EP0112439B1 - Verfahren zur anodischen Oxydation von Aluminiumlegierungen - Google Patents

Verfahren zur anodischen Oxydation von Aluminiumlegierungen Download PDF

Info

Publication number
EP0112439B1
EP0112439B1 EP83108951A EP83108951A EP0112439B1 EP 0112439 B1 EP0112439 B1 EP 0112439B1 EP 83108951 A EP83108951 A EP 83108951A EP 83108951 A EP83108951 A EP 83108951A EP 0112439 B1 EP0112439 B1 EP 0112439B1
Authority
EP
European Patent Office
Prior art keywords
voltage
process according
duration
workpieces
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83108951A
Other languages
English (en)
French (fr)
Other versions
EP0112439A3 (en
EP0112439A2 (de
Inventor
Reinhard Dr. Nissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electro Chemical Engineering GmbH
Original Assignee
Electro Chemical Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Chemical Engineering GmbH filed Critical Electro Chemical Engineering GmbH
Priority to AT83108951T priority Critical patent/ATE33858T1/de
Publication of EP0112439A2 publication Critical patent/EP0112439A2/de
Publication of EP0112439A3 publication Critical patent/EP0112439A3/de
Application granted granted Critical
Publication of EP0112439B1 publication Critical patent/EP0112439B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential

Definitions

  • the invention relates to methods for anodic oxidation of workpieces made of an aluminum alloy, in particular with a high content of copper and / or noble metals, the workpieces being arranged in a moving aqueous electrolyte together with one or more cathodes and a voltage essentially periodically Generation of short-term current pulses with high current flow is applied to the workpieces and the cathode (s).
  • hard oxide layers have hardness values that correspond to 5 to 10 times the hardness of the base material.
  • electrolytes have been developed for hard anodization, with which it is possible to form thick, hard and abrasion-resistant oxide layers.
  • the best known of these electrolytes are based on sulfuric acid, whereby on the one hand pure sulfuric acid of different concentrations and on the other hand mixed electrolytes (e.g. sulfuric acid and oxalic acid) have been used.
  • electrolytes have a redissolving power of the oxide layer formed.
  • the electrolyte is cooled.
  • the released Joule heat is dissipated through the electrolyte, which is moved for better heat dissipation, and through the workpiece.
  • the heat dissipation through the workpiece itself is negligible.
  • Most of the Joule heat is therefore dissipated by the electrolyte. It should be noted, however, that as the layer thickness increases, the heat flow from the oxidized metal side to the electrolyte is increasingly impeded. In the case of anodic oxidation with direct current, the current density is therefore limited.
  • the layer thickness is initially small, so that there is only a slight drop in electrical power.
  • the resulting Joule heat can easily be dissipated by the electrolyte flowing past the aluminum oxide / electrolyte interface, so that no heat build-up can occur in the oxide layer.
  • the drop in performance With larger layer thicknesses, the drop in performance also increases, so that increasing heating occurs.
  • the back-dissolving power of the electrolyte increases sharply with heating, so that the formation of thick, hard layers is hindered. No more layer growth occurs when the rate of dissolution of the oxide through the electrolyte is equal to the rate of formation of the oxide.
  • the electrochemically nobler metals or metal phases embedded in the aluminum matrix form defects in the oxidation, since these metals either have a higher dissolution rate than the aluminum (such as the intermetallic phase of copper) or are not soluble in the electrolyte , such as Lead deposits, which also have a high electron conductivity compared to the oxide formed.
  • These impurities prevent a homogeneous formation of germs, which initiate the primary growth of the oxide layer, on the aluminum matrix.
  • intermetallic phases which, like copper, preferentially dissolve, the current flow at the impurities increases very strongly, so that Joule heat occurs increasingly, which in turn leads to increased redissolution.
  • the anodization is carried out with pulsating direct current, the frequency of which corresponds to the mains frequency.
  • Voltage pulses are cut out of the positive (or negative) half-waves by means of a phase control.
  • the current flow time i.e. the duration of a single pulse, corresponds to approximately one third of the subsequent switch-off time. During this switch-off time, practically no more Joule heat is generated; the switch-off time is used to dissipate the Joule heat generated during the previous voltage pulse.
  • the oxide layers produced by this known method are not always satisfactory.
  • practical tests have shown that even with relatively short-term voltage pulses and, accordingly, inevitably longer breaks between the individual voltage pulses, a uniform layer growth is not always achieved.
  • the heat dissipation at the critical points is not sufficient. Accordingly, the layer formation at critical points and with special alloys is not satisfactory.
  • US Pat. No. 3,857,766 describes a process for the anodic oxidation, especially of copper-containing ones
  • Aluminum alloys are known in which a pulsating direct current, which has at least 6 voltage pulses per second, is superimposed on a basic direct current of low voltage. The oxidation takes place with a constant current. A mixture of sulfuric acid and oxalic acid is used as the electrolyte.
  • the hard anodization layers produced by this process are also not always satisfactory, especially in the case of special aluminum alloys. The layer formation is poor or incomplete at critical points.
  • the object of the invention is to avoid the disadvantages of the known methods and to provide a method of the type mentioned at the outset with which hard oxide layers can also be produced on thin-walled and pointed, sharp-edged workpieces which have sufficient mechanical properties, in particular with regard to abrasion resistance and thickness.
  • This object is achieved in that the voltage remains switched on for as long as there is a noticeable build-up of the oxide layer and is then switched off until the Joule heat generated is essentially dissipated.
  • the duration of the voltage pulses is advantageously greater than 1/1 second, for example between 0.1 and 1.5 seconds and is therefore relatively long.
  • a relatively high voltage is applied during the specified period of time.
  • the anodization rate is high from the start, so that despite the described, preferred high rate of dissolution of intermetallic phases (e.g. copper), the aluminum matrix is activated to form nuclei and an even layer formation is achieved even on critical parts.
  • intermetallic phases e.g. copper
  • concentration equalization After the current is switched off, a concentration equalization will occur due to the moving electrolyte.
  • the reduction in the concentration gradient can be demonstrated by the decay of the concentration polarization using an electron beam oscillograph. It was found that the anodization voltage does not immediately drop to a value of approximately 0 after the current is switched off, but that the reduction in the potential of approximately 3 to 5 volts takes a time of 0.1 to 0.5 seconds.
  • the specified, in comparison to the prior art, long period of time during which the voltage pulses are present is extremely favorable for the construction of an oxide layer.
  • the interruption of the voltage between two voltage pulses should last 0.1 to 2 seconds, advantageously this time period is between 0.1 and 1 seconds.
  • the ratio of the duration of a voltage pulse to the duration of a switch-off time should be 0.5 to 5.
  • the temperature of the electrolyte or of the workpiece, in particular at critical points, is advantageously measured. Only after the temperature measured in this way has dropped back to a predetermined value is a renewed voltage pulse applied. Depending on the need, the switch-off times are longer or shorter at the beginning or at the end of the oxidation.
  • the hard anodization according to the method according to the invention can be used for workpieces made of cast or wrought alloys.
  • workpieces made of sintered aluminum can also be coated satisfactorily with high alloy proportions of electrochemically more noble elements, such as copper, using the method according to the invention. Due to the high rate of formation of the oxide layer and the reduced redissolution, it succeeds on the porous Sintered metal material to form relatively homogeneous layers.
  • FIG. 1 shows the device used to carry out the method according to the invention.
  • An electrolyte pan 1 receives an electrolyte bath 2 with 180 g / l sulfuric acid and 15 g / l oxalic acid.
  • An anode 3 and a cathode 4 are immersed in this electrolyte bath 2 and connected to a voltage supply device 7 via leads 5 and 6.
  • the anode 3 is composed of an anode holder 8 and the workpieces 9 to be treated.
  • Electrolyte liquid is constantly sucked out of the electrolyte bath 2 via a pipeline 10, which leads to a pump 11, and is returned to the electrolyte bath 2 via an electrolyte guide tube 12, the returned current being directed towards the workpiece 9.
  • a cooler 13 heat exchanger
  • This cooling unit 14 is controlled by a contact thermometer 15, which also extends into the electrolyte bath 2.
  • the voltage supply device 7 supplies a rectified output voltage over a time t i -t 2 , as is shown graphically in FIG. 2. As can be seen in the figure, this voltage can be rectangular or have a ripple of any technically possible voltage form.
  • This voltage U is applied to the cathode 4 and the anode 3 via the leads 5 and 6 and causes a current to flow through the electrolyte. The time course of this current flow i is shown graphically in FIG.
  • the voltage supplied by the voltage supply device 7 is constant during each individual voltage pulse, and it also remains at the same value for the entire anodization time.
  • the power supply device 7 has a current limitation which limits the current during a time t to t 4 , so that the current pulses are also approximately rectangular. If there is no current limitation, the current curve begins to decrease immediately after the time t 4 .
  • a DC voltage between 20 and 60 volts generated within the voltage supply device 7 is expediently switched on and off by a switch in such a way that the voltage curve shown in FIG. 2 results.
  • the switch-on times t to t 2 are between 0.1 and 3 seconds
  • the pause times t 2 to t 3 are between 0.1 and 2 seconds.
  • the ratio of operating times to break times is approximately in the range from 0.5 to 5, in the exemplary embodiment shown this ratio is 2.
  • the first current pulses are constant up to time t 4, as already explained and due to the automatic current limitation. Due to the structure of the oxide layer, as can be seen from FIG. 4, and the associated increase in the volume resistance of this oxide layer, the current i decreases continuously with time t 4 , since the voltage U is constant according to FIG. Accordingly, the layer thickness (FIG. 4) increases almost constantly during the time t until t 4 . The layer thickness increase will decrease as the current i decreases.
  • anodization can also be carried out, for example, in the time t until t 4 over the entire anodization time with constant current of the current pulses or with constant voltage starting with time t 4 to t 5 .
  • FIG. 5 shows the temperature increase compared to the initial state.
  • the temperature increase in the layer increases during the time t until t 4 and then fluctuates around a constant value.
  • the curves shown in FIGS. 2 to 5 are intended to illustrate the pulse current technology according to the invention purely schematically.
  • the shape of the voltage and the current does not always correspond to what is technically achievable. Frequently, the voltage and current increases are not linear from 0 to the nominal value, and the drops at the end of the pulse are not always as sharp as shown. Many experiments have shown that the rise and fall times are around 1/10 of a second. However, the curve shape has no influence on the anodization result.
  • the method according to the invention makes it possible to anodize very thin-walled workpieces such as those with sharp edges and corners in spite of very high pulse current densities of at most 80 A / dm 2 without any signs of combustion.
  • the process according to the invention is characterized in that the anodization is started directly with a high current density.
  • the current can optionally be limited as shown in Figure 3.
  • the method according to the invention proves to be particularly advantageous. It is the only process that makes it possible to oxidize all workpieces without combustion phenomena with a high current density and short anodization times. Furthermore, the tables show that the coating qualities can be improved with the method according to the invention, even of such Al alloys with low contents of more noble electrochemical metals, as shown in Table 3.
  • Continuous anodization is understood to mean the anodization of strips or workpieces which are drawn continuously through the anodization bath and, if appropriate, through rinsing or post-compression baths.
  • the maximum achievable layer thickness is also limited by the limitation of the applied voltage.
  • the current density is very high due to the high voltage applied and can have values of up to 80 A / dm 2 .
  • the Joule heat is removed by the moving electrolyte and, as described, the polarization voltages are also reduced.
  • the process of the pulse current method according to the invention thus makes it possible to reduce the anodization time considerably, so that the throughput in existing strip anodization systems can be increased considerably if the same layer thickness is to be achieved.
  • an aluminum foil made of AIMg1 (dimensions: thickness 1.0 mm, width 300 mm, length 500 mm) was placed in a moving electrolyte at a lowering speed of 0.2 m / min. introduced and after completely lowering the film in the electrolyte, the anodization continued for 2 minutes.
  • the applied voltage was 35 volts and the current switch-on time was 0.4 seconds, the switch-off time 0.2 seconds.
  • the sample film showed no burns despite the high initial current density of approximately 90 A / dm 2 .
  • the layer thickness was 40 to 55 ⁇ m, the part of the film with the longest anodization time naturally having the greatest layer thickness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

  • Die Erfindung bezieht sich auf Verfahren zur anodischen Oxydation von Werkstücken aus einer Aluminiumlegierung, insbesondere mit hohem Gehalt an Kupfer und/oder edleren Metallen, wobei die Werkstücke in einem bewegten wässrigen Elektrolyten zusammen mit einer oder mehreren Kathoden angeordnet werden und eine Spannung im wesentlichen periodisch zum Erzeugen von kurz zeitigen Stromimpulsen mit hohem Stromfluss an die Werkstücke und die Kathode(n) angelegt wird.
  • Es ist seit langem bekannt, Gegenstände aus Aluminium durch anodische Oxydation in einem wässrigen Elektrolyten mit einer dicken (z B. 50 11m), harten und abriebfesten Oxidschicht zu versehen. Die so oxdierten Aluminiumwerkstücke können überall dort eingesetzt werden, wo verschleißfeste Oberflächen notwendig sind.
  • Diese sogenannten Hartoxidschichten weisen Härtewerte auf, die dem 5- bis 10-fachen der Harte des Grundmaterials entsprechen. Für die Hartanodisation wurden eine große Anzahl von Elektrolyten entwickelt, mit denen es möglich ist, dicke, harte und abriebfeste Oxidschichten zu bilden. Die bekanntesten dieser Elektrolyten basieren auf schwefelsäure, wobei einerseits reine Schwefelsäure unterschiedlicher Konzentration und andererseits Mischelektrolyte (z.B. Schwefelsäure und Oxalsäure) Anwendung gefunden haben.
  • Diese Elektrolyten weisen ein Rücklösevermögen der gebildeten Oxidschicht auf. Um dieses Rücklösevermögen zu verringern und die geünschten dicken, harten und abriebfesten Qxidschichten zu erreichen, wird der Elektrolyt gekühlt.
  • Bei der anodischen Oxydation bildet sich auf dem Aluminium eine poröse Oxidschicht, deren Dicke mit der Oxydationszeit zunimmt. Bedingt durch dieses Wachsen der Oxidschicht erhöht sich der elektrische Übergangswiderstans zwischen Elektrolyt und Werkstück. An diesem Übergangswiderstand fällt in Abhängigkeit vom Anodisationsstrom eine Spannung ab. Diese elektrische, vom Übergangswiderstans aufgenommene Leistung wird in Joule'sche Wärme umgesetzt. Dies führt zu einer Temperaturerhöhung in der Oxidschicht.
  • Die freiwerdende Joule'sche Warme wird durch den Elektrolyten, der zur besseren Wärmeabfuhr bewegt wird, und durch das Werkstück abgeführt. Insbesondere bei dünnen Werkstücken und an Kanten mit kleinem Krümmungsradius ist die Wärmeabfuhr durch das Werkstück selbst vernachlässigbar gering. Der Hauptanteil der Jouleschen Wärme wird daher durch den Elektrolyten abgeführt. Dabei ist jedoch zu beachten, daß bei Zunahme der Schichtdicke der Wärmefluss von der oxidierten Metallseite zum Elektrolyten zunehmend behindert wird. Bei anodischer Oxydation mit Gleichstrom wird deshalb die Stromdichte begrenzt.
  • Im Anfangsstadium der Anodisation ist die Schichtdicke zunächst gering, so daß auch nur ein geringer elektrischer Leistungsabfall auftritt. Die entstehende Joule'sche Wärme kann durch den Vorbeiströmenden Elektrolyten an der Grenzfläche Aluminiumoxid/Elektrolyt leicht abgeführt werden, so daß es zu keinem Wärmestau in der Oxidschicht kommen kann. Bei größeren Schichtdicken wird auch der Leistungsabfall größer, so daß eine zunehmende Erwärmung auftritt. Das Rücklösevermögen des Elektrolyten nimmt mit Erwärmung stark zu, so daß die Bildung von dicken, harten Schichten behindert wird. Kein Schichtwachstum erfolgt mehr, wenn die Auflösungsgeschwindigkeit des Oxids durh den Elektrolyten gleich der Bildungsgeschwindigkeit des Oxids ist. Bei Werkstücken mit spitzen, scharfkantigen Teilen oder unterschiedlichen Wandstärken treten aufgrund der hohen Auflösungsgeschwindigkeit lokale Verbrennungen auf, da die entstandene Wärme durch das Metall nicht gleichmäßig verteilt und abgeführt werden kann. Die Rücklösung kann mit bis zu einer Zerstörung des Werkstücks führen.
  • Neben diesen thermischen Problemen, die auch bei reinem Aluminium auftreten, kommt bei der anodischen Oxydation von Aluminiumlegierungen mit hohem Gehalt an elektrochemisch edleren Legierungselementen, wie z.B. an Kupfer, noch folgendes Problem hinzu: Die in die Aluminiummatrix eingebetteten elektrochemisch edleren Metalle oder Metallphasen bilden Störstellen bei der Oxydation, da diese Metalle entweder eine höhere Auflösungsgeschwindigkeit aufweisen als das Aluminium (wie z.B. die intermetallische Phase des Kupfers) oder im Elektrolyten nicht löslich sind, wie z.B. Bleiausscheidungen, die gegenüber dem gebildeten Oxid außerdem eine hohe Elektronenleitfähigkeit aufweisen. Diese Störstellen verhindern eine homogene Ausbildung von Keimen, die das Primärwachstum der Oxidschicht einleiten, auf der Aluminiummatrix. Bei intermetallischen Phasen, die, wie Kupfer, bevorzugt in Lösung gehen, steigt der Stromfluss an den Störstellen sehr stark an, so daß verstärkt Joule'sche Wärme auftritt, die wiederum zu einer erhöhten Rücklösung führt.
  • Bei dem aus der US-PS-2 920 018 bekannten Verfahren der eingangs genannten Art wird die Anodisierung mit pulsierendem Gleichstrom durchgeführt, dessen Frequenz der Netzfrequenz entspricht. Mittels einer Phasenanschnittssteuerung werden aus den positiven (oder negativen) Halbwellen Spannungsimpulse herausgeschnitten. Die Stromflusszeit, also die Zeitdauer eines Einzelimpulses entspricht etwa einem Drittel der sich anschließenden Ausschaltzeit. Während dieser Ausschaltzeit wird praktisch keine Joule'sche Wärme mehr erzeugt, die Ausschaltzeit wird genutzt, um die während des vorangegangenen Spannungsimpulses gebildete Joule'sche Wärme abzufuhren.
  • Die nach diesem bekannten Verfahren hergestellten Oxidschichten sind jedoch nicht immer zufriedenstellend. In praktischen Versuchen hat sich vielmehr gezeigt, daß auch bei relativ kurz zeitigen Spannungsimpulsen und dementsprechend zwangsläufig längere Ruhepausen zwischen den einzelnen Spannungs impulsen ein gleichmäßiges Schichtwachstum nicht immer erreicht wird. Die Wärmeabfuhr an den kritischen Stellen ist nicht ausreichend, dementsprechend ist auch die Schichtbildung an kritischen Stellen und bei speziellen Legierungen nicht zufriedenstellend.
  • Weiterhin ist aus der US-PS-3 857 766 ein Verfahren zur anodischen Oxydation vor allem von kupferhaltigen Aluminiumlegierungen bekannt, bei dem einem Basisgleichstrom niedriger Spannung ein pulsierender Gleichstrom, der mindestens 6 Spannungsimpulse pro Sekunde hat, überlagert wird. Die Oxydation erfolgt dabei mit konstantem Strom. Als Elektrolyt wird eine Mischung von Schwefelsäure und Oxalsäure verwendet. Auch die nach diesem Verfahren hergestellten Hartanodisationsschichten sind, insbesondere bei speziellen Aluminiumlegierungen, nicht immer zufriedenstellend, an kritischen Stellen ist die Schichtbildung schlecht oder unvollständig.
  • Aufgabe der Erfindung ist es, die Nachteile der bekannten Verfahren zu vermeiden und ein Verfahren der eingangs genannten Art zu schaffen, mit dem sich Hartoxidschichten auch an dünnwandigen und spitzen, scharfkantigen Werkstücken herstellen lassen, die ausreichende mechanische Eigenschaften, insbesondere hinsichtlich Abriebsfestigkeit und Dicke aufweisen.
  • Diese Aufgabe wird dadurch gelöst, daß die Spannung jeweils solange eingeschaltet bleibt, wie ein merklicher Aufbau der Oxidschicht erfolgt und anschließend solange ausgeschaltet wird, bis die erzeugte Joule'sche Wärme im wesentlichen abgeführt ist.
  • Die Zeitdauer der Spannungsimpulse ist vorteilhafterweise größer als 1/lotel Sekunde, sie liegt beispielsweise zwischen 0,1 und 1,5 Sekunden und ist damit relativ lang.
  • Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß die Dauer der Einschaltzeit und die Dauer der Ausschaltzeit der Anodisierspannung speziell an die chemischen und physikalischen Vorgänge beim Aufbau einer Oxidschicht angepasst ist. Der Schichtbildungsmechanismus wird dadurch entscheidend beeinflusst. Der Initialvorgang bei der Schichtbildung erfolgt bekanntlich in den folgenden Stufen:
    • 1. Ausbildung einer mit gelöstem Aluminium übersättigten Zone auf der Aluminiumoberfläche, hervorgerufen durch die anodische Auflösung.
    • 2. Ausbildung überkritischer Keime an aktiven Stellen.
    • 3. Wachstum der Keime bei gleichzeitiger Neubildung von Keimen.
    • 4. Ausbildung einer Primärstruktur, d.h. vollständige Bedeckung der Metalloberfläche mit Keimen.
    • 5. Zusammenwachsen der Keime zu einer homogenen Schicht.
  • Bei dem erfindungsgemäßen Verfahren wird eine relativ hohe Spannung während der angegebenen Zeitdauer angelegt. Bei dem resultierenden hohen Stromfluss ist die Anodisationsgeschwindigkeit von Anfang an hoch, so daß trotz der beschriebenen, bevorzugten hohen Auflösungsgeschwindigkeit von intermetallischen Phasen (z.B. Kupfer) die Aluminiummatrix zur Bildung von Keimen aktiviert und eine gleichmäßige Schichtbildung auch an kritischen Steilen erreicht wird.
  • Während des elektrochemischen Prozesses der anodischen Oxydation verarmt der Elektrolyt ander Grenzfläche Elektrolyt/Metalloberfläche an den zur Oxydation notwendigen lonen, so daß eine starke Konzentrationspolarisation auftritt. In einem schwefelsauren Elektrolyten erfolgt die Oxydation des Aluminiums über die Suifationen. Es laufen folgende Reaktionen ab:
    Figure imgb0001
    Figure imgb0002
  • Aus den Reaktionsgleichungen wird deutlich, daß der Elektrolyt an der Grenzfläche Elektrolyt/Metall an S04 2--lonen verarmt und sich lokal an S03 2--lonen anreichert.
  • Nach dem Abschalten des Stroms wird durch den bewegten Elektrolyten ein Konzentrationsausgleich auftreten. Der Abbau des Konzentrationsgefälles läßt sich über das Abklingen der Konzentrationspolarisation mittels eines Elektronenstrahloszillographen nachweisen. Dabei wurde festgestellt, daß die Anodisationsspannung nach Abschalten des Stromes nicht sofort auf einen Wert annähernd 0 absinkt, sondern daß der Abbau des Potentials von etwa 3 bis 5 Volt eine Zeit von 0,1 bis 0,5 Sekunden benötigt.
  • Andererseits stellt sich jedoch erst 0,2 bis 0,8 Sekunden nach Einschalten des Stromes eine annähernd konstante Spannung ein, wie sich ebenfalls mittels eines Elektronenstrahl oszillographen nachweisen läßt.
  • Die angegebene, im Vergleich zum Stand der Technik große Zeitdauer, während der die Spannungsimpulse anliegen, ist für den Aufbau einer Oxidschicht ausgesprochen günstig. Die Unterbrechung der Spannung zwischen zwei Spannungsimpulsen sollte 0,1 bis 2 Sekunden andauern, vorteilhafter Weise liegt diese Zeitdauer zwischen 0,1 und 1 Sekunden. Das Verhältnis von Zeitdauer eines Spannungsimpulses zur Zeitdauer einer Ausschaltzeit sollte 0,5 bis 5 betragen.
  • Bei diesen Verhältnissen wird eine optimale Anodisation bei sehr hoher Stromdichte bei allen Aluminiumlegierungen, jedoch besonders vorteilhaft bei Legierungen mit hohen elektrochemisch edleren Legierungszusätzen erreicht. Überraschend gute Oxidationsergebnisse wurden bei Parallelschaltung mehrerer (mindestens fünf bis maximal einhundert) Proben mit dem erfindungsgemäßen Verfahren erzielt.
  • Vorteilhafterweise wird die Temperatur des Elektrolyten oder des Werkstücks, insbesondere an kritischen Stellen, gemessen Erst nachdem die so gemessene Temperatur wieder auf einen vorgegebenen Wert zurückgefallen ist, wird ein erneuter Spannungsimpuls angelegt. Je nach Notwendigkeit stellen sich die Ausschaltzeiten bei Beginn oder bei Ende der Oxidation länger oder kürzer ein.
  • Die Hartanodisation nach dem erfindungsgemäßen Verfahren kann für Werkstücke aus Guss- oder Knetlegierungen angewendet werden. Außerdem können besonders vorteilhaft Werkstücke aus Sinteraluminium auch mit hohen Legierungsanteilen an elektrochemisch edleren Elementen, wie Kupfer, nach dem erfindungsgemäßen Verfahren zufriedenstellend beschichtet werden. Bedingt durch die hohe Bildungsgeschwindigkeit der Oxidschicht und die verringerte Rücklösung gelingt es, auf dem porösen Sintermetallwerkstoff verhältnismäßig homogene Schichten zu bilden.
  • Weitere Merkmale der Erfindung ergeben sich aus den übrigen Ansprüchen.
  • Ein Ausführungsbeispiel der Erfindung wird im folgenden näher erläutert und unter Bezugnahme auf die Zeichnung beschrieben.
  • In dieser zeigen:
    • Figur 1 einen Längsschnitt durch eine Elektrolyt-Wanne zur Durchführung des erfindungsgemäßen Verfahrens,
    • Figur 2 ein Zeitdiagramm der zwischen Kathode und Anode in einer Vorrichtung gemäß Figur 1 angelegten Spannung,
    • Figur 3 eine graphische Darstellung des zeitlichen Verlaufs des durch den Elektrolyten fließenden Stromes. Der Zeitmaßstab stimmt mit dem Zeitmaßstab in Figur 2 überein.
    • Figur 4 eine graphische Darstellung des zeitlichen Verlaufs der Schichtdicke, der Zeitmaßstab stimmt mit den Figuren 2 und 3 überein, und
    • Figur 5 eine graphische Darstellung des zeitlichen Verlaufs der Temperaturänderung im Elektrolyten bei gleichem Zeitmaßstab wie die Figuren 2 bis 4.
  • In Figur 1 ist die zur Durchführung des erfindungsgemäßen Verfahrens benutzte Vorrichtung gezeigt. Dabei nimmt eine Elektrolytwanne 1 ein Elektrolytbad 2 mit 180 g/I Schwefelsäure und 15 g/I Oxalsäure auf. In dieses Elektrolytbad 2 sind eine Anode 3 und eine Kathode 4 eingetaucht und über Zuleitungen 5 und 6 mit einem Spannungsversorgungsgerät 7 verbunden. Die Anode 3 setzt sich zusammen aus einem Anodenhalter 8 und den zu behandelnden Werkstücken 9.
  • Über eine Rohrleitung 10, die zu einer Pumpe 11 führt, wird ständig Elektrolytflüssigkeit aus dem Elektrolytbad 2 abgesaugt und über ein Elektrolytleitrohr 12 in das Elektrolytbad 2 zurückgefuhrt, wobei der zurückgeführte Strom auf das Werkstück 9 gerichtet ist.
  • Weiterhin ragt ein Kühler 13 (Wärmeaustauscher) eines Kühlaggregats 14 in das Elektrolytbad 2. Dieses Kühlaggregat 14 wird durch ein Kontaktthermometer 15 gesteuert, das ebenfalls in das Elektrolytbad 2 hineinreicht.
  • Das Spannungsversorgungsgerät 7 liefert eine gleichgerichtete Ausgangsspannung über eine zeit ti-t2, wie sie in Fig. 2 graphisch dargestellt ist. Diese Spannung kann, wie aus der Abb. ersichtlich, rechteckförmig aussgebildet sein, oder eine Oberwelligkeit jeder beliebigen technisch möglichen Spannungsform aufweisen. Diese Spannung U liegt über die Zuleitungen 5 und 6 an der Kathode 4 und der Anode 3 an und bewirkt einen Stromfluss durch den Elektrolyten. Der zeitliche Verlauf dieses Stromflusses i ist in Figur 3 graphisch dargestellt.
  • Wie Figur 2 zeigt, ist die vom Spannungsversorgungsgerät 7 gelieferte Spannung während jedes einzelnen Spannungsimpulses konstant, sie bleibt zudem für die gesamte Anodisierungszeit auf dem selben Wert. Das Stromversorgungsgerät 7 hat eine Strombegrenzung, die während einer Zeit t, bis t4 den Strom begrenzt, so daß auch die Stromimpulse annähernd rechteckförmig sind. Wird ohne Strombegrenzung gearbeitet, so beginnt die Stromkurve direkt nach der Zeit t4 abzusinken. Zweckmäßigerweise wird eine innerhalb des Spannungsversorgungsgeräts 7 erzeugte Gleichspannung zwischen 20 und 60 Volt durch einen Schalter so ein-und ausgeschaltet, daß sich der in Figur 2 gezeigte Spannungsverlauf ergibt. Die Einschaltzeiten t, bis t2 liegen dabei erfindungsgemäß zwischen 0,1 und 3 Sekunden, die Pausenzeiten t2 bis t3 liegen zwischen 0,1 und 2 Sekunden. Dabei liegt das Verhältnis von Betriebs- zu Pausenzeiten etwa im Bereich von 0,5 bis 5, im gezeigten Ausführungsbeispiel ist dieses Verhältnis 2.
  • Die ersten Stromimpulse sind bis zur Zeit t4 wie bereits erläutert und durch die automatische Strombegrenzung bedingt, konstant. Bedingt durch den Aufbau der Oxidschicht, wie er aus Figur 4 ersichtlich ist, und der damit verbundenen Erhöhung des Durchgangswiderstandes dieser Oxidschicht nimmt der Strom i beginnend mit der Zeit t4 kontinuierlich ab, da die Spannung U entsprechend Figur 2 konstant ist. Dementsprechend nimmt die Schichtdicke (Figur 4) während der Zeit t, bis t4 annahernd konstant zu. Mit geringer werdendem Strom i wird die Schichtdickenzunahme abnehmen.
  • Mit dem erfindungsgemäßen Verfahren kann, wie in Fig. 3 dargestellt, auch beispielsweise in der Zeit t, bis t4 über die gesamte Anodisationszeit mit Stromkonstanz der Stromimpulse oder mit Spannungskonstanz beginnend mit der Zeit t4 bis t5 anodisiert werden.
  • In der Figur 5 ist die Temperaturerhöhung gegenuber dem Ausgangszustand dargestellt. Die Temperaturerhöhung in der Schicht steigt während der Zeit t, bis t4 an und schwankt dann um einen konstanten Wert.
  • Die in den Figuren 2 bis 5 wiedergegebenen Kurven sollen rein schematisch die erfindungsgemäße Impulsstromtechnik verdeutlichen. Die Form der Spannung und des Stromes, insbesondere die Rechteckform, entspricht nicht immer dem technisch Erreichbaren. Häufig erfolgen die Spannungs- und Stromanstiege nicht linear von 0 auf den Nennwert, ebenfalls sind die Abfälle am Ende des Impulses nicht immer so scharf, wie dargestellt. Bei vielen Versuchen ergab sich, daß die Anstiegszeit und die Abfallszeit etwa bei 1/10 Sekunde liegt. Die Kurvenform hat jedoch keinen Einfluss auf das Anodisationsergebnis.
  • Das erfindungsgemäße Verfahren ermöglicht es, trotz sehr hoher Impulßstromdichten von maximal 80 A/dm2 sehr dünnwandige Werkstücke wie solche mit scharfen Kanten und Ecken ohne Verbrennungserscheinungen zu anodisieren. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß die Anodisation direkt mit einer hohen Stromdichte begonnen wird. Der Strom kann jedoch gegebenenfalls wie in Figur 3 gezeigtbegrenzt werden.
  • Um die Unterschiede und Vorteile des erfindungsgemäßen Verfahrens gegenüber dem bekannten Verfahren zu ermitteln, wurden eine große Anzahl von vergleichenden Untersuchungen durchgeführt Zielsetzung dieser Versuche war dabei, unter ansich konstanten, Anodisationsbedingungen (wie Elektrolytart und zusammensetzung, Badabmessungen, Elektrolyttemperatur, Badbewegung etc) den Einfluss des Anodisierstroms auf die Schichtbildung und Schichtqualität zu untersuchen.
  • Als Anodisationsmaterial dienten technische Werkstoffe verschiedener Aluminiumlegierungen, insbesondere von Aluminiumlegierungen mit höherem Kupfergehalt.
  • Beispiel 1
  • Für dieses Beispiel wurden unterschiedliche Werkstücke aus verschiedenen Stoffen wie z.B.
    • 1. AICuMg 2: Cu 4,3 % Mg 1,6 %
    • 2. AICuMgPb: Cu 4,4 % Mg 1,4 % Pb 1,5 %
    • 3. AICu4Ni2Mg: Cu 4,1 % Ni 2,0 % Mg 1.5 %
    • 4. AICu5Ni1,5: Cu 5,3 % Ni 1,6 %
    • 5. AISi17CuMg: Si 18,8 % Cu 1;4 % Mg 1,3 %
    • 6. AlMgSi1: Si 1,1 % Mg 0,8 % untersucht.
  • Dabei wurden die folgenden vier Verfahren verwendet:
    • 1. Gleichstrom-Verfahren. Die Versuche wurden mit reinem Gleichstrom bei einer Restwelligkeit von etwa 3 % unter Stromkonstanz, durch automatische Nachregelung der Anodisationsspannung durchgeführt.
    • 2. Polarisierter pulsierender Gleichstrom. Die Stromimpuls dauer betrug bei einer Frequenz von 50 Hz etwa 50 %. Die Stromkonstanz wurde durch Handregelung der Spannung eingehalten. Dieses zweite Verfahren ist dem aus der US-PS-2 920 018 bekannten Verfahren ähnlich.
    • 3. Wechselstrom-überlagerter Gleichstrom. Die Versuche wurden mit Stromkonstanz durchgefuhrt. Bei einer Frequenz von 50 Hz betrug die Restwelligkeit etwa 30 %. Dieses dritte Verfahren entspricht im wesentlichen dem aus der US-PS-3 857 766 bekannten Verfahren.
    • 4. Impulsstromverfahren nach der Erfindung. Diese Versuche wurden mit konstanter Spannung durchgefuhrt, die jeweils manuell auf den gewunschten Sollwert eingestellt wurde. Das Verhältnis der Einschalt- zu den Ausschaltzeiten betrug für alle Versuche 2,0. Gemessen wurde der Effektivstrom.
  • In den folgenden drei Tabellen sind typische Messergebnisse zusammengefasst.
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Die in den Tabellen 1 und 2 zusammengefaßten Versuchsergebnisse zeigen deutlich, daß unter den gewählten Versuchsbedingungen eine Anodisation von Aluminiumlegierungen mit hohen Gehalten an elektrochemisch edleren Metallen nicht möglich ist, wenn nach dem ersten Verfahren, also mit Gleichstrom, gearbeitet wird.
  • Als besonders vorteilhaft zeigt sich das erfindungsgemäße Verfahren. Als einziges Verfahren ermöglicht es, alle Werkstücke ohne Verbrennungserscheinungen bei hoher Stromdichte und kurzen Anodisationszeiten zu oxydieren. Ferner zeigen die Tabellen, daß mit dem erfindungsgemäßen Veifahren die Schichtqualitäten verbessert werden können, auch solcher AI-Legierungen mit niedrigen Gehalten an elektrochemisch edleren Metallen, wie dies die Tabelle 3 zeigt.
  • Beispiel 2
  • Neben dem beschriebenen Verfahren der diskontinuierlichen Anodisation in Bädern erweist sich das erfindungsgemäße Verfahren als besonders vorteilhaft für die kontinuierliche Anodisation. Unter der kontinuierlichen Anodisation ist die Anodisation von Bändern oder Werkstücken zu verstehen, die kontinuierlich durch das Anodisationsbad und gegebenenfalls durch Spül-oder Nachverdichtungsbäder gezogen werden.
  • Während bei der diskontinuierlichen Anodisation, wie beschrieben, mit dem Gleichstromverfahren die Stromdichte durch Regelung der Spannung konstant gehalten wird, ist dies bei der kontinuierlichen Anodisation nicht möglich. Bei der kontinuierlichen Anodisation besteht nur die Möglichkeit, die Spannung konstant zu halten, während die Stromdichte bei Entritt des bandes oder Werkstückes sehr hoch ist und durch den Aufbau einer Oxidschicht mit der Verweilzeit stark abnimmt, so daß die Stromdichte kurz vor dem Austritt aus dem Bad sehr gering ist. Die angelegte Spannung ist somit stark begrenzt von der Stromdichte am Anfang des Eintritts des Bandes oder Werkstückes in das Bad, um Verbrennungen zu vermeiden, die durch die Beschränkung des Abtransportes der Joule'schen Wärme mittels des bewegten Elektrolyten gegeben ist.
  • Andererseits ist durch die Beschränkung der angelegten Spannung somit auch die maximal erzielbare Schichtdicke begrenzt. Mit dem erfindungsgemäßen Verfahren konnte, wie beschrieben, gezeigt werden, daß sehr hohe Spannungen und daraus resultierende sehr hohe Stromdichten möglich sind.
  • Bei Eintritt des Bandes oder Werkstückes in das Bad ist die Stromdichte, bedingt durch die hohe angelegte Spannung, sehr hoch und kann Werte bis zu 80 A/dm2 aufweisen. In der darauf folgenden Strompause jedoch wird die Joule'sche Wärme durch den bewegten Elektrolyten abtransportiert und außerdem werden, wie beschrieben, die Polarisationsspannungen abgebaut.
  • Durch den Prozess des erfindungsgemäßen Impulsstromverfahrens ist es somit möglich, die Anodisationszeit erheblich zu verringern, so daß bei bestehenden Bandanodisationsanlagen der Durchsatz erheblich gesteigert werden kann, wenn die gleiche Schichtdicke erzielt werden soll.
  • Ferner besteht die Möglichkeit, dicke Schichten von über 30 11m zu erreichen, wie sie in den meisten Fällen für die Hartanodisation gewünscht werden.
  • Besonders vorteilhaft lassen sich mit dem erfindungsgemäßen Verfahren außerdem Aluminiumlegierungen mit hohen Anteilen an elektrochemisch edleren Legierungselementen kontinuierlich beschichten.
  • Für den Versuch wurde eine Aluminiumfolie aus AIMg1 (Abmessung: Dicke 1,0 mm, Breite 300 mm, Länge 500 mm) in einen bewegten Elektrolyten mit einer Absenkgeschwindigkeit von 0,2 m/min. eingebracht und nach voll ständigem Absenken der Folie im Elektrolyten die Anodisation 2 Minuten fortgesetzt. Die angelegte Spannung betrug 35 Volt und die Stromeinschaltzeit betrug 0,4 Sekunden, die Ausschaltzeit 0,2 Sekunden.
  • Die Probefolie zeigte trotz der hohen anfänglichen Stromdichte von etwa 90 A/dm2 keine Verbrennungen. Die Schichtdicke betrug 40 bis 55 µm, wobei natürlich der Teil der Folie mit der längsten Anodisationszeit die größte Schichtdicke aufwies.

Claims (11)

1. Verfahren zur anodischen Oxydation von Werkstücken aus einer Aluminiumlegierung, insbesondere mit hohem Gehalt an Kupfer und/oder edleren Metallen, wobei die Werkstücke in einem bewegten wässrigen Elektrolyten zusammen mit einer oder mehreren Kathoden angeordnet werden und eine Spannung im wesentlichen periodisch zum Erzeugen von kurzzeitigen Stromimpulsen mit hohem Stromfluss an die Werkstücke und die Kathode (n) angelegt wird, dadurch gekennzeichnet, dass die Spannung jeweils solange eingeschaltet bleibt, wie ein merklicher Aufbau der Oxidschicht erfolgt und anschliessend solange ausgeschaltet wird, bis die erzeugte Jouie'sche Wärme im wesentlichen abgeführt ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Spannungsimpuls von 10 bis 80 V, insbesondere 20 bis 60 V angelegt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zeitdauer der Spannungsimpulse 0,1 bis 3 s, insbesondere 0,1 bis 1,5 s beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Dauer der Ausschaltzeit zwischen zwei Spannungsimpulsen 0,1 bis 2 s, insbesondere 0,1 bis 1 s beträgt.
5.Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Verhältnis von Zeitdauer eines Spannungsimpulses zur Zeitdauer einer Ausschaltzeit 0,5 bis 5 beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Stromdichte während eines Spannungsimpulses konstant gehalten wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Stromdichte während der Dauer der anodischen Oxydation konstant gehalten wird.
8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Spannung während eines Spannungsimpulses und während der Dauer der anodischen Oxydation konstant gehalten wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß zunächst die Stromdichte und anschließend die Spannung während der Dauer der anodischen Oxydation konstant gehalten wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man die Werkstücke, insbesondere bandförmiges Material, durch das Elektrolytbad durchlaufen läßt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Spannung nach einem Spannungsimpuls solange ausgeschaltet bleibt, bis die vorzugsweise am Werkstück gemessene Temperatur unterhalb eines Schwellwerts gesunken ist.
EP83108951A 1982-11-30 1983-09-10 Verfahren zur anodischen Oxydation von Aluminiumlegierungen Expired EP0112439B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83108951T ATE33858T1 (de) 1982-11-30 1983-09-10 Verfahren zur anodischen oxydation von aluminiumlegierungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3244217 1982-11-30
DE19823244217 DE3244217A1 (de) 1982-11-30 1982-11-30 Verfahren zur anodischen oxydation von aluminiumlegierungen

Publications (3)

Publication Number Publication Date
EP0112439A2 EP0112439A2 (de) 1984-07-04
EP0112439A3 EP0112439A3 (en) 1986-11-05
EP0112439B1 true EP0112439B1 (de) 1988-04-27

Family

ID=6179408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83108951A Expired EP0112439B1 (de) 1982-11-30 1983-09-10 Verfahren zur anodischen Oxydation von Aluminiumlegierungen

Country Status (3)

Country Link
EP (1) EP0112439B1 (de)
AT (1) ATE33858T1 (de)
DE (2) DE3244217A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507472A1 (de) * 1995-03-03 1996-09-05 Electro Chem Eng Gmbh Beschichtete Gas- oder Stromdüse einer Schutzgasschweißanlage
WO2008138458A2 (de) 2007-05-15 2008-11-20 Sew-Eurodrive Gmbh & Co. Kg Belagträger, bremse, kupplung oder elektromotor
DE102008019284A1 (de) 2008-04-16 2009-10-29 Sew-Eurodrive Gmbh & Co. Kg Belagträger, Bremse, Kupplung oder Elektromotor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442591A1 (de) * 1984-11-22 1986-05-22 Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn Verfahren zur hartanodisation von im vakuumdruckguss hergestellten aluminium-gussteilen
WO1993003207A1 (en) * 1991-07-30 1993-02-18 Minsky Radiotekhnichesky Institut Method for making metal sublayer based on aluminium or its alloys
DE4445007A1 (de) * 1994-12-16 1996-06-20 Fissler Gmbh Verfahren zur Ausstattung eines Geschirrgegenstandes mit einer Antihaftbeschichtung
US7702308B2 (en) * 2004-03-11 2010-04-20 Alcatel-Lucent Usa Inc. Method of associating data with a call to a call center
EP2166200A1 (de) 2008-09-23 2010-03-24 Franz Rübig & Söhne GmbH & Co. KG Ventilfederteller und Verfahren zu dessen Herstellung
CN113981500B (zh) * 2021-12-09 2023-03-28 陕西宝成航空仪表有限责任公司 硬铝合金壳体零件的草酸阳极氧化工艺方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920018A (en) * 1957-04-22 1960-01-05 Electro Chem Mfg Co Inc Anodizing process and system
GB1150882A (en) * 1965-07-14 1969-05-07 Alcan Res & Dev Anodising Treatment For Aluminium And Its Alloys
US3418222A (en) * 1966-02-28 1968-12-24 Murdock Inc Aluminum anodizing method
US4026781A (en) * 1969-08-07 1977-05-31 Scionics Of California Inc. Anodizing means and techniques
US4152221A (en) * 1977-09-12 1979-05-01 Nancy Lee Kaye Anodizing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507472A1 (de) * 1995-03-03 1996-09-05 Electro Chem Eng Gmbh Beschichtete Gas- oder Stromdüse einer Schutzgasschweißanlage
DE19507472C2 (de) * 1995-03-03 1999-09-02 Electro Chem Eng Gmbh Gas- oder Stromdüse einer Schutzgasschweißanlage
WO2008138458A2 (de) 2007-05-15 2008-11-20 Sew-Eurodrive Gmbh & Co. Kg Belagträger, bremse, kupplung oder elektromotor
DE102008020513A1 (de) 2007-05-15 2008-11-27 Sew-Eurodrive Gmbh & Co. Kg Belagträger, Bremse, Kupplung oder Elektromotor
DE102008020513B4 (de) 2007-05-15 2022-06-23 Sew-Eurodrive Gmbh & Co Kg Bremse, Kupplung oder Elektromotor
DE102008019284A1 (de) 2008-04-16 2009-10-29 Sew-Eurodrive Gmbh & Co. Kg Belagträger, Bremse, Kupplung oder Elektromotor
DE102008019284B4 (de) * 2008-04-16 2015-05-13 Sew-Eurodrive Gmbh & Co Kg Belagträger, Bremse, Kupplung oder Elektromotor

Also Published As

Publication number Publication date
ATE33858T1 (de) 1988-05-15
DE3376430D1 (en) 1988-06-01
DE3244217A1 (de) 1984-05-30
EP0112439A3 (en) 1986-11-05
EP0112439A2 (de) 1984-07-04

Similar Documents

Publication Publication Date Title
DE2420704C3 (de) Verfahren zum kontinuierlichen Eloxieren eines Aluminiumbandes und Vorrichtung zur Durchführung dieses Verfahrens
DE2810308A1 (de) Verfahren zum elektrolytischen koernen von aluminium
DE2327764A1 (de) Verfahren zur elektrokoernung von aluminium
DE1621046B2 (de) Verfahren zur elektrolytischen Herstellung von Weißblech
EP0416099A1 (de) Verfahren zur elektrochemischen behandlung von erzeugnissen aus leitfähigem material
EP0112439B1 (de) Verfahren zur anodischen Oxydation von Aluminiumlegierungen
DE4002700A1 (de) Elektrochemisch bearbeitbares werkstueck und verfahren zum elektrochemischen bearbeiten eines metallischen werkstueckes
DE3828291A1 (de) Elektrolytisches behandlungsverfahren
DE2919261A1 (de) Harteloxalverfahren
DE102010013415B4 (de) Beschichtung aus anodischem Oxid und Verfahren zum anodischen Oxidieren
DE2027156C3 (de) Verfahren zum anodischen Polieren von Niobteilen
DE2753936A1 (de) Verfahren zur bildung einer eisenfolie bei hohen stromdichten
EP3931895A1 (de) Aluminiumfolie für batterieelektroden und verfahren zur herstellung
DE2609549C3 (de) Verfahren zum anodischen Polieren von Oberflächen aus intermetallischen Niobverbindungen und Nioblegierungen
DE715515C (de) Verfahren zur anodischen Vorbehandlung zuvor in ueblicher Weise entfetteter Metalloberflaechen
EP0795047B1 (de) Verfahren zur herstellung einer korrosions- und verschleissschützenden oxidschicht mit örtlich reduzierter schichtdicke auf der metalloberfläche eines werkstücks
DE2522926C3 (de) Verfahren zum kontinuierlichen Galvanisieren von langgestrecktem Aluminiummaterial
DE1496718C3 (de) Verfahren zur anodischen Herstellung von eigenfarbenen Oxidüberzügen auf Aluminium und Aluminiumlegierungen
DE1931730A1 (de) Verfahren zum Faerben von anodisiertem Aluminium durch elektrolytische Abscheidung
EP0276264B1 (de) Verfahren zum elektrochemischen bearbeiten von werkstücken sowie vorrichtung zur durchführung des verfahrens
DE2105816A1 (de) Verfahren zur Entfernung von Eisenverunreinigungen aus Nitrisierungssalzbädern
DE2742123C3 (de) Verfahren zum anodischen Polieren von metallischen Oberflächenteilen
DE2409180C3 (de) Verfahren zum anodischen Polieren von Niobteilen
DE909975C (de) Kupferoxydulgleichrichter und Verfahren zu seiner Herstellung
AT222453B (de) Verfahren und Vorrichtung zur vorzugsweise kontinuierlichen einseitigen Anodisierung von Metallfolien oder- bändern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861115

17Q First examination report despatched

Effective date: 19870917

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880427

REF Corresponds to:

Ref document number: 33858

Country of ref document: AT

Date of ref document: 19880515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880430

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3376430

Country of ref document: DE

Date of ref document: 19880601

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020816

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020904

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020909

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020913

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030909

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030909

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030910

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030910

BE20 Be: patent expired

Owner name: *ELECTRO CHEMICAL ENGINEERING G.M.B.H.

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL