EP0094889B1 - Linearbeschleuniger von geladenen Teilchen mit Beschleunigungsrohren - Google Patents

Linearbeschleuniger von geladenen Teilchen mit Beschleunigungsrohren Download PDF

Info

Publication number
EP0094889B1
EP0094889B1 EP83400978A EP83400978A EP0094889B1 EP 0094889 B1 EP0094889 B1 EP 0094889B1 EP 83400978 A EP83400978 A EP 83400978A EP 83400978 A EP83400978 A EP 83400978A EP 0094889 B1 EP0094889 B1 EP 0094889B1
Authority
EP
European Patent Office
Prior art keywords
tubes
sliding tubes
sliding
length
linear accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400978A
Other languages
English (en)
French (fr)
Other versions
EP0094889A1 (de
Inventor
Jacques Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0094889A1 publication Critical patent/EP0094889A1/de
Application granted granted Critical
Publication of EP0094889B1 publication Critical patent/EP0094889B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators

Definitions

  • the present invention relates to a linear accelerator of charged particles. in particular of ions, comprising sliding tubes.
  • This accelerator allowing in particular to accelerate two types of ions of different mass. can be used in the production of radioelements for medical use. in achieving ionic probes in the isotopic and dating in reaiisation d - high energy ion implanters.
  • FIG. 1 there is shown for example the block diagram of a linear accelerator standing waves with sliding tubes of the Wideroe type.
  • This accelerator comprises a generally cylindrical cavity 1 in which are arranged, along the axis 2 of the cavity, tubes 4 and 6. called sliding tubes. defining between them intervals 1.
  • These tubes 4 and 6 are connected alternately to the two terminals of a high frequency generator 8.
  • the ions, injected by a source 10. are accelerated in intervals I, by the high frequency electric field which reign.
  • the average value of the electric field is not too low, compared to its peak value.
  • the length of the acceleration intervals 1 a value close to that of the sliding tubes, that is to say close to ⁇ / 4 in the case of the Wideroe type.
  • the outside diameter of the tubes must not be small compared to the length of the acceleration intervals.
  • this diameter has a value close to that of the length of an interval I, therefore greater than half of ⁇ / 2, and close to ⁇ / 4.
  • the object of the present invention is precisely a linear accelerator of charged particles comprising sliding tubes, making it possible to overcome the various drawbacks mentioned above. It makes it possible in particular to reduce the diameter of the sliding tubes and to increase the effective linear shunt impedance of the structure of the ion accelerators: in the case of accelerators of the Wideroe type, it also makes it possible to accelerate two types of ions of different masses.
  • the invention relates to a linear accelerator of charged particles of the kind of those which comprise, inside a conductive envelope. sliding tubes defining between them acceleration intervals of length such that, in two successive intervals.
  • the longitudinal component of the electric field has an identical module, characterized in that it comprises. in each interval, an additional sliding tube disposed substantially in the middle of the interval between two neighboring tubes and electrically connected to said envelope by an impedance.
  • such a linear accelerator is characterized in that. the additional sliding tubes being connected to ground, one in two of the other sliding tubes is connected to a source of instantaneous potential V, the following is connected to a source of instantaneous potential V of the same sign, or to a source of potential snapshot -V 'of opposite sign.
  • all the sliding tubes have a length equal to the length of the gap. separating an additional sliding tube and another sliding tube.
  • the additional sliding tubes have a length less than the length of the gap, separating an additional sliding tube and another sliding tube, and the other sliding tubes have a length greater than the length of said gap.
  • the accelerator described above can advantageously be used, when the latter has an input stage using the focusing of an ion beam by radio frequency quadrupole.
  • all of the sliding tubes of this stage comprise a central ring on which are mounted, parallel to the axis of the ring, two sets of two half-fingers arranged on one side and on the other side of the ring, the half-fingers of each set being arranged symmetrically with respect to the axis of the ring, the half-fingers of the two sets being offset between them by an angle of ⁇ / 2, for one out of two of the sliding tubes, and located in the extension of one another, for the other sliding tubes.
  • FIGS. 2a and 2b the principle of a linear accelerator of charged particles, in particular of ions, has been shown in accordance with the invention.
  • This accelerator comprises, as in the accelerators of the prior art, a cavity 11 of generally cylindrical shape in which are arranged, alternately along the axis 12 of the cavity, sliding tubes 14 and 16 defining between them acceleration intervals.
  • the tubes 14 are connected to a first alternating high frequency source 18, delivering a first potential V, and the tubes 16 to a second alternating high frequency source 19, delivering a second potential V 2 .
  • the ions to be accelerated are injected into the accelerator by means of an injector 20.
  • the linear accelerator further comprises additional sliding tubes 22, arranged in the middle of the intervals, separating the tubes 14 and the tubes 16.
  • additional tubes 22 are brought to a very different potential V 3 potentials V, and V 2 .
  • the potential V may have a value V and the potential V 2 a value close to ⁇ V, the potential V 3 may be that of the mass, as shown in FIGS. 2a and 2b.
  • the sliding tubes 14 are brought to alternating potentials close to V and the sliding tubes 16 either. Has alternative potentials close to V or to alternative potentials close to -V. the additional sliding tubes 22 then being brought to ground.
  • the first mode of operation called slow mode and which corresponds to a conventional type of operation, will accelerate a first type of ions and the second mode. called fast mode. will accelerate a second type of lighter ions than the first.
  • all the sliding tubes have, as shown in FIG. 2a, a length I equal to the length g of an interval l ′, separating the sliding tubes 14 or 16 of the additional tubes 22.
  • the additional sliding tubes 22 have a length l m less than the length g of an interval l ′, separating a sliding tube 14 or 16 from an additional sliding tube 22, and the sliding tubes 14 and 16 a length l n greater than the length g of an interval l '.
  • FIGs 3a and 3b show a practical embodiment of a linear accelerator according to the invention.
  • This accelerator comprises a cavity 24, operating in the transverse mode, located inside a conductive cylindrical envelope 26.
  • this cavity 24 are alternately housed sliding tubes 28 and 30 supported, by means of tongues such as 31. respectively by two plates 32 and 34 (FIG. 3a).
  • These plates 32 and 34. arranged radially. are diametrically opposite and electrically integral with the casing 26.
  • the assembly constitutes a resonant cavity in which the sliding tubes 28 are brought approximately to the same instantaneous alternating potential V and the tubes 30 approximately to the same potential either V. or - V.
  • tubes 36 are carried by a plate 38 (FIG. 3b) arranged in a plane perpendicular to that containing the plates 32 and 34, and electrically connected to the casing 26 This plate 38 is brought to ground potential.
  • FIG 4 there is shown the electrical diagram corresponding to the embodiment described in Figures 3a and 3b.
  • the inductors F correspond to the inductance due to the fluxes of the magnetic field in each of the quadrants of the cavity 26, these quadrants being delimited by the plates 32. 34 and 38.
  • the capacitors C represent the capacitances distributed on the one hand, between the plate 32 and the mass and. on the other hand, between the plate 34 and the mass.
  • the capacitor C ' represents the capacity distributed between the plates 32 and 34.
  • the electrical diagram shown in Figure 4 can be considered to be formed of two circuits a and b. tuned to the same frequency and coupled by the capacitor C '.
  • the two operating modes of the linear accelerator correspond one (the slow mode) to the resonance of the inductor L in parallel with the capacitance C'2. the potentials V having the same sign. and the other (the fast mode) at the resonance of the inductance L in parallel with the capacitance C '- C'2, the potentials V with respect to the mass being opposite.
  • the presence of the capacitor C ' makes it possible to select the operating mode that is desired. because the resonance frequency F R of the first mode is lower than the resonance frequency F of the second mode. Power is supplied by a single HF generator. tunable on frequencies F R and F L.
  • the ratio of these two resonant frequencies F L / F R being equal to it is possible, to a certain extent, to modify this ratio by varying the value of C ′, that is to say by varying, for example, the dimension of the plates which support the sliding tubes.
  • This makes it possible to optimize the linear accelerator of the invention for two families of ions whose mass charge ratios are less than 4. For example, with such an accelerator one can accelerate protons and deuterons, which can be particularly interesting in the context of medical applications.
  • the good behavior of the effective linear shunt impedance for high values of ⁇ is due to the fact that the linear accelerator, according to the invention, comprises twice as many sliding tubes and intervals two times shorter than conventional linear accelerators.
  • the structure described above can advantageously be used in a linear accelerator comprising an input stage using the focusing of an ion beam by radio frequency quadrupole.
  • the input stage must be able to operate on the two corresponding resonant frequencies (F R and FJ and that, on each of these frequencies, this stage provides an ion beam having different coefficients B for each of these two frequencies, corresponding to the values accepted by the following stage.
  • FIG. 5 shows two sliding tubes 40a and 40b with radio frequency quadrupoles.
  • these sliding tubes 40a and 40b connected to the accelerator structure using the rods 41, each have a central ring 42 on which are mounted two sets 44 and 46 of two half-fingers 48 and 50 respectively.
  • These games being arranged parallel to the axis 52 of the central ring 42, are located on either side of the central ring 42.
  • the half-fingers 48 of the game 44 and the half-fingers 50 of the clearance 46 are arranged symmetrically with respect to the axis of the ring, in other words diametrically opposite.
  • two consecutive sliding tubes such as 40a and 40b, are arranged relative to each other so that the arrangement of the half-fingers of one of the two tubes, for example 40b, is deduced from that of the half-fingers of the other tube. for example 40a, by a rotation of ⁇ / 2 around the axis 52 of the ring.
  • the half-fingers of the two sets that is to say the half-fingers 48 and 50 corresponding respectively to the games 44 and 46, are located in the extension of one another, (FIG. 5).
  • Such an arrangement of the half-fingers can be used when the accelerator is operating in slow mode.
  • the offset half-fingers are those of the additional sliding tubes 22.
  • the half-fingers 48, 50 of the two sets 44 and 46 are arranged. as in the prior art, in the extension of one another, here the sliding tubes 14 and 16.
  • the elements constituting the sliding tubes which remain unchanged compared to those of the prior art bear the same references than those in Figure 5.
  • the invention has been described in its application to the acceleration of ions: it is however not limited to this application and, in particular, it can be used to accelerate electrons, in which case the only adjustments to be made are modifications the dimensioning of the various components.
  • the technique proposed by the invention makes it possible to very significantly increase the shunt impedance of standing wave and slip tube electron accelerators, which makes it possible to consider more favorably the production and use of very rustic machines. , operating in VHF, for example for industrial sterilization.
  • the invention can be implemented in other structures than the Wideroe type structure.
  • the invention has an advantage with regard to accelerators with reentrant cavities coupled (by holes or by loops): the addition of the additional sliding tube makes it possible to reduce the diameter of the sliding tubes.
  • an Alvarez type accelerator can be considered as a series of reentrant cavities stacked one after the other in which the currents on the two faces of adjacent walls are equal and opposite, which makes it possible to remove said walls.
  • the additional sliding tubes are not necessarily connected to ground. However, for practical reasons, they can only be connected to the envelope by a selfic impedance which can be either very low in which case the additional tube is practically at the potential of the envelope, or high, in which case the additional tube will be brought to a potential intermediate between those of the ends of the adjacent sliding tubes. These impedances are practically constituted by the conductive supports of the additional sliding tubes.
  • the number of intermediate sliding tubes is not limited to one, but we can have any number in principle to improve the impedance-shunt, such as an odd number in the case where we want to reserve the possibility of operating in two modes, slow and fast, as we will show below.
  • a cell of length depending on whether the direction of the longitudinal component of the field considered at a given time s reverses or not from one cell to the next, comprises a single acceleration interval located between two half-tubes 4.6 of sliding as shown in Figure 7 in (at).
  • an intermediate sliding tube 22 divides the interval d - accelerated tion in two half-cells as shown in Figure 7 in (b). which makes it possible to reduce the dimensions of the sliding tubes, therefore their capacities, and consequently to increase the shunt impedance.
  • the number of elements into which it is possible to divide the acceleration interval is obviously not limited to two.
  • the conductive supports which connect them to the walls must however be arranged so as to distribute the field adequately between the three acceleration intervals thus defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Claims (5)

1. Linearbeschleuniger von geladenen Teilchen, enthaltend im Innern einer leitfähigen Umhüllung (26) Gleitrohre (14, 16), die zwischen sich Beschleunigungsintervalle (I) solcher Länge ausbilden. daß in zwei aufeinanderfolgenden Intervallen die Längskomponente des elektrischen Feldes ein übereinstimmendes Modul aufweist, dadurch gekennzeichnet, daß er enthält : in jedem Intervall wenigstens ein zusätzliches Gleitrohr (22), das deutlich im Intervall zwischen zwei benachbarten Rohren angeordnet ist und elektrisch mit der genannten Umhüllung durch eine Impedanz verbunden ist. wobei die Hinzufügung dieser zusätzlichen Gieitrohre (22) die Verminderung des Durchmessers der Gleitrohre und die Vervielfältigung der wirksamen Leitungsnebenschlußimpedanz des Beschleunigeraufbaus gestattet.
2. Linearbeschleuniger nach Anspruch 1 vom Wideroe-Linearbeschleunigertyp, dadurch gekennzeichnet, daß die zusätlichen Gleitrohre (22) mit Masse verbunden sind, ein über zwei der anderen Gleitrohre (14) mit einer Quelle für ein Augenblickspotential V verbunden ist, das folgende (16) mit einer Quelle für ein Augenblickspotential V' gleichen Vorzeichens oder einer Quelle des Augenblickspotentials -V' entgegengesetzten Vorzeichens verbunden ist derart, daß zwei Betriebsarten möglich sind. eine schnelle Betriebsart, die für eine erste ionenart geeignet ist, und eine langsame Betriebsart, die für eine zweite, schwerere als die erste lonenart geeignet ist.
3. Linearbeschleuniger nach Anspruch 2, dadurch gekennzeichnet, daß alle Gleitrohre (14. 16, 22) eine Länge aufweisen, die gleich der Intervallänge (I') ist, die ein zusätzliches Gleitrohr (22) und ein anderes Gleitrohr (14, 16) voneinander trennt.
4. Linearbeschleuniger nach Anspruch 2, dadurch gekennzeichnet, daß die zusätzlichen Gleitrohre (22) eine Länge aufweisen, die kleiner als die Intervallänge (I') ist, die ein zusätzliches Gleitrohr und ein anderes Gleitrohr (14, 16) voneinander trennt, und daß die anderen Gleitrohre (14, 16) eine Länge aufweisen, die größer als die Länge des genannten Intervalls ist.
5. Linearbeschleuniger nach einem der Ansprüche 1 bis 4, enthaltend eine Eintrittsstufe. die eine Fokalisierung des Partikelstrahls durch.Hochfrequenzquadrupole verwendet, dadurch gekennzeichnet. daß alle Gleitrohre (14, 16, 22) der Eintrittsstufe einen zentralen Ring (42) aufweisen, auf dem parallel zur Achse (42) des Ringes zwei Sätze (44, 46, 48, 58) aus zwei Halbfingern (48, 50. 54, 60) montiert sind. die beiderseits des Ringes angeordnet sind, wobei die Halbfinger eines jeden Satzes symmetrisch in bezug auf die Ringachse angeordnet sind, die Halbfinger der zwei Sätze gegeneinander um einen Winkel von π/2 bei einem über das andere der Gleitrohre versetzt sind und in Verlängerung zueinander bei den anderen Gleitrohren angeordnet sind.
EP83400978A 1982-05-19 1983-05-16 Linearbeschleuniger von geladenen Teilchen mit Beschleunigungsrohren Expired EP0094889B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8208786 1982-05-19
FR8208786A FR2527413A1 (fr) 1982-05-19 1982-05-19 Accelerateur lineaire de particules chargees comportant des tubes de glissement

Publications (2)

Publication Number Publication Date
EP0094889A1 EP0094889A1 (de) 1983-11-23
EP0094889B1 true EP0094889B1 (de) 1986-08-20

Family

ID=9274204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400978A Expired EP0094889B1 (de) 1982-05-19 1983-05-16 Linearbeschleuniger von geladenen Teilchen mit Beschleunigungsrohren

Country Status (5)

Country Link
US (1) US4596946A (de)
EP (1) EP0094889B1 (de)
JP (1) JPS58212100A (de)
DE (1) DE3365429D1 (de)
FR (1) FR2527413A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667111C1 (en) * 1985-05-17 2001-04-10 Eaton Corp Cleveland Accelerator for ion implantation
US4700108A (en) * 1985-10-02 1987-10-13 Westinghouse Electric Corp. Cavity system for a particle beam accelerator
US4712042A (en) * 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
JPH01173600A (ja) * 1987-12-25 1989-07-10 Kobe Steel Ltd 荷電粒子加速器
US4906896A (en) * 1988-10-03 1990-03-06 Science Applications International Corporation Disk and washer linac and method of manufacture
EP0410460A3 (en) * 1989-07-28 1991-11-21 Shimadzu Corporation Strong-convergent type charged particle acceleration/deceleration tube
US5113141A (en) * 1990-07-18 1992-05-12 Science Applications International Corporation Four-fingers RFQ linac structure
FR2679727B1 (fr) * 1991-07-23 1997-01-03 Cgr Mev Accelerateur de protons a l'aide d'une onde progressive a couplage magnetique.
US5179350A (en) * 1991-08-07 1993-01-12 Accsys Technology, Inc. Drift tube linac with drift tube performance normalization and maximization
US5523659A (en) * 1994-08-18 1996-06-04 Swenson; Donald A. Radio frequency focused drift tube linear accelerator
CA2197428A1 (en) * 1994-08-19 1996-02-29 Amersham International Plc Superconducting cyclotron and target for use in the production of heavy isotopes
JP2742770B2 (ja) * 1995-04-12 1998-04-22 電気興業株式会社 高周波粒子加速装置
US5801488A (en) * 1996-02-29 1998-09-01 Nissin Electric Co., Ltd. Variable energy radio-frequency type charged particle accelerator
US6657515B2 (en) * 2001-06-18 2003-12-02 Energen, Llp Tuning mechanism for a superconducting radio frequency particle accelerator cavity
US6777893B1 (en) 2002-05-02 2004-08-17 Linac Systems, Llc Radio frequency focused interdigital linear accelerator
US7098615B2 (en) * 2002-05-02 2006-08-29 Linac Systems, Llc Radio frequency focused interdigital linear accelerator
DE10333454B4 (de) * 2003-07-22 2006-07-13 GSI Gesellschaft für Schwerionenforschung mbH Driftröhrenbeschleuniger zur Beschleunigung von Ionenpaketen
JP2007305496A (ja) * 2006-05-12 2007-11-22 Institute Of Physical & Chemical Research Rf線形加速器における空洞共振器へのドリフトチューブの支持構造
RU2472244C1 (ru) * 2011-06-10 2013-01-10 Учреждение Российской академии наук Институт химической кинетики и горения Сибирского отделения РАН (ИХКГ СО РАН) Ускоряющая структура с параллельной связью
WO2016135877A1 (ja) * 2015-02-25 2016-09-01 三菱電機株式会社 シンクロトロン用入射器システム、およびドリフトチューブ線形加速器の運転方法
DE102020119875A1 (de) * 2020-07-28 2022-02-03 Technische Universität Darmstadt, Körperschaft des öffentlichen Rechts Vorrichtung und Verfahren zum Führen geladener Teilchen
US11665810B2 (en) 2020-12-04 2023-05-30 Applied Materials, Inc. Modular linear accelerator assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2785335A (en) * 1946-05-15 1957-03-12 Robert H Dicke Multi-cavity klystron
US2770755A (en) * 1954-02-05 1956-11-13 Myron L Good Linear accelerator
LU37155A1 (de) * 1958-05-05
US3403346A (en) * 1965-10-20 1968-09-24 Atomic Energy Commission Usa High energy linear accelerator apparatus
FR2390069B1 (de) * 1977-05-05 1981-04-30 Commissariat Energie Atomique
US4211954A (en) * 1978-06-05 1980-07-08 The United States Of America As Represented By The Department Of Energy Alternating phase focused linacs
FR2442505A1 (fr) * 1978-11-23 1980-06-20 Commissariat Energie Atomique Groupeur-degroupeur de faisceau d'ions a intervalles dissymetriques et fonctionnant dans une large gamme de vitesse
DE3003258C2 (de) * 1980-01-30 1982-04-22 Gesellschaft für Schwerionenforschung mbH, 6100 Darmstadt Hochfrequenz-Resonator zur Beschleunigung schwerer Ionen

Also Published As

Publication number Publication date
EP0094889A1 (de) 1983-11-23
FR2527413B1 (de) 1984-12-21
JPS58212100A (ja) 1983-12-09
US4596946A (en) 1986-06-24
FR2527413A1 (fr) 1983-11-25
DE3365429D1 (en) 1986-09-25

Similar Documents

Publication Publication Date Title
EP0094889B1 (de) Linearbeschleuniger von geladenen Teilchen mit Beschleunigungsrohren
CH623182A5 (de)
EP0613607B1 (de) Kompaktes isochrones zyklotron
EP0013242A1 (de) Generator für elektromagnetische Wellen sehr hoher Frequenz
EP0872959B1 (de) Rauscharmer Frequenzteiler
FR2524224A1 (fr) Ensemble de dispositifs a ondes acoustiques
EP0381580B1 (de) Anordnung zur Hochspannungsversorgung einer Röntgenröhre
EP1053593B1 (de) Resonatorfilter mit akustischen oberflächenwellen
EP0526306B1 (de) Wanderwellen-Protonbeschleuniger mit magnetischer Kupplung
EP2410823A1 (de) Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen
EP0049198B1 (de) Elektronenbeschleuniger sowie Millimeter- und Submillimeterwellengenerator mit einem solchen Beschleuniger
EP0012054B1 (de) Ionen-Bündelungsvorrichtung für einen weiten Geschwindigkeitsbereich mit zwei ungleichen Beschleunigungsstrecken
EP0353153A1 (de) Für die Verstärkung elektromagnetischer Abstrahlung vorgesehene magnetische Oszillations- und Führungseinrichtung für geladene Teilchen
BE1003551A3 (fr) Cyclotrons focalises par secteurs.
EP0124396B1 (de) Elektronenstrahlinjektionsgerät für einen Mikrowellengenerator
EP0401066B1 (de) Helikoidaler Wiggler mit Permanentmagneten für Freie-Elektronen-Laser
EP0122186B1 (de) Mikrowellenerzeuger
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
EP0232651B1 (de) Elektronen-Zyklotron-Resonanz-Ionenquelle
EP0380397B1 (de) Gegentakt-Modulator für ein elektromagnetisches Mikrowellensignal hoher Leistung
EP0407558A1 (de) Mikrowellen-verstärker oder oszillator-anordnung.
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
FR2588714A1 (fr) Accelerateur d'ions a haute frequence
FR2587855A1 (fr) Generatrice electrique impulsionnelle a effet d'ecran
FR2849558A1 (fr) Oscillateur hyperfrequences a tres haute stabilite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19840405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860831

REF Corresponds to:

Ref document number: 3365429

Country of ref document: DE

Date of ref document: 19860925

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910423

Year of fee payment: 9

Ref country code: BE

Payment date: 19910423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910514

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910531

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920519

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920516

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522