution for the re-oxidation of the etchant contained in the etching solution, optionally in the presence of a catalyst contained in the etching solution. In order to recover etched metal, at least part of the etching solution flows through an electrolysis cell, metal being deposited cathodically and oxygen being produced at the anode of the electrolysis cell. The system features from which the invention is based are specified in the preambles of claims 1 and 8.
Alkalische Ätzmittel werden zum Ätzen metallischer Gegenstände, insbesondere zur Herstellung von Leiterplatten, die auch unter der Bezeichnung «gedruckte Schaltungen» bekannt sind, vor allem dann verwendet, wenn die zu ätzenden Leiterplatten gegen saure Ätzmedien nichtbeständige Metallteile, beispielsweise aus Blei, Zinn oder Nickel, aufweisen. Eine Rückoxidation der alkalischen Ätzlösung nach Abätzen des Metalls wird unter Zugabe von Ammoniakgas und/oder Ammoniumchlorid in Gegenwart von Sauerstoff bzw. Luft durchgeführt.Alkaline etchants are used for etching metallic objects, in particular for the production of printed circuit boards, which are also known under the name “printed circuits”, especially when the printed circuit boards to be etched are metal parts which are not resistant to acidic etching media, for example made of lead, tin or nickel, exhibit. A reoxidation of the alkaline etching solution after etching off the metal is carried out with the addition of ammonia gas and / or ammonium chloride in the presence of oxygen or air.
Aus DE-A 3 031 567 ist es bekannt, in der Ätzlösung Katalysatorteilchen zu suspendieren, die das Ätzen selbst, aber auch die Rückoxidation der Ätzlösung beschleunigen und so den Zusatz chemischer Oxidationsmittel ersparen, die zu toxischen Restlösungen führen. Bei dieser bekannten Einrichtung werden die abgeätzten Metalle in einer Elektrolysezelle abgeschieden. Hierzu durchströmt ein Teil der Ätzlösung, die Ammoniumsulfat aufweist, die Elektrolysezelle. Dabei werden die abgeätzten Metalle an der Kathode der Elektrolysezelle abgeschieden, an der Anode entsteht Sauerstoff.From DE-A 3 031 567 it is known to suspend catalyst particles in the etching solution, which accelerate the etching itself, but also the reoxidation of the etching solution and thus save the addition of chemical oxidizing agents, which lead to toxic residual solutions. In this known device, the etched metals are deposited in an electrolysis cell. For this purpose, part of the etching solution, which has ammonium sulfate, flows through the electrolytic cell. The etched metals are deposited on the cathode of the electrolytic cell, oxygen is generated on the anode.
Bei der bekannten Einrichtung wird die die Katalysatorteilchen enthaltende Ätzlösung zur Rückoxidation in Luft versprüht. Dies erfolgt unmittelbar in der Ätzkammer durch Aufsprühen der Ätzlösung auf die zu bearbeitenden Werkstücke. Die Rückoxidation mit Luft ist nicht in allen Fällen von Vorteil. Dies insbesondere deshalb nicht, weil der Ätzlösung Ammoniak zur Einstellung des pH-Wertes zugegeben wird und Geruchsbelästigungen sowie Umweltprobleme durch verdunstendes Ammoniak so gering wie möglich gehalten werden sollen.In the known device, the etching solution containing the catalyst particles is sprayed in air for reoxidation. This is done directly in the etching chamber by spraying the etching solution onto the workpieces to be processed. The reoxidation with air is not an advantage in all cases. This is particularly not the case because ammonia is added to the etching solution to adjust the pH and odor nuisances and environmental problems caused by evaporating ammonia should be kept as low as possible.
Aufgabe der Erfindung ist es, bei einer Anlage der eingangs genannten Art die Ätzlösung in einfacher Weise intensiv mit einem Gas zu vermengen, das einen hohen Sauerstoffanteil aufweist.The object of the invention is to mix the etching solution intensively in a simple manner with a gas having a high oxygen content in a system of the type mentioned.
Diese Aufgabe wird gemäss der Erfindung durch die in Patentanspruch 1 angegebene Ausbildung der Anlage gelöst. Der Ätzlösung wird der an der Anode der Elektrolysezelle entstehende Sauerstoff zugeführt. Die in der Ätzlösung eingeleiteten Gasanteile, die zur Rückoxidation nicht beitragen, wie beispielsweise die Stickstoffanteile bei Luft, sind gering. In vorteilhafter Weise wird zugleich Sauerstoff genutzt, der in der Elektrolysezelle bei Rückgewinnung des abgeätzten Metalls entsteht. Zum Eintrag dient eine Flüssigkeitsstrahlpumpe, deren Arbeitsmittel die Ätzlösung ist und deren Saugstutzen mit einer an der Elektrolysezelle angeschlossenen Sauerstoffleitung verbunden ist. Mit der Flüssigkeitsstrahlpumpe wird durch intensives Vermengen und feine Verteilung der Sauerstoff enthaltenden Gase eine raschere Rückoxidation erreicht.This object is achieved according to the invention by the design of the system specified in claim 1. The oxygen formed at the anode of the electrolytic cell is fed to the etching solution. The gas fractions introduced into the etching solution, which do not contribute to the reoxidation, such as the nitrogen fractions in air, are low. At the same time, oxygen is advantageously used which arises in the electrolysis cell when the etched metal is recovered. A liquid jet pump serves for the entry, the working medium of which is the etching solution and the suction nozzle of which is connected to an oxygen line connected to the electrolysis cell. With the liquid jet pump, rapid reoxidation is achieved through intensive mixing and fine distribution of the gases containing oxygen.
Um beim Absaugen des Sauerstoffs und Ammoniaks aus dem Gasraum der Elektrolysezelle mitgeschleppten Wasserdampf, noch bevor das Gasgemisch in die Ätzlösung eingebracht wird, wieder abzuscheiden, ist die am Gasraum oberhalb des Elektrolyten der Elektrolysezelle angeschlossene Sauerstoffleitung über einen Kondensator geführt, in dem das Gasgemisch gekühlt und Wasserdampf ausgeschieden wird. Das kondensierte Wasser wird als Spülwasser für die geätzten Werkstücke verwendet und verringert so die insgesamt benötigte Spülmittelmenge. Die das Kondensat vom Kondensator abführende Kondensatleitung mündet zweckmässig in der letzten Spülkammer der Anlage. Vorteilhaft ist, dass das im Kondensator abgeschiedene Wasser Ammoniak enthält. Bei Eintritt des Kondensats in die Spülkammer kann so keine Hydrolyse des beispielsweise beim Ätzen von Kupfer in der Ätzlösung enthaltenen Kupfertetramminkomplexes unter Abscheidung von Kupferhydroxid oder basischem Kupfersalz auf der bearbeiteten Werkstückoberfläche eintreten.In order to separate water vapor that is entrained when the oxygen and ammonia are sucked out of the gas space of the electrolysis cell, even before the gas mixture is introduced into the etching solution, the oxygen line connected to the gas space above the electrolyte of the electrolysis cell is guided over a condenser in which the gas mixture is cooled and Water vapor is excreted. The condensed water is used as rinsing water for the etched workpieces and thus reduces the total amount of detergent required. The condensate line leading away the condensate from the condenser expediently opens into the last rinsing chamber of the system. It is advantageous that the water separated in the condenser contains ammonia. When the condensate enters the rinsing chamber, hydrolysis of the copper tetrammine complex, for example when etching copper in the etching solution, with the deposition of copper hydroxide or basic copper salt on the machined workpiece surface cannot occur.
Zweckmässig ist es, der Ätzlösung zugleich mit dem Sauerstoff Ammoniak zuzugeben (Patentanspruch 2), um den pH-Wert der Ätzlösung einzustellen. In die Ätzlösung muss so viel Ammoniak zugegeben werden, wie im wesentlichen durch Verdunsten beim Ätzen in der Ätzkammer und beim Regenerieren der Ätzlösung verlorengeht.It is expedient to add ammonia to the etching solution at the same time as the oxygen (claim 2) in order to adjust the pH of the etching solution. As much ammonia must be added to the etching solution as is essentially lost through evaporation during the etching in the etching chamber and when the etching solution is regenerated.
Das beim Regenerieren in der Elektrolysezelle in den Gasraum oberhalb des Elektrolyten entweichende Ammoniak lässt sich mit dem abgesaugten Sauerstoff in die Ätzlösung zurückführen. Das Ammoniak wird mit dem Sauerstoff in die Ätzlösung eingetragen und wie der Sauerstoff intensiv mit der Ätzlösung vermengt.The ammonia escaping into the gas space above the electrolyte during regeneration in the electrolysis cell can be returned to the etching solution with the extracted oxygen. The ammonia is introduced into the etching solution with the oxygen and, like the oxygen, is mixed intensively with the etching solution.
Weitere Ausbildungen der Regenerieranlage sind in Patentansprüchen 3 bis 7 angegeben. Danach ist in Strömungsrichtung der Ätzlösung gesehen vor der Flüssigkeitsstrahlpumpe vom Rücklauf eine Druckentlastungsleitung abgezweigt, die in einem Auffangbehälter für Ätzlösung mündet, der zur Aufnahme der aus der Ätzkammer entnommenen Ätzlösung mit der Ätzkammer verbunden ist. Der Auffangbehälter ist an der Ätzkammer derart angeschlossen, dass die Ätzlösung in den Auffangbehälter in natürlichem Gefälle abfliesst.Further designs of the regeneration system are specified in
Die intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung darin, die durch Einleiten des Sauerstoffs aus dem Gasraum der Elektrolysezelle mittels der Flüssigkeitsstrahlpumpe erreicht werden, beschleunigen die Rückoxidation der Ätzlösung in einer solchen Weise, dass die in die Ätzlösung zusätzlich eingebrachten Katalysatorteilchen für diejenigen Fälle, in denen es nicht auch auf eine geringe Unterätzung des beim Ätzen entstehenden Metallprofils ankommt, entbehrlich sind. Dies vereinfacht das Ätzverfahren. Eine dementsprechende Anlage ist in Patentanspruch 8 angegeben.The intensive mixing of the oxygen with the etching solution and its fine distribution therein, which are achieved by introducing the oxygen from the gas space of the electrolytic cell by means of the liquid jet pump, accelerate the reoxidation of the etching solution in such In such a way that the catalyst particles additionally introduced into the etching solution are unnecessary for those cases in which it is not also important that the metal profile formed during the etching is not slightly undercut. This simplifies the etching process. A corresponding system is specified in claim 8.
Sind in der Ätzlösung keine Katalysatorteilchen enthalten, entfällt der die Elektrolysezelle vor dem Eindringen von Katalysatorteilchen schützende Filter.If there are no catalyst particles in the etching solution, the filter protecting the electrolytic cell from the ingress of catalyst particles is not required.
Die in der Elektrolysezelle entstehende Wasserdampfmenge ist von der Temperatur in der Elektrolysezelle abhängig. Mit steigender Elektrolyttemperatur steigt der Wasserdampfgehalt im Gasraum oberhalb des Elektrolyten, und im Kondensator lässt sich dann mehr Kondensat gewinnen. Durch Einstellen der Temperatur in der Elektrolysezelle ist also die zu erzeugende Kondensatmenge regulierbar, Patentanspruch 6. Die maximale Temperatur in der Elektrolysezelle ist durch den erforderlichen pH-Wert im Elektrolyten begrenzt. Der pH-Wert sinkt mit steigender Temperatur, da der Ammoniakgehalt im Elektrolyten sinkt. Der Elektrolyt muss vor allem zum Schutze der Elektroden alkalisch bleiben.The amount of water vapor generated in the electrolysis cell depends on the temperature in the electrolysis cell. With increasing electrolyte temperature, the water vapor content in the gas space above the electrolyte increases, and more condensate can then be obtained in the condenser. By adjusting the temperature in the electrolysis cell, the amount of condensate to be generated can be regulated, claim 6. The maximum temperature in the electrolysis cell is limited by the required pH in the electrolyte. The pH value drops with increasing temperature because the ammonia content in the electrolyte drops. The electrolyte must remain alkaline, especially to protect the electrodes.
Die Erfindung und weitere Ausgestaltungen der Erfindung werden nachfolgend anhand von Ausführungsbeispielen näher erläutert, die in der Zeichnung schematisch wiedergegeben sind. Es zeigen im einzelnen:
- Fig. 1 Ätzanlage für eine Ätzlösung mit Katalysatorteilchen
- Fig. 2 Ätzanlage für eine katalysatorteilchenfreie Ätzlösung mit Kondensator zur Erzeugung von Spülwasser
- Fig. 3 Rückoxidationszeit für eine Ätzlösung, in die Sauerstoff mittels einer Flüssigkeitsstrahlpumpe eingetragen wird, im Vergleich mit einer durch Versprühen in der Ätzkammer oxidierten Ätzlösung.
- Fig. 1 etching system for an etching solution with catalyst particles
- Fig. 2 etching system for a catalyst particle-free etching solution with a capacitor for generating rinsing water
- 3 reoxidation time for an etching solution, into which oxygen is introduced by means of a liquid jet pump, in comparison with an etching solution oxidized by spraying in the etching chamber.
In Figur 1 ist eine an eine Ätzkammer 1 mit Spülkammer 2 angeschlossene Regenerieranlage schematisch dargestellt. Die zu regenerierende ammoniakalische Ätzlösung, die Ammoniumsulfat in Verbindung mit Kupfertetramminkomplex als Ätzmittel und in der Ätzlösung suspendierte Katalysatorteilchen enthält, fliesst aus der Ätzkammer 1 über einen Zulauf 3 zu einem Filter 4. Die in der Ätzlösung enthaltenen Katalysatorteilchen dienen zur Erhöhung der Ätzgeschwindigkeit und/oder zur Beschleunigung der Rückoxidation der Ätzlösung. Zur Katalyse geeignet sind beispielsweise Aktivkohleteilchen, wie sie in DE-A 3 031 567 angegeben sind.A regeneration system connected to an etching chamber 1 with a
Im Ausführungsbeispiel ist der Zulauf 3 an der Ätzkammer 1 derart angeschlossen, dass die Ätzlösung in natürlichem Gefälle aus der Ätzkammer zunächst in einen Auffangbehälter 5 abfliessen kann. Vom Auffangbehälter wird sie mittels einer Pumpe 6 über eine Druckleitung 7 zum Filter 4 geführt. Zum Zulauf der Ätzlösung zum Filter gehören somit im Ausführungsbeispiel der Zulauf 3 selbst, der Auffangbehälter 5, die Suspensionspumpe 6 sowie die Druckleitung 7.In the exemplary embodiment, the
Der Filter 4 ist mit einem Filtereinsatz 8 versehen, der für die in der Ätzlösung suspendierten Katalysatorteilchen undurchlässig ist. Der Filtereinsatz 8, der im Ausführungsbeispiel zylinderförmig ausgebildet ist, ist in der Zeichnung strichliniert dargestellt. Der Filter 4 ist senkrecht angeordnet und wird von der Ätzlösung mit Katalysatorteilchen von oben nach unten durchströmt. Vom Filter 4 fü hrt ein Rücklauf 9 zur Ätzkammer 1 zurück. Im Rücklauf 9 wird Katalysatorteilchen enthaltende Ätzlösung geführt.The filter 4 is provided with a filter insert 8 which is impermeable to the catalyst particles suspended in the etching solution. The filter insert 8, which is cylindrical in the exemplary embodiment, is shown in broken lines in the drawing. The filter 4 is arranged vertically and the etching solution flows through it with catalyst particles from top to bottom. A
Zur Rückoxidation der zur Ätzkammer zurückströmenden Ätzlösung wird in die Ätzlösung Sauerstoff eingeführt. Hierzu ist in den Rücklauf 9 eine Flüssigkeitsstrahlpumpe 10 eingesetzt, deren Saugstutzen 11 an eine Sauerstoffleitung 12 angeschlossen ist. Als Arbeitsmittel dient der Flüssigkeitsstrahlpumpe die aus dem Filter 4 abströmende, Katalysatorteilchen enthaltende Ätzlösung.To reoxidize the etching solution flowing back to the etching chamber, oxygen is introduced into the etching solution. For this purpose, a
Die Sauerstoffleitung 12 geht von einer Elektrolysezelle 13 aus. Die Elektrolysezelle wird von einem Teil der Ätzlösung zum Abscheiden von in der Ätzkammer abgeätztem Metall an Kathode 14 durchflossen. Der Elektrolysezelle ist katalysatorteilchenfreie Ätzlösung zuzuführen. Hierzu dient eine zwischen Filtratausgang 15 am Filter 4 und Elektrolysezelle 13 angeschlossene Verbindungsleitung 16, 16', 16". An der Anode 17 der Elektrolysezelle entsteht Sauerstoff. Die Sauerstoffleitung 12 mündet im Gasraum oberhalb des Elektrolyten der Elektrolysezelle und wird so bei Betrieb der Flüssigkeitsstrahlpumpe 10 mit Sauerstoff gespeist. Neben Sauerstoff befinden sich im Gasraum noch Ammoniak und Wasserdampf, die aus dem Elektrolyten ihrem Dampfdruck entsprechend verdunsten.The
In die Sauerstoffleitung 12 führt zur Zufuhr von Ammoniak eine Ammoniakleitung 18, die an einem mittels einer Absperrvorrichtung 19 verschliessbaren Vorratsbehälter 20 für Ammoniak angeschlossen ist. Von der Flüssigkeitsstrahlpumpe 10 ist somit mit dem aus der Elektrolysezelle abgesaugten Sauerstoff zugleich frisches Ammoniak in die die Katalysatorteilchen enthaltende Ätzlösung einleitbar, um den pH-Wert der Ätzlösung zu regulieren. Die Absperrvorrichtung 19 steht zu diesem Zweck mit einem in der Verbindungsleitung 16 eingesetzten pH-Wert-Messgerät 21 mit einer Messelektrode in Wirkverbindung. Fällt der pH-Wert unter einen vorgegebenen zulässigen Grenzwert ab, so wird die Absperrvorrichtung 19 geöffnet und in die Atzlösung Ammoniak eingeleitet. Das pH-Wert-Messgerät schaltet die Absperrvorrichtung 19 mit Hilfe elektrischer Steuereinheiten.An
Zwischen Filter 4 und Flüssigkeitsstrahlpumpe 10 mündet in den Rücklauf 9 eine Druckentlastungsleitung 22, die zum Ablauf von Ätzlösung in den Auffangbehälter 5 geführt ist.Between the filter 4 and the
Vom Ausgang 23 der Elektrolysezelle führt ein Überlauf 24 an Metallionen abgereicherte Ätzlösung zur Ätzkammer. Die abgereicherte Ätzlösung wird in der Ätzkammer als frische Ätzlösung mit der Katalysatorteilchen enthaltenden Ätzlösung vermischt.An
Unterhalb der Elektrolysezelle 13 befindet sich ein Ablaufbehälter 25. Er dient der Entleerung der Elektrolysezelle und ist über einen Auslauf 26, der mittels eines Magnetventils 27 absperrbar ist, am Boden der Elektrolysezelle 13 angeschlossen. Ätzlösung kann aus der Elektrolysezelle 13 in den Ablaufbehälter 25 auch über einen zweiten Überlauf 28 einfliessen.Underneath the
In der Verbindungsleitung 16 befinden sich neben dem pH-Wert-Messgerät 21 noch ein Gerät 29 zur Messung der Metallionenkonzentration und ein Durchflussmesser 30.In addition to the pH
Vom Durchflussmesser 30 wird die zur Elektrolysezelle 13 zu leitende Ätzlösungsmenge gemessen. Der Durchflussmesser 30 steht im Ausführungsbeispiel in Wirkverbindung mit zwei regelbaren Absperrorganen 31 und 32. Der Durchflussmesser 30 kann das Verstellen der Absperrorgane beispielsweise mechanisch, hydraulisch, aber auch elektrisch bewirken. Falls letzteres erwünscht ist, werden als Absperrorgane 31, 32 Magnetventile eingesetzt. Von den beiden Absperrorganen ist das Absperrorgan 31 in der Verbindungsleitung 16 eingesetzt, das Absperrorgan 32 in einer vor dem Absperrorgan 31 von der Verbindungsleitung 16 abzweigenden Bypass 33. Die beiden Absperrorgane werden derart eingestellt, dass sich in dem zur Elektrolysezelle geführten Verbindungsleitungsteil 16' ein konstanter Ätzlösungsstrom einstellt. Das in die Elektrolysezelle einzuführende Ätzlösungsvolumen pro Zeiteinheit ist abhängig von in der Elektrolysezelle in der gleichen Zeiteinheit abscheidbaren Metallmenge.The quantity of etching solution to be conducted to the
Die vom Gerät 29 gemessene Metallionenkonzentration in der Ätzlösung bestimmt die Arbeitsweise der Elektrolysezelle. Das Gerät 29 steht in Wirkverbindung mit einem am Ende des Verbindungsleitungsteils 16' eingesetzten Dreiwegeventil 34, an das einerseits das zur Elektrolysezelle 13 geführte Endstück 16" der Verbindungsleitung 16 angeschlossen ist und andererseits eine Umgehungsleitung 35, die im Bypass 33 mündet. Das Dreiwegeventil 34 ist zur Elektrolysezelle 13 hin geöffnet. Fällt die Metallionenkonzentration der Ätzlösung unter einen vorbestimmten Wert, so wird das Dreiwegeventil 34 umgeschaltet. Die Ätzlösung fliesst dann über die Umgehungsleitung 35 ab. Die Elektrolysezelle wird abgeschaltet.The metal ion concentration in the etching solution measured by the
Für einen Umlauf von Ätzlösung in der Elektrolysezelle 13 sorgt eine Lösungspumpe 36. Die Lösungspumpe taucht mit ihrer Saugleitung 37 in den Ablaufbehälter 25 ein, in den die Ätzlösung über den Überlauf 28 einfliesst, und fördert die Ätzlösung über einen Filter 38 in ihrer Druckleitung 39 zurück zur Elektrolysezelle. Die Ätzlösung tritt im Ausführungsbeispiel zwischen Kathode 14 und Anode 17 in die Elektrolysezelle ein. Nach Abschalten der Elektrolysezelle wird die Ätzlösung durch Öffnen des Magnetventils 27 in den Ablaufbehälter 25 entleert. Vor erneutem Betrieb der Elektrolysezelle wird die Ätzlösung aus dem Ablaufbehälter mittels der Lösungspumpe 36 in die Elektrolysezelle zurückbefördert.A
Im Ausführungsbeispiel wird zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. Nach Abscheiden des abgeätzten Metalls an der Kathode und Bildung von Sauerstoff an der Anode kann die von Metallionen abgereicherte Ätzlösung als Spüllösung zum Spülen der in der Ätzkammer 1 geätzten Werkstücke nach Beendigung der Ätzbehandlung dienen. Die geätzten Werkstücke sind insbesondere von noch anhaftenden Katalysatorteilchen zu reinigen. Die hierfür benötigte Ätzlösungsmenge kann dem Überlauf 24 entnommen werden. Eine am Überlauf 24 anschliessbare Spülleitung 40, die zur Spülkammer 2 geführt ist, ist in Figur 1 strichliniert dargestellt. Spülkammer 2 und Ätzkammer 1 sind miteinander derart verbunden, dass die Ätzlösung nach dem Spülvorgang in die Ätzkammer überfliessen kann.In the exemplary embodiment, an etching solution containing ammonium sulfate and copper tetrammine complex is used for etching copper. After the etched metal has been deposited on the cathode and oxygen has formed on the anode, the etching solution depleted of metal ions can serve as a rinsing solution for rinsing the workpieces etched in the etching chamber 1 after the end of the etching treatment. The etched workpieces are to be cleaned in particular of catalyst particles still adhering. The amount of etching solution required for this can be found in the
Die in Figur 1 gezeigte Anlage ist durch die in Figur 2 dargestellte Kondensationseinrichtung zu ergänzen. Die Kondensationseinrichtung ist Gegenstand beider Ausführungsbeispiele. In der Sauerstoffleitung 12 ist ein Kondensator 42 und in der Elektrolysezelle 13 eine Einrichtung 43 zur Regelung der Elektrolyttemperatur vorgesehen. Im Kondensator 42 wird Wasserdampf niedergeschlagen, der mit dem noch Sauerstoff und Ammoniak enthaltenden Gasgemisch aus dem Gasraum oberhalb des Elektrolyten der Elektrolysezelle abgesaugt wird. Vom Kondensator 42 führt eine Kondensatleitung 44 zur Spülkammer 2 der Ätzanlage. Das im Kondensator abgeschiedene Wasser wird zum Spülen der geätzten Werkstükke verwendet.The system shown in FIG. 1 is to be supplemented by the condensation device shown in FIG. The condensation device is the subject of both exemplary embodiments. A
Damit im Kondensator 42 eine ausreichende Kondensatmenge durch Abkühlen des abgesaugten Gasgemisches erzeugbar ist, wird in der Elektrolysezelle mit der Einrichtung 43 die Temperatur im Elektrolyten geregelt. Die im Gasgemisch enthaltene Wasserdampfmenge steigt mit der Elektrolyttemperatur. Die Einrichtung 43 dient im wesentlichen zur Kühlung der Elektrolysezelle, die sich während ihres Betriebes infolge des Stromdurchgangs erwärmt. Eine hohe Temperaturkonstanz wird durch Ausbildung der Elektrolysezelle mit einem von Kühlwasser durchströmten Kühlmantel erreicht, Patentanspruch 14. Die Kühlwassermenge wird in Abhängigkeit von der Temperatur des Elektrolyten geregelt.So that a sufficient amount of condensate can be generated in the
In Figur 1 ist eine Regenerieranlage für eine Ätzlösung gezeigt, in der Katalysatorteilchen suspendiert sind. Reicht der Sauerstoffeintrag über die Flüssigkeitsstrahlpumpe und die damit erreichte intensive Vermengung des Sauerstoffs mit der Ätzlösung und dessen feine Verteilung für eine rasche Rückoxidation aus, so sind die Katalysatorteilchen entbehrlich und die Anlage vereinfacht sich. Der in der Druckleitung 7 eingesetzte Filter 4 entfällt. Statt dessen verbleibt wie im Ausführungsbeispiel nach Figur 2 gezeigt ist, ein einfacher Rohranschluss 41 zwischen Druckleitung 7 und Verbindungsleitung 16. Soweit die Regenerieranlage Einzelteile aufweist, die unverändert der in Figur 1 angegebenen Ausbildung entsprechen, sind in Figur 2 die gleichen Bezugszeichen wie in Figur 1 eingetragen.FIG. 1 shows a regeneration system for an etching solution in which catalyst particles are suspended. If the oxygen input via the liquid jet pump and the intensive mixing of the oxygen with the etching solution and its fine distribution achieved is sufficient for rapid reoxidation, the catalyst particles are unnecessary and the system is simplified. The filter 4 used in the pressure line 7 is omitted. Instead, as shown in the exemplary embodiment according to FIG. 2, a
Im Ausführungsbeispiel wird auch in der Anlage nach Figur 2 zum Ätzen von Kupfer eine Ammoniumsulfat und Kupfertetramminkomplex enthaltende Ätzlösung verwendet. In der Elektrolysezelle wird durch Abkühlen des Elektrolyten beim Abscheiden des abgeätzten Kupfers eine Temperatur von 75°C eingestellt. Aus dem Gasraum oberhalb des Elektrolyten werden von der Flüssigkeitsstrahlpumpe aus der Elektrolysezelle etwa 5 m3/h Gasgemisch abgesaugt. Bei geschlossener Elektrolysezelle lassen sich unter diesen Bedingungen aus dem Gasgemisch im Kondensator etwa 1,25 I/h Kondensat als Spülmittel erzeugen. An Sauerstoff entstehen an der Anode der Elektrolysezelle bei einem Strom von 2400 A ca. 500 I/h. Die in die Elektrolysezelle eingeführte, Kupferionen enthaltende Ätzlösung war auf einen pH-Wert von 9 eingestellt.In the exemplary embodiment, an etching solution containing ammonium sulfate and copper tetrammine complex is also used in the system according to FIG. 2 for etching copper. A temperature of 75 ° C. is set in the electrolysis cell by cooling the electrolyte when the etched copper is deposited. About 5 m 3 / h of gas mixture are sucked out of the gas space above the electrolyte by the liquid jet pump from the electrolysis cell. When the electrolysis cell is closed, around 1.25 l / h of condensate can be generated from the gas mixture in the condenser as a rinsing agent under these conditions. Approx. 500 l / h of oxygen are generated at the anode of the electrolysis cell at a current of 2400 A. The etching solution containing copper ions introduced into the electrolytic cell was adjusted to a pH of 9.
In Figur 3 sind Rückoxidationszeiten angegeben, wobei Kurve A die Rückoxidation der Ätzlösung beim biossen Versprühen in der Ätzkammer angibt und mit Kurve B die Rückoxidation durch zusätzliches Einbringen von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe wiedergegeben ist. Die Rückoxidation in der Ätzlösung wird über das Potential des Cu++/Cu+-Redoxsystems gegen eine Kalomel-Bezugselektrode (Hg/Hg2Cl2/gesättigt KCI) gemessen.In FIG. 3, reoxidation times are given, curve A indicating the reoxidation of the etching solution when biospraying in the etching chamber, and curve B representing the reoxidation by additionally introducing oxygen into the etching solution by means of the liquid jet pump. The reoxidation in the etching solution is measured via the potential of the Cu ++ / Cu + - redox system against a calomel reference electrode (Hg / Hg 2 Cl 2 / saturated KCI).
Mit einer Kupfertetramminkomplex und Ammoniumsulfat enthaltenden Ätzlösung mit einem Kupferanteil von 50 g/I sowie 150 g/I (NH4)2S04 und mit einem mit Ammoniak eingestellten pH-Wert von 9 wurden bei einer Temperatur von 50°C Kupferflächen geätzt. Während des Ätzens sank das Potential des Cu++/Cu+-Redoxsystems innerhalb von 3 % Minuten Ätzzeit von einem Anfangswert von 125 mV auf etwa - 60 mV. Nach dieser Ätzzeit begann die Rückoxidation.Copper surfaces were etched with a copper tetrammine complex and ammonium sulfate containing etching solution with a copper content of 50 g / I and 150 g / I (NH 4 ) 2 S0 4 and with a pH value of 9 adjusted with ammonia at a temperature of 50 ° C. During the etching, the potential of the Cu ++ / Cu + redox system dropped from an initial value of 125 mV to approximately -60 mV within 3% minutes of the etching time. The reoxidation began after this etching time.
Aus Figur 3 ist ersichtlich, dass bei gleichem Kupferabtrag mit der Ätzlösung der intensive Eintrag von Sauerstoff in die Ätzlösung mittels der Flüssigkeitsstrahlpumpe zu einer deutlich rascheren Rückoxidation führt, als dies beim blossen Versprühen der Ätzlösung im Ätzraum der Fall ist. So wird beim Eintragen von Sauerstoff mittels der Flüssigkeitsstrahlpumpe ein Potential von +100 mV schon etwa nach 3 1/2 Min. Rückoxidationszeit (Figur 3: nach 7 Min. Gesamtzeit) erreicht, während sich der gleiche Potentialwert beim Versprühen der Ätzlösung in der Ätzkammer erst nach 10 ½ Min. einstellt. Saugt man mit der Flüssigkeitsstrahlpumpe statt Sauerstoff aus dem Gasraum der Elektrolysezelle Luft an, so verringert sich die Rückoxidationsgeschwindigkeit bei gleichem Kupferabtrag, die Rückoxidation verläuft aber immer noch erheblich rascher, als bei Rückoxidation nach Kurve A. Die intensive Sauerstoffvermengung mit der Ätzlösung verbessert daher die Regeneration der Ätzlösung durch Oxidation erheblich.It can be seen from FIG. 3 that with the same copper removal with the etching solution, the intensive introduction of oxygen into the etching solution by means of the liquid jet pump leads to a significantly faster reoxidation than is the case when the etching solution is simply sprayed into the etching space. . Thus, when applying oxygen by means of the liquid jet pump, a potential of +100 mV already after about 3 1/2 minutes reoxidation time (. Figure 3: after 7 min total time) is achieved, while the same potential value during spraying of the etching solution in the etching chamber is only after 10 ½ minutes. If air is sucked in with the liquid jet pump instead of oxygen from the gas space of the electrolytic cell, the reoxidation speed decreases with the same copper removal, but the reoxidation is still considerably faster than with reoxidation according to curve A. The intensive oxygen mixing with the etching solution therefore improves regeneration the etching solution by oxidation considerably.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83111152T ATE34781T1 (en) | 1983-04-13 | 1983-11-08 | PLANT FOR REGENERATION OF AN AMMONIA CAUSTIC SOLUTION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3313293 | 1983-04-13 | ||
DE3313293 | 1983-04-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0122963A1 EP0122963A1 (en) | 1984-10-31 |
EP0122963B1 true EP0122963B1 (en) | 1988-06-01 |
Family
ID=6196226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83111152A Expired EP0122963B1 (en) | 1983-04-13 | 1983-11-08 | Apparatus for regenerating an ammoniacal etching solution |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0122963B1 (en) |
JP (1) | JPS6013083A (en) |
AT (1) | ATE34781T1 (en) |
DE (1) | DE3376853D1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2449164A1 (en) * | 1979-02-14 | 1980-09-12 | Sogreah | ARTIFICIAL BLOCK FOR MARITIME AND RIVER STRUCTURES |
DE3345050A1 (en) * | 1983-12-13 | 1985-06-20 | Walter 7758 Meersburg Holzer | METHOD FOR THE ENVIRONMENTALLY FRIENDLY ASSEMBLY OF CIRCUIT BOARDS AND DEVICE FOR EXERCISING THE WORKING METHOD |
EP0393270A1 (en) * | 1989-04-21 | 1990-10-24 | Ming-Hsing Lee | Process for etching copper with ammoniacal etchant solution and reconditioning the used etchant solution |
US5085730A (en) * | 1990-11-16 | 1992-02-04 | Macdermid, Incorporated | Process for regenerating ammoniacal chloride etchants |
US5248398A (en) * | 1990-11-16 | 1993-09-28 | Macdermid, Incorporated | Process for direct electrolytic regeneration of chloride-based ammoniacal copper etchant bath |
JP5711856B2 (en) * | 2011-10-08 | 2015-05-07 | ヘルクレ、クリストフHERKLE, Christoph | Etching equipment for electrolytic etching of copper |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2008766B2 (en) * | 1970-02-23 | 1971-07-29 | Licentia Patent Verwaltungs GmbH, 6000 Frankfurt | Regenerating cupric chloride etching - solution enriched with cuprous chloride |
US3705061A (en) * | 1971-03-19 | 1972-12-05 | Southern California Chem Co In | Continuous redox process for dissolving copper |
DE2216269A1 (en) * | 1972-04-05 | 1973-10-18 | Hoellmueller Maschbau H | METHOD OF ETCHING COPPER AND COPPER ALLOYS |
US3785950A (en) * | 1972-05-19 | 1974-01-15 | E Newton | Regeneration of spent etchant |
DE2641905C2 (en) * | 1976-09-17 | 1986-03-20 | Geb. Bakulina Galina Aleksandrovna Batova | Process for the regeneration of used etching solutions |
DE3031567A1 (en) * | 1980-08-21 | 1982-04-29 | Elochem Ätztechnik GmbH, 7758 Meersburg | METHOD FOR REGENERATING AN AMMONIA ACAL SOLUTION |
-
1983
- 1983-11-08 DE DE8383111152T patent/DE3376853D1/en not_active Expired
- 1983-11-08 EP EP83111152A patent/EP0122963B1/en not_active Expired
- 1983-11-08 AT AT83111152T patent/ATE34781T1/en active
-
1984
- 1984-04-13 JP JP59073102A patent/JPS6013083A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
DE3376853D1 (en) | 1988-07-07 |
ATE34781T1 (en) | 1988-06-15 |
EP0122963A1 (en) | 1984-10-31 |
JPS6013083A (en) | 1985-01-23 |
JPH0429745B2 (en) | 1992-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3340343C2 (en) | ||
DE2652476C2 (en) | Method and device for producing a metal coating on metal workpieces by wet impingement plating | |
DE112012004983T5 (en) | Process for regenerating a coating liquid, coating method and coating apparatus | |
DE3507370A1 (en) | METHOD FOR TREATING EXHAUST GAS | |
DE2702085C2 (en) | Process for the direct detoxification of concentrated galvanic solutions and for the recovery of metals, as well as a system for carrying out the process | |
EP0144742B1 (en) | Process and apparatus for regenerating an ammoniacal etching solution | |
EP0320798B1 (en) | Process for desludging of phosphatizing baths and apparatus for this process | |
EP0122963B1 (en) | Apparatus for regenerating an ammoniacal etching solution | |
DE10326767B4 (en) | A method of regenerating ferrous etchant solutions for use in etching or pickling copper or copper alloys, and an apparatus for performing the same | |
EP0110111A1 (en) | Method and apparatus for controlling additive dispensers in waste water treatment systems | |
EP1084002A1 (en) | Method and system for cleaning semiconductor elements | |
DE4200849C2 (en) | Method and device for treating the rinsing water resulting from the chemical and / or electrolytic surface treatment of metals | |
DE4141993C2 (en) | Process and device for processing oil-water emulsions with controlled gas supply | |
DE102013112302A1 (en) | Device for producing galvanic coatings | |
EP0458119A1 (en) | Process and apparatus for separating copper, in particular from cupric chloride etching solutions | |
DE2622497A1 (en) | ELECTROCHEMICAL CELL | |
EP3875637A1 (en) | Method for recovering an elemental metal from printed circuit board and / or substrate production | |
EP0406344A1 (en) | Process and installation for etching copper-containing work pieces | |
DE10132349A1 (en) | Vehicle bodywork electrophoretic painting, controls acid removal by dialysis independently, such that anolyte acid can be re-used | |
DE1808471C3 (en) | Process for the recovery of gold from galvanic washing water | |
DE4218843C2 (en) | Process for the regeneration of an ammoniacal etchant and device for carrying out this process | |
DE10322120A1 (en) | Methods and devices for extending the service life of a process solution for chemical-reductive metal coating | |
DE2836720C2 (en) | Process for the continuous electrolytic regeneration of a washing solution containing silver cyanide which occurs during electroplating processes and a device for carrying out the process | |
EP0527794B1 (en) | Process for regulating the flow rate in the electrochemical regeneration of chromic-sulphuric acid | |
DE2524094A1 (en) | Recovery of valuable materials from industrial wash tanks - e.g. recovery of chromium from electroplating wash water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19850424 |
|
17Q | First examination report despatched |
Effective date: 19860410 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 34781 Country of ref document: AT Date of ref document: 19880615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3376853 Country of ref document: DE Date of ref document: 19880707 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 83111152.1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001018 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001030 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001116 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20001122 Year of fee payment: 18 Ref country code: LU Payment date: 20001122 Year of fee payment: 18 Ref country code: CH Payment date: 20001122 Year of fee payment: 18 Ref country code: BE Payment date: 20001122 Year of fee payment: 18 Ref country code: AT Payment date: 20001122 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001123 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
BERE | Be: lapsed |
Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H. Effective date: 20011130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20011108 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83111152.1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |