EP0613607B1 - Kompaktes isochrones zyklotron - Google Patents

Kompaktes isochrones zyklotron Download PDF

Info

Publication number
EP0613607B1
EP0613607B1 EP92923442A EP92923442A EP0613607B1 EP 0613607 B1 EP0613607 B1 EP 0613607B1 EP 92923442 A EP92923442 A EP 92923442A EP 92923442 A EP92923442 A EP 92923442A EP 0613607 B1 EP0613607 B1 EP 0613607B1
Authority
EP
European Patent Office
Prior art keywords
cyclotron
hills
air gap
radius
sectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92923442A
Other languages
English (en)
French (fr)
Other versions
EP0613607A1 (de
Inventor
André LAISNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Publication of EP0613607A1 publication Critical patent/EP0613607A1/de
Application granted granted Critical
Publication of EP0613607B1 publication Critical patent/EP0613607B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons

Definitions

  • the present invention relates to a cyclotron of new design in which the particle beam is focused by sectors. More particularly, the present invention relates to an isochronous cyclotron comprising an electromagnet constituting the magnetic circuit which includes at least three pairs of sectors called “hills" where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is larger.
  • the present invention relates more particularly to a compact isochronous cyclotron, that is to say energized by at least one pair of main circular coils surrounding the poles of the electromagnet.
  • the present invention relates to both superconductive and non-superconductive cyclotrons. State of the art
  • Cyclotrons are particle accelerators used in particular for the production of radioactive isotopes.
  • Cyclotrons usually consist of three separate main assemblies consisting of the electromagnet, the high frequency resonator and the vacuum chamber with pumps.
  • the electromagnet guides the ions on a trajectory representing approximately a spiral of increasing radius during acceleration.
  • isochronous cyclotrons which are energized by at least one pair of main circular coils and so-called separate sector cyclotrons where the magnetic structure is divided into separate fully autonomous units.
  • the first generation isochronous cyclotrons are cyclotrons which use circular coils of the conventional type, that is to say non-superconductive.
  • the mean induction field obtained was limited to values of 1.4 Tesla.
  • cyclotrons called second-generation cyclotrons have appeared which use superconductor technologies.
  • the main coils are of the superconductive type and make it possible to obtain average inductions of between 1.7 and 5 Tesla, which makes it possible to deliver beams of particles having magnetic rigidities (Br) clearly greater than those delivered by first generation cyclotrons.
  • the extraction devices for known cyclotrons of the second generation have the particularity that they occupy almost an entire revolution of the machine, along which two to three extractors can be counted, followed by three to ten focusing elements.
  • the present invention aims to propose a new configuration of isochronous cyclotron, superconductive or not, which does not have the drawbacks of the prior art.
  • a first aim of the present invention aims to propose a compact isochronous cyclotron, superconductive or not, which tends to prevent the weakening of the vertical component of the induction when one approaches the radial end of the poles.
  • the present invention aims to propose an isochronous cyclotron where the field zone which cannot be used at the end of the poles is reduced to a few millimeters.
  • An additional aim of the present invention is to provide a cyclotron which has a simplified extraction device, in particular in the case of a superconductive cyclotron.
  • the present invention relates to a compact isochronous superconductive or non-superconductive cyclotron in which the particle beam is focused by sectors, comprising an electromagnet constituting the magnetic circuit which includes at least three pairs of sectors called “hills” where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is of larger dimension and which is energized by at least one pair of main circular coils surrounding the poles of the electromagnet , this cyclotron being characterized in that the air gap of the hills has an essentially elliptical evolutionary profile which tends towards complete closure at the radial end of the hills (radius of the hills) on the median plane and more particularly which completely closes on the median plane.
  • the expression “tends towards complete closure” is understood to mean the configurations where there remains a small residual opening (preferably less than the vertical dimension of the accelerated beam) and the configurations where the closure of the elliptical profile of the air gap is total at median plane.
  • This shunt preferably has a radial thickness of between 2 and 10 mm so as to increase the polar radius by this amount relative to the radius of the hills.
  • the closing of the air gap at the shunt should not be total; indeed, it suffices that the residual air gap remains small relative to the vertical dimension of the accelerated beams.
  • the cyclotron shown schematically in Figure 1 is a cyclotron intended for the acceleration of protons to an energy of 230 MeV.
  • the magnetic structure 1 of the cyclotron is composed of a certain number of elements 2, 3, 4 and 5, made of a ferromagnetic material and of coils 6 made of a preferably conductive or superconductive material.
  • the coils 6 are essentially circular in shape and are located in the annular space left between the sectors 3 or 3 ′ and the flow returns 5.
  • These coils can be made of a superconductive material but in this case it will be necessary to provide the necessary cryogenic devices.
  • the central duct is intended to receive, at least in part, the source of particles 7 to be accelerated which are injected into the center of the device by means known per se.
  • Figure 2 shows a sectional view of a cyclotron according to the present invention.
  • the essential characteristic of the cyclotron according to the present invention is constituted by the fact that the air gap 8 located between two hills 3 and 3 'has an essentially elliptical evolutionary profile which tends to close on the median plane 10 at the radial end of the hills. called radius of hills R c .
  • the closure is complete at the radius R c or at least the residual air gap is less than the vertical dimension of the beam.
  • a magnetic shunt 9 has been placed beyond the radius of the hills R c between each pair of hills 3 and 3 ′, which is in the form of a metal screen having a radial thickness of between 2 and 10 mm and preferably around 6.5 mm.
  • the polar radius B p and the hill radius R c no longer coincide, the polar radius of course lying at the radial end of the magnetic shunt.
  • At least one magnetic shunt 9 is provided with at least one opening 11 to allow the passage of the extracted beam. Preferably, it is arranged at an angle to the radius of the hills.
  • FIGS. 4 to 11 represent the vertical component B z of the induction as a function of the radius ⁇ in the case of a magnetization M ⁇ uniform.
  • Figures 4 and 5 show this variation in the case of a constant air gap b between two hills as is the case for a cyclotron according to the prior art.
  • FIGS. 6 and 7 show the variation of the magnetic induction B z as a function of the radius ⁇ in the case where the air gap is in the form of an elliptical shape completely closing at the polar radius R c , in the theoretical case of a uniform magnetization Mr.
  • the value of the vertical component Bz (r) of the magneto-static induction for the radius less than the radius R c essentially depends on the value of the half minor axis (b) of the ellipse generating the profile of the air gap formed between two hills.
  • the main advantage of this configuration of the air gap for a cyclotron according to the present invention lies in the fact that the extraction system for the particle beam will be greatly simplified compared to the extraction system for cyclotrons according to the state of prior art.
  • a cyclotron according to the present invention which is intended to accelerate protons to an energy higher than 150 Mev, can have an extraction system composed only of a single electrostatic deflector followed by two or three focusing magnetostatic channels.
  • these magnetostatic channels consist of soft iron bars of rectangular section of small dimension and are consequently of a very low production cost.
  • a cyclotron according to the present invention has the advantage of reducing the volume of iron necessary for producing the poles of the cylinder head compared to those of a cyclotron according to the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Claims (8)

  1. Supraleitendes oder nicht-supraleitendes, kompaktes, isochrones Zyklotron, bei dem das Teilchenbündel durch Sektoren fokussiert wird, wobei das Zyklotron einen Elektromagneten umfaßt, der zwei Pole aufweist und den magnetischen Kreis bildet, der mindestens drei als "Hügel" bezeichnete Sektorpaare aus Sektoren (3 und 3') mit kleinem Eisenspalt aufweist, die durch Zwischenräume in Form von als "Täler" bezeichneten Sektoren (4) mit größerem Eisenspalt getrennt sind, und das Zyklotron durch mindestens ein Spulenpaar aus kreisförmigen Hauptspulen (6), die die Pole des Elektromagneten umgeben, erregt wird; dadurch gekennzeichnet, daß der zwischen zwei Hügeln (3 und 3') gelegene Eisenspalt (8) ein im wesentlichen elliptisches Entwicklungsprofil aufweist, das an dem als Radius (Rc) der Hügel bezeichneten, radialen Ende der Hügel in der Mittelebene (10) zu der vollständigen Schließung hin tendiert.
  2. Zyklotron gemäß Anspruch 1, dadurch gekennzeichnet, daß sich der Eisenspalt (8) zwischen zwei Hügeln (3 und 3') in der Mittelebene (10) bei dem Radius (Rc) der Hügel vollständig schließt.
  3. Zyklotron gemäß Anspruch 1, dadurch gekennzeichnet, daß der Eisenspalt (8) zwischen zwei Hügeln (3 und 3') bei dem Radius (Rc) der Hügel eine leichte Öffnung aufweist, die vorzugsweise kleiner als die vertikale Abmessung des zu extrahierenden Teilchenbündels ist.
  4. Zyklotron gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, daß ein in Kontinuität mit den Polen des Elektromagneten verwirklichter, magnetischer Shunt (9) jenseits des radialen Endes (Rc) der Hügel zwischen jedem Hügelpaar aus Hügeln (3 und 3') angeordnet ist.
  5. Zyklotron gemäß Anspruch 4, dadurch gekennzeichnet, daß mindestens ein magnetischer Shunt (9) mit mindestens einer Öffnung (11) versehen ist, um den Durchlauf des extrahierten Teilchenbündels zu ermöglichen.
  6. Zyklotron gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, daß die magnetischen Shunts (9) die Form eines metallischen Schirms mit einer Dicke zwischen 2 und 10 mm, vorzugsweise ungefähr 6,5 mm haben.
  7. Zyklotron gemäß irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das mit dem Zyklotron verbundene Extraktionssystem aus einem einzigen elektrostatischen Deflektor besteht, auf den vorzugsweise zwei oder drei elektrostatische Fokussierungskanäle folgen.
  8. Verwendung eines Zyklotrons gemäß irgendeinem der vorhergehenden Ansprüche zur Beschleunigung von Protonen auf eine Energie von mehr als 150 MeV.
EP92923442A 1991-11-22 1992-11-20 Kompaktes isochrones zyklotron Expired - Lifetime EP0613607B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9101080A BE1005530A4 (fr) 1991-11-22 1991-11-22 Cyclotron isochrone
BE9101080 1991-11-22
PCT/BE1992/000050 WO1993010651A1 (fr) 1991-11-22 1992-11-20 Cyclotron isochrone compact

Publications (2)

Publication Number Publication Date
EP0613607A1 EP0613607A1 (de) 1994-09-07
EP0613607B1 true EP0613607B1 (de) 1996-03-20

Family

ID=3885817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923442A Expired - Lifetime EP0613607B1 (de) 1991-11-22 1992-11-20 Kompaktes isochrones zyklotron

Country Status (8)

Country Link
US (1) US5521469A (de)
EP (1) EP0613607B1 (de)
JP (1) JP3100634B2 (de)
BE (1) BE1005530A4 (de)
CA (1) CA2122583C (de)
DE (1) DE69209312T2 (de)
DK (1) DK0613607T3 (de)
WO (1) WO1993010651A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493603A (zh) * 2010-10-27 2014-01-01 离子束应用股份有限公司 同步回旋加速器

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process
BE1009669A3 (fr) * 1995-10-06 1997-06-03 Ion Beam Applic Sa Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode.
FR2766049B1 (fr) * 1997-07-09 1999-12-03 Pantechnik Cyclotron compact et son utilisation en proton-therapie
US6414331B1 (en) 1998-03-23 2002-07-02 Gerald A. Smith Container for transporting antiprotons and reaction trap
US5977554A (en) * 1998-03-23 1999-11-02 The Penn State Research Foundation Container for transporting antiprotons
US6576916B2 (en) 1998-03-23 2003-06-10 Penn State Research Foundation Container for transporting antiprotons and reaction trap
EP1069809A1 (de) * 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochrones Zyklotron und Verfahren zum Entfernen von geladenen Teilchen aus diesem Zyklotron
JP5046928B2 (ja) * 2004-07-21 2012-10-10 メヴィオン・メディカル・システムズ・インコーポレーテッド シンクロサイクロトロン及び粒子ビームを生成する方法
ES2730108T3 (es) * 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radioterapia de partículas cargadas
WO2007130164A2 (en) * 2006-01-19 2007-11-15 Massachusetts Institute Of Technology High-field superconducting synchrocyclotron
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) * 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8106570B2 (en) 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
US8153997B2 (en) 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
US8106370B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
US8374306B2 (en) 2009-06-26 2013-02-12 General Electric Company Isotope production system with separated shielding
US9693443B2 (en) 2010-04-19 2017-06-27 General Electric Company Self-shielding target for isotope production systems
JP5682903B2 (ja) * 2010-06-09 2015-03-11 学校法人早稲田大学 空芯型サイクロトロン
BE1019411A4 (fr) * 2010-07-09 2012-07-03 Ion Beam Applic Sa Moyen de modification du profil de champ magnetique dans un cyclotron.
EP2410823B1 (de) * 2010-07-22 2012-11-28 Ion Beam Applications Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen
US8525447B2 (en) * 2010-11-22 2013-09-03 Massachusetts Institute Of Technology Compact cold, weak-focusing, superconducting cyclotron
JP5665721B2 (ja) * 2011-02-28 2015-02-04 三菱電機株式会社 円形加速器および円形加速器の運転方法
US9336915B2 (en) 2011-06-17 2016-05-10 General Electric Company Target apparatus and isotope production systems and methods using the same
US9894746B2 (en) 2012-03-30 2018-02-13 General Electric Company Target windows for isotope systems
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP6121546B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器用の制御システム
TW201433331A (zh) 2012-09-28 2014-09-01 Mevion Medical Systems Inc 線圈位置調整
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
EP2901822B1 (de) 2012-09-28 2020-04-08 Mevion Medical Systems, Inc. Fokussierung eines partikelstrahls
EP3342462B1 (de) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Einstellung der energie eines partikelstrahls
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
JP2014102990A (ja) * 2012-11-20 2014-06-05 Sumitomo Heavy Ind Ltd サイクロトロン
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
KR101468080B1 (ko) * 2013-08-21 2014-12-05 성균관대학교산학협력단 사이클로트론용 전자석 시스템
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (de) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Supraleitender Magnetfeldstabilisator
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9961756B2 (en) 2014-10-07 2018-05-01 General Electric Company Isotope production target chamber including a cavity formed from a single sheet of metal foil
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
CN106132061B (zh) * 2016-07-29 2018-11-30 中国原子能科学研究院 适用于200-250MeV超导质子回旋加速器束流引出的磁通道
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (de) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Unter verwendung von linearmotoren gesteuerter, konfigurierbarer kollimator
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872574A (en) * 1956-04-12 1959-02-03 Edwin M Mcmillan Cloverleaf cyclotron
US3883761A (en) * 1972-12-08 1975-05-13 Cyclotron Corp Electrostatic extraction method and apparatus for cyclotrons
LU85895A1 (fr) * 1985-05-10 1986-12-05 Univ Louvain Cyclotron
GB8512804D0 (en) * 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
BE1003551A3 (fr) * 1989-11-21 1992-04-21 Ion Beam Applic Sa Cyclotrons focalises par secteurs.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493603A (zh) * 2010-10-27 2014-01-01 离子束应用股份有限公司 同步回旋加速器

Also Published As

Publication number Publication date
WO1993010651A1 (fr) 1993-05-27
JP3100634B2 (ja) 2000-10-16
BE1005530A4 (fr) 1993-09-28
DE69209312T2 (de) 1996-08-22
DE69209312D1 (de) 1996-04-25
CA2122583C (en) 2001-12-11
CA2122583A1 (en) 1993-05-23
DK0613607T3 (da) 1996-08-05
JPH07501171A (ja) 1995-02-02
EP0613607A1 (de) 1994-09-07
US5521469A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
EP0613607B1 (de) Kompaktes isochrones zyklotron
EP0853867B1 (de) Verfahren zum entfernen der geladenen teilchen aus einem isochronen zyklotron und dieses verfahren verwendende vorrichtung
EP1566082B1 (de) Zyklotron
WO1988009597A1 (fr) Accelerateur d'electrons a cavite coaxiale
EP0222786B1 (de) Zyklotron
EP2591643B1 (de) Zyklotron mit einer vorrichtung zur veränderung des magnetfeldprofils und zugehöriges verfahren
EP1527658A1 (de) Zyklotron mit neuen teilchenstrahl-ablenkungsmitteln
FR2671931A1 (fr) Dispositif de repartition d'une energie micro-onde pour l'excitation d'un plasma.
CH623182A5 (de)
EP1095390B1 (de) Mehrstrahlelektronenröhre mit magnetischem strahlenbahnkorrekturfeld
EP0248689A1 (de) Mehrstrahlklystron
BE1019557A3 (fr) Synchrocyclotron.
FR2544580A1 (fr) Cyclotron a systeme de focalisation-defocalisation
FR2949601A1 (fr) Dispositif d'aimant permanent cylindrique a champ magnetique induit d'orientation predeterminee et procede de fabrication
BE1003551A3 (fr) Cyclotrons focalises par secteurs.
WO2014068477A1 (fr) Cyclotron
EP2311061B1 (de) Elektronenzyklotronresonanzionengenerator
FR2544128A1 (fr) Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
EP0232651B1 (de) Elektronen-Zyklotron-Resonanz-Ionenquelle
EP2633741B1 (de) Frequenzmoduliertes zyklotron
WO2023170116A1 (fr) Cyclotron à bi-secteurs séparés
EP0122186B1 (de) Mikrowellenerzeuger
WO1999003314A1 (fr) Cyclotron compact et son utilisation en proton therapie
FR2516720A1 (fr) Amplificateur gyromagnetique
EP0550322A1 (de) Verfahren zur Herstellung eines Magnetkopfes für Schichten mit hohen koercitiven Feldern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JEAN S. ROBERT ING.-CONSEIL

REF Corresponds to:

Ref document number: 69209312

Country of ref document: DE

Date of ref document: 19960425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960401

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20101021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20101025

Year of fee payment: 19

Ref country code: DE

Payment date: 20101025

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101106

Year of fee payment: 19

Ref country code: GB

Payment date: 20101026

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111027

Year of fee payment: 20

Ref country code: FR

Payment date: 20111205

Year of fee payment: 20

Ref country code: CH

Payment date: 20111026

Year of fee payment: 20

Ref country code: BE

Payment date: 20111027

Year of fee payment: 20

Ref country code: SE

Payment date: 20111026

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69209312

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69209312

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20121120

BE20 Be: patent expired

Owner name: S.A. *ION BEAM APPLICATIONS

Effective date: 20121120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20121119

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111120