EP0105835A1 - Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen - Google Patents

Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen Download PDF

Info

Publication number
EP0105835A1
EP0105835A1 EP83810395A EP83810395A EP0105835A1 EP 0105835 A1 EP0105835 A1 EP 0105835A1 EP 83810395 A EP83810395 A EP 83810395A EP 83810395 A EP83810395 A EP 83810395A EP 0105835 A1 EP0105835 A1 EP 0105835A1
Authority
EP
European Patent Office
Prior art keywords
component
autoclave
titanium
alloys
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83810395A
Other languages
English (en)
French (fr)
Other versions
EP0105835B1 (de
Inventor
Paul Brunner
Beat Hofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFERTA DI LICENZA AL PUBBLICO
Original Assignee
Vereinigte Drahtwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Drahtwerke AG filed Critical Vereinigte Drahtwerke AG
Priority to AT83810395T priority Critical patent/ATE31559T1/de
Publication of EP0105835A1 publication Critical patent/EP0105835A1/de
Application granted granted Critical
Publication of EP0105835B1 publication Critical patent/EP0105835B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Definitions

  • the invention is based on a method for forming a nitride layer in the edge zone of a component consisting of elements of the fourth, fifth or sixth subgroups of the periodic system or their alloys.
  • the nitride layer is intended to increase the wear properties of the surface of, for example, titanium or its alloys.
  • titanium with H ärteober Diagram yarn guide for textile machines balls, for example, turbine blades for prosthesis shafts, wear and corrosion resistant parts of the apparatus of the chemical industry prepared.
  • Another way of hardening the surface of the titanium component is to immerse the the same in a molten salt cyanide base at about 800 0 C. Such a treatment creates a mixed crystal zone that contains nitrogen, carbon and small amounts of oxygen.
  • the layer thickness is approx. 0.035 mm with a hardness of 7 00 HV 0.025 at the outer zone. This is Degussa's well-known Tiduran process.
  • the known ionitriding is carried out at treatment temperatures of 400 ° to 600 ° C. With the help of an abnormal glow discharge, nitrogen is generated in ionized form and stored in the workpiece surfaces.
  • the hardness values at the edge are approx. 1500 HV 0.1 and drop to a depth of 30 u to 400 HV 0.1 .
  • GB-PS 1,537,891 describes a method for embroidering hard metal bodies after their sintering. Immediately after sintering, the nitrogen is pressed into the vacancies of the hard metal grid, which tensions the hard metal matrix and improves the cutting properties. A measurable increase in hardness is not achieved.
  • the invention specified in claim 1 is based on the object of cost-effectively remedying the disadvantages of the known methods described above. In the process, there should be no distortion of the component and no uneven tensions on the surface layer. The part to be nitrided should not carry any electrical current.
  • the object is achieved in a method according to the preamble of patent claim 1, characterized in that the chemically untreated component in an autoclave with a group consisting of nitrogen gas or gaseous nitrogen compounds atmosphere during at least one hour to an isostatic pressure of at least 100 bar and a temperature of at least 200 0 C is suspended, after which the pressure and the The heat in the autoclave is gradually reduced evenly.
  • a continuous, evenly distributed nitride layer with a thickness of approximately 20 ⁇ is formed on the component.
  • the z. B. made of chemically untreated titanium or its alloys is placed in an autoclave in which pure nitrogen gas is pumped. Instead of titanium, the remaining elements of the fourth, fifth or sixth subgroups of the periodic system or their alloys can also be used.
  • the titanium component in the autoclave must be exposed to an isostatic pressure of at least 100 bar and a temperature of at least 200 ° C for at least one hour.
  • the isostatic pressure in the autoclave ensures a continuous, even distribution of the nitrogen in the surface of the titanium component at every geometrical location. When cooling down, the pressure and heat drop evenly slowly. As a result, there is no distortion of the component and no uneven tensions in the surface layer.
  • the autoclave is known in the art under the name "hot isostatic press” and is used for this treatment with some changes in the gas supply and discharge.
  • One or more additional hardening layers can be applied to the titanium nitride layer produced in the above-mentioned method in the edge zone of the titanium component by chemical or physical vapor deposition. This would not be possible without the titanium nitric layer formed first in the edge zone of the titanium component, because the hard layers applied to a component made of titanium, the surface of which was not treated as described above, are subject to peeling abrasion.
  • the nitrogen combines with titanium to form a TiN layer which is formed in the edge zone of the titanium component and has a thickness of approximately 20 ⁇ m. It is possible to keep the isostatic pressure up to 5000 bar and the temperature up to 1200 C during the holding time phase of nitrogen diffusion into the titanium component. The higher these values, the limited the thickness of the nitride layer. There is no material application to the component; the hardness layer grows inside the component.
  • a component of the alloy Ti6 A14 V was exposed to nitrogen, and a temperature of 1000 0 C bar for three hours at a pressure of 900th
  • the hardness at the edge is 800 HV 0, ⁇ at a film thickness of 20 05 (see Fig. 1).
  • a component of the alloy Ti6 A14 V was exposed to a pressure of 1300 bar nitrogen and a temperature of 930 ° C for three hours.
  • the hardness at the edge is 800 HV 0.05 with a layer thickness of 0.012 mm (see Fig. 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Der Bauteil aus Titan oder seinen Legierungen wird in einen Autoklav versetzt. In den Autoklav wird Stickstoffgas oder Ammoniak gepumpt. Der chemisch unbehandelte Bauteil wird in dem Autoklav während drei Stunden einem Druck von 900 bar und einer Hitze von 1000°C ausgesetzt. Die so in der Randzone des Bauteiles gebildete TiN-Schicht hat eine Härte von HV 0.05 bei einer Dicke von 20µ. In diesem kostengünstigen Verfahren wird eine Oberflächenhärtesteigerung von HV 0.5 = 450 der bekannten Verfahren auf HV 0.5 = 800 erreicht.

Description

  • Die Erfindung geht aus von einem Verfahren zur Bildung einer Nitridschicht in der Randzone eines aus Elementen der vierten, fünften oder sechsten Nebengruppen des periodischen Systems oder deren Legierungen bestehenden Bauteiles.
  • Die Nitridschicht soll zur Erhöhung der Verschleisseigenschaften der Oberfläche von beispielsweise Titan oder seinen Legierungen dienen. Aus Titan mit Härteoberfläche werden zum Beispiel Turbinenschaufeln, Fadenführer bei Textilmaschinen, Kugeln zu Prothesenschäften, verschleiss- und korrosionsfeste Teile der Apparate der chemischen Industrie hergestellt.
  • Es ist bekannt, die Oberfläche des Titanbauteiles durch Erhitzen zu oxidieren. Luft, Sauerstoff verbindet sich mit Titan zu Ti02 und bildet eine Oxidschicht von geringer Dicke. Eine Vertiefung der Oxidschicht ist nicht möglich, da es sonst durch den Sauerstoffangriff zu einem Verfall des Titanbauteiles kommt.
  • Eine weitere Möglichkeit des Erhärtens der Oberfläche des Titanbauteiles besteht im Eintauchen desselben in eine Salzschmelze cyanidischer Basis bei ca. 800 0 C. Durch eine solche Behandlung entsteht eine Mischkristallzone, die Stickstoff, Kohlenstoff und geringe Anteile Sauerstoff enthält. Die Schichtdicke beträgt ca. 0,035 mm bei einer Härte von 700 HV 0,025 an der Aussenzone. Dies ist das bekannte Tiduran-Verfahren von Degussa.
  • Wie Eisen kann weiter Titan und seine Legierungen auch boriert werden; es muss jedoch Schutzgasatmosphäre oder Vakuum vorhanden sein. Die Härte der Boridschicht beträgt ca. 3100 HV 0,5. Zur Erreichung einer Schichtdicke von 0,03 mm ist eine Behandlungsdauer von sechs Stunden bei 1200 0 C nötig. Bei 900° C wird in der gleichen Zeit eine Schichtdicke von ca. 0,008 mm erreicht.
  • Die oben erwähnten Verfahren erfordern relativ hohe Behandlungstemperaturen. Bei der Abkühlung der Teile treten Schwierigkeiten durch Verzug auf. Zusätzlich kommt es bei diesen Verfahren zu unerwünschten und irreversiblen Gefügeveränderungen.
  • Das bekannte Ionitrieren wird bei Behandlungstemperaturen von 400° bis 600° C durchgeführt. Mit Hilfe einer anormalen Glimmentladung wird Stickstoff in ionisierter Form erzeugt und in die Werkstückoberflächen eingelagert. Die Härtewerte am Rand betragen ca. 1500 HV 0,1 und fallen bis zu einer Tiefe von 30 u auf 400 HV 0,1 ab.
  • In der GB-PS 1,537,891 ist ein Verfahren zum Aufsticken von Hartmetallkörpern nach ihrem Sintern beschrieben. Der Stickstoff wird unmittelbar nach dem Sintern in die Leerstellen des Hartmetallgitters gepresst, was zu einer Verspannung der Hartmetallmatrix und zur Verbesserung der Schneideigenschaften führt. Eine messbare Härtesteigerung wird dabei aber nicht erzielt.
  • Alle bekannten Verfahren dienen dem Zweck, bei Titan oder seinen Legierungen bessere Verschleisseigenschaften zu erzielen. Dieser Werkstoff erreicht mit seinem niedrigen spezifischen Gewicht mechanische Eigenschaften, die gehärtetem Stahl entsprechen. Leider ist aber die Eigenhärte des Materials gering, so dass durch die beschriebenen Verfahren versucht wird, wenigstens am Rand zu höherer Härte und somit besseren Verschleisseigenschaften zu gelangen. Nachteile dieser Verfahren sind Verzugs- und Risserscheinungen, hohe Kosten und unerwünschte Gefügeänderungen.
  • In der Zeitschrift für Physik 210, 70 - 79 (1968) wird die Diffusion von Stickstoff in metallisches Niob beschrieben. Dabei wurden Wechsel- und Gleichstrom beheizte dünne Niobdrähte einem Stickstoffdruck von 2 bzw. 200 at ausgesetzt. Der Draht dient also als Widerstandsheizung und weist dadurch ein rund um den Draht angelegtes elektrisches Feld auf. Dadurch werden die Gasmoleküle ionisiert und dringen in den Draht ein. Der zu nitrierende Teil führt hier also einen Strom, was nachteilig ist.
  • Der im Patentanspruch 1 angegebenen Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten, oben beschriebenen Verfahren kostengünstig zu beheben. Bei dem Verfahren sollen kein Verzug des Bauteiles und keine ungleiche Spannungen an der Oberflächenschicht entstehen. Der zu nitrierende Teil soll dabei keinen elektrischen Strom führen.
  • Die Aufgabe wird bei einem Verfahren nach dem Oberbegriff des Patentanspruches 1 dadurch gelöst, dass der chemisch unbehandelte Bauteil in einem Autoklav mit einer aus Stickstoffgas oder gasförmigen Stickstoffverbindungen bestehenden Atmosphäre während mindestens einer Stunde einem isostatischen Druck von mindestens 100 bar und einer Temperatur von mindestens 200 0 C ausgesetzt wird, wonach der Druck und die Hitze im Autoklav gleichmässig langsam abgebaut werden.
  • Mit Vorteil wird am Bauteil eine durchgehende, gleichmässig verteilte Nitridschicht einer Dicke von annähernd 20µ gebildet.
  • Der z. B. aus chemisch nicht behandeltem Titan oder seinen Legierungen bestehende Bauteil wird in einen Autoklav versetzt, in welchen reines Stickstoffgas gepumpt wird. Anstelle des Titans können auch die übrigen Elemente der vierten, fünften oder sechsten Nebengruppen des periodischen Systems oder deren Legierungen verwendet werden. Die Atmosphäre im Autoklav kann anstelle von reinem Stickstoffgas aus gasförmigen Stick- stoffverbindungen, wie Ammoniak (NH3) oder Lachgas (N20), bestehen.
  • Durch die Kombination des im Autoklav herrschenden Druckes und der dort herrschenden Hitze entsteht in der Randzone des Titanbauteiles eine TiN-Schicht von ca. 20µ . Um eine solche Schicht zu bilden, muss der Titanbauteil im Autoklav während mindestens einer Stunde einem isostatischen Druck von mindestens 100 bar und einer Temperatur von mindestens 200° C ausgesetzt werden. Durch den isostatischen Druck im Autoklav wird eine durchgehende, gleichmässige Verteilung des Stickstoffes in der Oberfläche des Titanbauteiles an jedem geometrischen Ort gesichert. Bei der Abkühlung fallen Druck und Hitze gleichmässig langsam ab. Dadurch tritt kein Verzug des Bauteiles und keine ungleichen Spannungen in der Oberflächenschicht auf.
  • Da die Oberflächenreaktion von Titan nach einem parabolischen Zeitgesetz erfolgt, nimmt die Nitriergeschwindigkeit mit zunehmender Nitrierzeit ab. Die Diffusionsgeschwindigkeit von Stickstoff in der äusseren Titannitridschicht ist also geringer als in der darunter liegenden Zone des Titanmischkristalls. Es können sich also naturgemäss keine dicken Nitridschichten bilden. Stickstoff oder Ammoniak müssen von hoher Reinheit sein, da Sauerstoff die Bildung einer Nitridschicht verhindern würde.
  • Die wichtigsten Parameter, wie Druck, Temperatur und Zeit sind exakt messbar und einstellbar. Der Autoklav ist in der Technik unter dem Namen "Heissisostatische Presse" bekannt und wird mit einigen Aenderungen in der Gaszu- und -abfuhr für diese Behandlung verwendet.
  • Auf die in dem oben erwähnten Verfahren hergestellte Titannitridschicht in der Randzone des Titanbauteiles können eine oder mehrere zusätzliche Härteschichten durch chemische oder physikalische Gasphasenabscheidung aufgetragen werden. Ohne die zuerst gebildete Titannitricschicht in der Randzone des Titanbauteiles wäre dies nicht möglich, weil die auf einen Bauteil aus Titan, dessen Oberfläche nicht wie oben beschrieben behandelt wurde, aufgetragenen Härteschichten einem Schälabrieb unterliegen.
  • Nach dem oben beschriebenen Verfahren verbindet sich der Stickstoff mit Titan zu einer TiN-Schicht, die in der Randzone des Titanbauteiles gebildet wird und eine Dicke von annähernd 20 µ aufweist. Es ist möglich, während der Haltezeitphase der Stickstoffdiffusion in den Titanbauteil den isostatischen Druck auf bis 5000 bar und die Temperatur auf bis 1200 C zu halten. Je höher diese Werte, desto begrenzt dicker wird die Nitridschicht. Dabei kommt es zu keinem Materialauftrag auf den Bauteil; die Härteschicht wächst nach innen des Bauteiles.
  • Um die oben beschriebenen Verfahrensschritte besser zu erläutern, werden zwei Beispiele erwähnt.
  • Beispiel 1
  • Ein Bauteil der Legierung Ti6 A14 V wurde während drei Stunden einem Druck von 900 bar Stickstoff und einer Temperatur von 1000 0 C ausgesetzt. Die Härte am Rand beträgt 800 HV 0,05 bei einer Schichtdicke von 20 µ (siehe Fig. 1).
  • Beispiel 2
  • Ein Bauteil der Legierung Ti6 A14 V wurde während drei Stunden einem Druck von 1300 bar Stickstoff und einer Temperatur von 930 °C ausgesetzt. Die Härte am Rand beträgt 800 HV 0,05 bei einer Schichtdicke von 0,012 mm (siehe Fig. 2).

Claims (3)

1. Verfahren zur Bildung einer Nitridschicht in der Randzone eines aus Elementen der vierten, fünften oder sechsten Nebengruppen des periodischen Systems oder deren Legierungen bestehenden Bauteiles, dadurch gekennzeichnet, dass der chemisch unbehandelte Bauteil in einem Autoklav mit einer aus Stickstoffgas oder gasförmigen Stickstoffverbindungen bestehenden Atmosphäre während mindestens einer Stunde einem isostatischen Druck von mindestens 100 bar und einer Temperatur von mindestens 200° C ausgesetzt wird, wonach der Druck und die Hitze im Autoklav gleichmässig langsam abgebaut werden.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass am Bauteil eine durchgehende, gleichmässig verteilte Nitridschicht einer Dicke von annähernd 20 u gebildet wird.
3. Verwendung der im Verfahren nach Patentanspruch 1 gebildeten Nitridschicht als Unterlage für die Auftragung mindestens einer weiteren Härteschicht durch chemische oder physikalische Gasphasenabscheidung.
EP83810395A 1982-09-07 1983-08-31 Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen Expired EP0105835B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83810395T ATE31559T1 (de) 1982-09-07 1983-08-31 Verfahren zur bildung einer haerteschicht im bauteil aus titan oder titanlegierungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5313/82A CH650532A5 (de) 1982-09-07 1982-09-07 Verfahren zur bildung einer haerteschicht im bauteil aus elementen der vierten, fuenften oder sechsten nebengruppen des periodischen systems oder deren legierungen.
CH5313/82 1982-09-07

Publications (2)

Publication Number Publication Date
EP0105835A1 true EP0105835A1 (de) 1984-04-18
EP0105835B1 EP0105835B1 (de) 1987-12-23

Family

ID=4291498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810395A Expired EP0105835B1 (de) 1982-09-07 1983-08-31 Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen

Country Status (8)

Country Link
US (1) US4511411A (de)
EP (1) EP0105835B1 (de)
JP (1) JPS59140372A (de)
AT (1) ATE31559T1 (de)
CA (1) CA1214364A (de)
CH (1) CH650532A5 (de)
DE (1) DE3375027D1 (de)
IL (1) IL69633A (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009716A1 (en) * 1990-11-26 1992-06-11 Siemens Power Corporation Wear resistant nuclear fuel assembly components
US5211768A (en) * 1990-11-15 1993-05-18 Degussa Aktiengesellschaft Method of nitriding work pieces of steel under pressure
EP0545069A1 (de) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Verfahren zur Behandlung von Stählen und Refraktärmetallen
EP0544987A1 (de) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Verfahren zur Behandlung von legierten Stählen und Refraktärmetallen
US5292555A (en) * 1990-07-04 1994-03-08 Degussa Aktiengesellschaft Process for applying nitride layers to titanium
DE4332912C1 (de) * 1993-09-23 1994-06-01 Johann Grosch Thermochemisches Verfahren zur induktiven Randschichtbehandlung von Bauteilen aus Titan oder Titanlegierungen in stickstoffhaltigen Atmosphären
EP0464265B1 (de) * 1990-07-04 1996-03-06 Degussa Aktiengesellschaft Verfahren zum Aufbringen von Nitridschichten auf Titan
WO1998011272A1 (de) * 1996-09-13 1998-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleissbeständiger, mechanisch hochbelastbarer und reibungsarmer randschichtaufbau für titan oder seine legierungen sowie verfahren zu seiner herstellung
CN109154040A (zh) * 2016-05-23 2019-01-04 森蒂纳贝公司 包含钛金属的工件的处理方法和物品

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483653A (en) * 1987-09-24 1989-03-29 Fujikura Ltd Wear-resistant member
US5573401A (en) * 1989-12-21 1996-11-12 Smith & Nephew Richards, Inc. Biocompatible, low modulus dental devices
US5683442A (en) * 1989-12-21 1997-11-04 Smith & Nephew, Inc. Cardiovascular implants of enhanced biocompatibility
US5509933A (en) * 1989-12-21 1996-04-23 Smith & Nephew Richards, Inc. Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys
US5477864A (en) * 1989-12-21 1995-12-26 Smith & Nephew Richards, Inc. Cardiovascular guidewire of enhanced biocompatibility
US5674280A (en) * 1989-12-21 1997-10-07 Smith & Nephew, Inc. Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy
SE9001009L (sv) * 1990-03-21 1991-09-22 Ytbolaget I Uppsala Ab Foerfarande foer att bilda ett haart och slitagebestaendigt skikt med god vidhaeftning paa titan eller titanregleringar och produkter, framstaellda enligt foerfarandet
US5123972A (en) * 1990-04-30 1992-06-23 Dana Corporation Hardened insert and brake shoe for backstopping clutch
US5039357A (en) * 1990-06-15 1991-08-13 Dynamic Metal Treating, Inc. Method for nitriding and nitrocarburizing rifle barrels in a fluidized bed furnace
US5254183A (en) * 1991-12-20 1993-10-19 United Techynologies Corporation Gas turbine elements with coke resistant surfaces
US5298091A (en) * 1991-12-20 1994-03-29 United Technologies Corporation Inhibiting coke formation by heat treating in nitrogen atmosphere
US5518820A (en) * 1992-06-16 1996-05-21 General Electric Company Case-hardened titanium aluminide bearing
CN1054647C (zh) * 1994-03-17 2000-07-19 泰利达因工业有限公司 复合制品的制备方法
US5820707A (en) * 1995-03-17 1998-10-13 Teledyne Industries, Inc. Composite article, alloy and method
US5954724A (en) 1997-03-27 1999-09-21 Davidson; James A. Titanium molybdenum hafnium alloys for medical implants and devices
US6238491B1 (en) 1999-05-05 2001-05-29 Davitech, Inc. Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
US7338529B1 (en) 2004-03-30 2008-03-04 Biomet Manufacturing Corp. Methods and apparatuses for enhancing prosthetic implant durability
GB2412701B (en) 2004-03-31 2006-03-22 Minebea Co Ltd A metal-to-metal spherical bearing
US7833339B2 (en) * 2006-04-18 2010-11-16 Franklin Industrial Minerals Mineral filler composition
DE102008030186A1 (de) * 2008-06-26 2009-12-31 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines Bauteils durch selektives Laserschmelzen sowie hierfür geeignete Prozesskammer
GB2497354B (en) * 2011-12-07 2014-09-24 Solaris Holdings Ltd Method of improvement of mechanical properties of products made of metals and alloys
CN104711632A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种用于氧碘化学激光器原料再生的电化学反应器及再生方法
WO2022170009A1 (en) 2021-02-05 2022-08-11 Xylem Water Solutions U.S.A., Inc. System and method for recovering resources from wastewater streams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE970456C (de) * 1952-11-11 1958-09-18 Metallgesellschaft Ag Verfahren zur Herstellung von UEberzuegen aus hochschmelzenden Nitriden auf Metallen
FR2302350A1 (fr) * 1975-02-28 1976-09-24 Plansee Metallwerk Objets d'usage cour

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1793309A (en) * 1930-02-26 1931-02-17 Electro Metallurg Co Process of case hardening
JPS4991074A (de) * 1972-12-29 1974-08-30
JPS52145343A (en) * 1976-05-29 1977-12-03 Kiyoichi Ogawa Pressurized nitriding
DE2717842C2 (de) * 1977-04-22 1983-09-01 Fried. Krupp Gmbh, 4300 Essen Verfahren zur Oberflächenbehandlung von gesinterten Hartmetallkörpern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE970456C (de) * 1952-11-11 1958-09-18 Metallgesellschaft Ag Verfahren zur Herstellung von UEberzuegen aus hochschmelzenden Nitriden auf Metallen
FR2302350A1 (fr) * 1975-02-28 1976-09-24 Plansee Metallwerk Objets d'usage cour

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 91, Nr. 20, November 1979, Seite 243, Nr. 161561c, Columbus, Ohio, US *
CHEMICAL ABSTRACTS, Band 92, Nr. 10, März 1980, Seite 263, Nr. 80578g, Columbus, Ohio, US *
CHEMICAL ABSTRACTS, Band 93, Nr. 6, August 1980, Seite 338, Nr. 52058q, Columbus, Ohio, US *
CHEMICAL ABSTRACTS, Band 96, Nr. 2, Januar 1982, Seite 220, Nr. 23520r, Columbus, Ohio, US *
PATENTS ABSTRACTS OF JAPAN, Band 6, Nr. 143(C-117)[1021], 3. August 1982 *
ZEITSCHRIFT FÜR PHYSIK, Band 210, Nr. 1, 1968, Seiten 70-79 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292555A (en) * 1990-07-04 1994-03-08 Degussa Aktiengesellschaft Process for applying nitride layers to titanium
EP0464265B1 (de) * 1990-07-04 1996-03-06 Degussa Aktiengesellschaft Verfahren zum Aufbringen von Nitridschichten auf Titan
US5211768A (en) * 1990-11-15 1993-05-18 Degussa Aktiengesellschaft Method of nitriding work pieces of steel under pressure
WO1992009716A1 (en) * 1990-11-26 1992-06-11 Siemens Power Corporation Wear resistant nuclear fuel assembly components
US5265137A (en) * 1990-11-26 1993-11-23 Siemens Power Corporation Wear resistant nuclear fuel assembly components
EP0545069A1 (de) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Verfahren zur Behandlung von Stählen und Refraktärmetallen
EP0544987A1 (de) * 1991-12-04 1993-06-09 Leybold Durferrit GmbH Verfahren zur Behandlung von legierten Stählen und Refraktärmetallen
DE4332912C1 (de) * 1993-09-23 1994-06-01 Johann Grosch Thermochemisches Verfahren zur induktiven Randschichtbehandlung von Bauteilen aus Titan oder Titanlegierungen in stickstoffhaltigen Atmosphären
WO1998011272A1 (de) * 1996-09-13 1998-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleissbeständiger, mechanisch hochbelastbarer und reibungsarmer randschichtaufbau für titan oder seine legierungen sowie verfahren zu seiner herstellung
US6231956B1 (en) 1996-09-13 2001-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V Wear-resistance edge layer structure for titanium or its alloys which can be subjected to a high mechanical load and has a low coefficient of friction, and method of producing the same
CN109154040A (zh) * 2016-05-23 2019-01-04 森蒂纳贝公司 包含钛金属的工件的处理方法和物品
CN109154040B (zh) * 2016-05-23 2019-12-10 森蒂纳贝公司 包含钛金属的工件的处理方法和物品

Also Published As

Publication number Publication date
EP0105835B1 (de) 1987-12-23
IL69633A (en) 1987-02-27
CH650532A5 (de) 1985-07-31
JPS59140372A (ja) 1984-08-11
ATE31559T1 (de) 1988-01-15
DE3375027D1 (en) 1988-02-04
IL69633A0 (en) 1983-12-30
CA1214364A (en) 1986-11-25
US4511411A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
EP0105835B1 (de) Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen
DE69108318T2 (de) Mehrbeschichteter Diamant, Verfahren zur Herstellung und Verwendung davon.
DE69005331T2 (de) Verfahren zur Herstellung einer keramischen Beschichtung auf einem metallischen Substrat sowie mittels des Verfahrens beschichteter Gegenstand.
DE69009603T2 (de) Verfahren zur Vorbehandlung von metallischen Werkstücken und zur Nitrierhärtung von Stahl.
DE3243283C2 (de)
DE19526387A1 (de) Doppelt beschichteter Stahlverbundgegenstand und Verfahren zu dessen Herstellung
DE2717842A1 (de) Verfahren zur herstellung von hartmetallkoerpern erhoehter verschleissfestigkeit
DE102014103742B4 (de) Verfahren zur herstellung eines ferritischen edelstahlprodukts
DE3916412A1 (de) Ueberzogene fasern zur verwendung in einer metallmatrix und in einem verbundkoerper
DE69006610T2 (de) Oberflächenbehandlung von Titan oder einer Titanlegierung.
EP0133613B1 (de) Verfahren zum Abkühlen von Chargen in diskontinuierlich arbeitenden Industrieöfen, insbesondere von Stahldraht- oder -bandbunden in Haubenglühöfen
DE10322255B4 (de) Verfahren zur Hochtemperaturaufkohlung von Stahlteilen
DE3042469A1 (de) Nitrid-einsatzhaertung und das dadurch erhaltene erzeugnis
EP3458616B1 (de) Verfahren zur herstellung von gleitlagerverbundwerkstoffen
EP0558485A1 (de) Verfahren zur herstellung eines beschichteten hartmetallschneidkörpers.
EP1133579B1 (de) Verfahren zur herstellung einer schutzschicht auf einem martensitischen stahl und verwendung des mit der schutzschicht versehenen stahls
EP1745158B1 (de) Verfahren zur oberflächenbehandlung
DE3602104A1 (de) Gleit- oder reibelement mit funktionsteil aus keramischem werkstoff sowie verfahren zu seiner herstellung
DE3390522C2 (de) Spanendes Werkzeug und Verfahren zu dessen Herstellung
CH644404A5 (en) Process for increasing the hardness and wear resistance of the surface of a steel workpiece
EP1161570A1 (de) Verfahren und vorrichtung zur beschichtung eines trägerkörpers mit einem hartmagnetischen se-fe-b-material mittels plasmaspritzens
DE1207179B (de) Oxydkeramischer Tiegel zum Vakuum-Aufdampfen von Metallen
WO2017059467A1 (de) Komponente einer metallverarbeitungsmaschine
AT319187B (de) Verfahren zur Herstellung einer elektrisch-leitenden, säure- und/oder alkaliresistenten Substanz
DE19631333A1 (de) Verfahren und Vorrichtung zur Erzeugung von elektronischen Funktionsschichten im Niederdruckplasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19840811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 31559

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3375027

Country of ref document: DE

Date of ref document: 19880204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: OFFERTA DI LICENZA AL PUBBLICO

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900704

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900711

Year of fee payment: 8

Ref country code: FR

Payment date: 19900711

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900730

Year of fee payment: 8

Ref country code: DE

Payment date: 19900730

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900831

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910831

Ref country code: BE

Effective date: 19910831

Ref country code: AT

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910901

BERE Be: lapsed

Owner name: VEREINIGTE DRAHTWERKE A.G.

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83810395.0

Effective date: 19920408