EP0613607B1 - Kompaktes isochrones zyklotron - Google Patents
Kompaktes isochrones zyklotron Download PDFInfo
- Publication number
- EP0613607B1 EP0613607B1 EP92923442A EP92923442A EP0613607B1 EP 0613607 B1 EP0613607 B1 EP 0613607B1 EP 92923442 A EP92923442 A EP 92923442A EP 92923442 A EP92923442 A EP 92923442A EP 0613607 B1 EP0613607 B1 EP 0613607B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cyclotron
- hills
- air gap
- radius
- sectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 230000006698 induction Effects 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 230000007423 decrease Effects 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
Definitions
- the present invention relates to a cyclotron of new design in which the particle beam is focused by sectors. More particularly, the present invention relates to an isochronous cyclotron comprising an electromagnet constituting the magnetic circuit which includes at least three pairs of sectors called “hills" where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is larger.
- the present invention relates more particularly to a compact isochronous cyclotron, that is to say energized by at least one pair of main circular coils surrounding the poles of the electromagnet.
- the present invention relates to both superconductive and non-superconductive cyclotrons. State of the art
- Cyclotrons are particle accelerators used in particular for the production of radioactive isotopes.
- Cyclotrons usually consist of three separate main assemblies consisting of the electromagnet, the high frequency resonator and the vacuum chamber with pumps.
- the electromagnet guides the ions on a trajectory representing approximately a spiral of increasing radius during acceleration.
- isochronous cyclotrons which are energized by at least one pair of main circular coils and so-called separate sector cyclotrons where the magnetic structure is divided into separate fully autonomous units.
- the first generation isochronous cyclotrons are cyclotrons which use circular coils of the conventional type, that is to say non-superconductive.
- the mean induction field obtained was limited to values of 1.4 Tesla.
- cyclotrons called second-generation cyclotrons have appeared which use superconductor technologies.
- the main coils are of the superconductive type and make it possible to obtain average inductions of between 1.7 and 5 Tesla, which makes it possible to deliver beams of particles having magnetic rigidities (Br) clearly greater than those delivered by first generation cyclotrons.
- the extraction devices for known cyclotrons of the second generation have the particularity that they occupy almost an entire revolution of the machine, along which two to three extractors can be counted, followed by three to ten focusing elements.
- the present invention aims to propose a new configuration of isochronous cyclotron, superconductive or not, which does not have the drawbacks of the prior art.
- a first aim of the present invention aims to propose a compact isochronous cyclotron, superconductive or not, which tends to prevent the weakening of the vertical component of the induction when one approaches the radial end of the poles.
- the present invention aims to propose an isochronous cyclotron where the field zone which cannot be used at the end of the poles is reduced to a few millimeters.
- An additional aim of the present invention is to provide a cyclotron which has a simplified extraction device, in particular in the case of a superconductive cyclotron.
- the present invention relates to a compact isochronous superconductive or non-superconductive cyclotron in which the particle beam is focused by sectors, comprising an electromagnet constituting the magnetic circuit which includes at least three pairs of sectors called “hills” where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is of larger dimension and which is energized by at least one pair of main circular coils surrounding the poles of the electromagnet , this cyclotron being characterized in that the air gap of the hills has an essentially elliptical evolutionary profile which tends towards complete closure at the radial end of the hills (radius of the hills) on the median plane and more particularly which completely closes on the median plane.
- the expression “tends towards complete closure” is understood to mean the configurations where there remains a small residual opening (preferably less than the vertical dimension of the accelerated beam) and the configurations where the closure of the elliptical profile of the air gap is total at median plane.
- This shunt preferably has a radial thickness of between 2 and 10 mm so as to increase the polar radius by this amount relative to the radius of the hills.
- the closing of the air gap at the shunt should not be total; indeed, it suffices that the residual air gap remains small relative to the vertical dimension of the accelerated beams.
- the cyclotron shown schematically in Figure 1 is a cyclotron intended for the acceleration of protons to an energy of 230 MeV.
- the magnetic structure 1 of the cyclotron is composed of a certain number of elements 2, 3, 4 and 5, made of a ferromagnetic material and of coils 6 made of a preferably conductive or superconductive material.
- the coils 6 are essentially circular in shape and are located in the annular space left between the sectors 3 or 3 ′ and the flow returns 5.
- These coils can be made of a superconductive material but in this case it will be necessary to provide the necessary cryogenic devices.
- the central duct is intended to receive, at least in part, the source of particles 7 to be accelerated which are injected into the center of the device by means known per se.
- Figure 2 shows a sectional view of a cyclotron according to the present invention.
- the essential characteristic of the cyclotron according to the present invention is constituted by the fact that the air gap 8 located between two hills 3 and 3 'has an essentially elliptical evolutionary profile which tends to close on the median plane 10 at the radial end of the hills. called radius of hills R c .
- the closure is complete at the radius R c or at least the residual air gap is less than the vertical dimension of the beam.
- a magnetic shunt 9 has been placed beyond the radius of the hills R c between each pair of hills 3 and 3 ′, which is in the form of a metal screen having a radial thickness of between 2 and 10 mm and preferably around 6.5 mm.
- the polar radius B p and the hill radius R c no longer coincide, the polar radius of course lying at the radial end of the magnetic shunt.
- At least one magnetic shunt 9 is provided with at least one opening 11 to allow the passage of the extracted beam. Preferably, it is arranged at an angle to the radius of the hills.
- FIGS. 4 to 11 represent the vertical component B z of the induction as a function of the radius ⁇ in the case of a magnetization M ⁇ uniform.
- Figures 4 and 5 show this variation in the case of a constant air gap b between two hills as is the case for a cyclotron according to the prior art.
- FIGS. 6 and 7 show the variation of the magnetic induction B z as a function of the radius ⁇ in the case where the air gap is in the form of an elliptical shape completely closing at the polar radius R c , in the theoretical case of a uniform magnetization Mr.
- the value of the vertical component Bz (r) of the magneto-static induction for the radius less than the radius R c essentially depends on the value of the half minor axis (b) of the ellipse generating the profile of the air gap formed between two hills.
- the main advantage of this configuration of the air gap for a cyclotron according to the present invention lies in the fact that the extraction system for the particle beam will be greatly simplified compared to the extraction system for cyclotrons according to the state of prior art.
- a cyclotron according to the present invention which is intended to accelerate protons to an energy higher than 150 Mev, can have an extraction system composed only of a single electrostatic deflector followed by two or three focusing magnetostatic channels.
- these magnetostatic channels consist of soft iron bars of rectangular section of small dimension and are consequently of a very low production cost.
- a cyclotron according to the present invention has the advantage of reducing the volume of iron necessary for producing the poles of the cylinder head compared to those of a cyclotron according to the prior art.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
Claims (8)
- Supraleitendes oder nicht-supraleitendes, kompaktes, isochrones Zyklotron, bei dem das Teilchenbündel durch Sektoren fokussiert wird, wobei das Zyklotron einen Elektromagneten umfaßt, der zwei Pole aufweist und den magnetischen Kreis bildet, der mindestens drei als "Hügel" bezeichnete Sektorpaare aus Sektoren (3 und 3') mit kleinem Eisenspalt aufweist, die durch Zwischenräume in Form von als "Täler" bezeichneten Sektoren (4) mit größerem Eisenspalt getrennt sind, und das Zyklotron durch mindestens ein Spulenpaar aus kreisförmigen Hauptspulen (6), die die Pole des Elektromagneten umgeben, erregt wird; dadurch gekennzeichnet, daß der zwischen zwei Hügeln (3 und 3') gelegene Eisenspalt (8) ein im wesentlichen elliptisches Entwicklungsprofil aufweist, das an dem als Radius (Rc) der Hügel bezeichneten, radialen Ende der Hügel in der Mittelebene (10) zu der vollständigen Schließung hin tendiert.
- Zyklotron gemäß Anspruch 1, dadurch gekennzeichnet, daß sich der Eisenspalt (8) zwischen zwei Hügeln (3 und 3') in der Mittelebene (10) bei dem Radius (Rc) der Hügel vollständig schließt.
- Zyklotron gemäß Anspruch 1, dadurch gekennzeichnet, daß der Eisenspalt (8) zwischen zwei Hügeln (3 und 3') bei dem Radius (Rc) der Hügel eine leichte Öffnung aufweist, die vorzugsweise kleiner als die vertikale Abmessung des zu extrahierenden Teilchenbündels ist.
- Zyklotron gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, daß ein in Kontinuität mit den Polen des Elektromagneten verwirklichter, magnetischer Shunt (9) jenseits des radialen Endes (Rc) der Hügel zwischen jedem Hügelpaar aus Hügeln (3 und 3') angeordnet ist.
- Zyklotron gemäß Anspruch 4, dadurch gekennzeichnet, daß mindestens ein magnetischer Shunt (9) mit mindestens einer Öffnung (11) versehen ist, um den Durchlauf des extrahierten Teilchenbündels zu ermöglichen.
- Zyklotron gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, daß die magnetischen Shunts (9) die Form eines metallischen Schirms mit einer Dicke zwischen 2 und 10 mm, vorzugsweise ungefähr 6,5 mm haben.
- Zyklotron gemäß irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das mit dem Zyklotron verbundene Extraktionssystem aus einem einzigen elektrostatischen Deflektor besteht, auf den vorzugsweise zwei oder drei elektrostatische Fokussierungskanäle folgen.
- Verwendung eines Zyklotrons gemäß irgendeinem der vorhergehenden Ansprüche zur Beschleunigung von Protonen auf eine Energie von mehr als 150 MeV.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9101080A BE1005530A4 (fr) | 1991-11-22 | 1991-11-22 | Cyclotron isochrone |
BE9101080 | 1991-11-22 | ||
PCT/BE1992/000050 WO1993010651A1 (fr) | 1991-11-22 | 1992-11-20 | Cyclotron isochrone compact |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0613607A1 EP0613607A1 (de) | 1994-09-07 |
EP0613607B1 true EP0613607B1 (de) | 1996-03-20 |
Family
ID=3885817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92923442A Expired - Lifetime EP0613607B1 (de) | 1991-11-22 | 1992-11-20 | Kompaktes isochrones zyklotron |
Country Status (8)
Country | Link |
---|---|
US (1) | US5521469A (de) |
EP (1) | EP0613607B1 (de) |
JP (1) | JP3100634B2 (de) |
BE (1) | BE1005530A4 (de) |
CA (1) | CA2122583C (de) |
DE (1) | DE69209312T2 (de) |
DK (1) | DK0613607T3 (de) |
WO (1) | WO1993010651A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103493603A (zh) * | 2010-10-27 | 2014-01-01 | 离子束应用股份有限公司 | 同步回旋加速器 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463291A (en) * | 1993-12-23 | 1995-10-31 | Carroll; Lewis | Cyclotron and associated magnet coil and coil fabricating process |
BE1009669A3 (fr) * | 1995-10-06 | 1997-06-03 | Ion Beam Applic Sa | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode. |
FR2766049B1 (fr) * | 1997-07-09 | 1999-12-03 | Pantechnik | Cyclotron compact et son utilisation en proton-therapie |
US6414331B1 (en) | 1998-03-23 | 2002-07-02 | Gerald A. Smith | Container for transporting antiprotons and reaction trap |
US5977554A (en) * | 1998-03-23 | 1999-11-02 | The Penn State Research Foundation | Container for transporting antiprotons |
US6576916B2 (en) | 1998-03-23 | 2003-06-10 | Penn State Research Foundation | Container for transporting antiprotons and reaction trap |
EP1069809A1 (de) * | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Isochrones Zyklotron und Verfahren zum Entfernen von geladenen Teilchen aus diesem Zyklotron |
JP5046928B2 (ja) * | 2004-07-21 | 2012-10-10 | メヴィオン・メディカル・システムズ・インコーポレーテッド | シンクロサイクロトロン及び粒子ビームを生成する方法 |
ES2730108T3 (es) * | 2005-11-18 | 2019-11-08 | Mevion Medical Systems Inc | Radioterapia de partículas cargadas |
WO2007130164A2 (en) * | 2006-01-19 | 2007-11-15 | Massachusetts Institute Of Technology | High-field superconducting synchrocyclotron |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8581523B2 (en) * | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8106570B2 (en) | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having reduced magnetic stray fields |
US8153997B2 (en) | 2009-05-05 | 2012-04-10 | General Electric Company | Isotope production system and cyclotron |
US8106370B2 (en) * | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity |
US8374306B2 (en) | 2009-06-26 | 2013-02-12 | General Electric Company | Isotope production system with separated shielding |
US9693443B2 (en) | 2010-04-19 | 2017-06-27 | General Electric Company | Self-shielding target for isotope production systems |
JP5682903B2 (ja) * | 2010-06-09 | 2015-03-11 | 学校法人早稲田大学 | 空芯型サイクロトロン |
BE1019411A4 (fr) * | 2010-07-09 | 2012-07-03 | Ion Beam Applic Sa | Moyen de modification du profil de champ magnetique dans un cyclotron. |
EP2410823B1 (de) * | 2010-07-22 | 2012-11-28 | Ion Beam Applications | Zyklotron, das in der Lage ist, mindestens zwei Teilchentypen zu beschleunigen |
US8525447B2 (en) * | 2010-11-22 | 2013-09-03 | Massachusetts Institute Of Technology | Compact cold, weak-focusing, superconducting cyclotron |
JP5665721B2 (ja) * | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
US9336915B2 (en) | 2011-06-17 | 2016-05-10 | General Electric Company | Target apparatus and isotope production systems and methods using the same |
US9894746B2 (en) | 2012-03-30 | 2018-02-13 | General Electric Company | Target windows for isotope systems |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
JP6121546B2 (ja) | 2012-09-28 | 2017-04-26 | メビオン・メディカル・システムズ・インコーポレーテッド | 粒子加速器用の制御システム |
TW201433331A (zh) | 2012-09-28 | 2014-09-01 | Mevion Medical Systems Inc | 線圈位置調整 |
US9723705B2 (en) | 2012-09-28 | 2017-08-01 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
EP2901822B1 (de) | 2012-09-28 | 2020-04-08 | Mevion Medical Systems, Inc. | Fokussierung eines partikelstrahls |
EP3342462B1 (de) | 2012-09-28 | 2019-05-01 | Mevion Medical Systems, Inc. | Einstellung der energie eines partikelstrahls |
WO2014052734A1 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Controlling particle therapy |
JP2014102990A (ja) * | 2012-11-20 | 2014-06-05 | Sumitomo Heavy Ind Ltd | サイクロトロン |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
KR101468080B1 (ko) * | 2013-08-21 | 2014-12-05 | 성균관대학교산학협력단 | 사이클로트론용 전자석 시스템 |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
DE102014003536A1 (de) * | 2014-03-13 | 2015-09-17 | Forschungszentrum Jülich GmbH Fachbereich Patente | Supraleitender Magnetfeldstabilisator |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US9961756B2 (en) | 2014-10-07 | 2018-05-01 | General Electric Company | Isotope production target chamber including a cavity formed from a single sheet of metal foil |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
CN106132061B (zh) * | 2016-07-29 | 2018-11-30 | 中国原子能科学研究院 | 适用于200-250MeV超导质子回旋加速器束流引出的磁通道 |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
EP3645111A1 (de) | 2017-06-30 | 2020-05-06 | Mevion Medical Systems, Inc. | Unter verwendung von linearmotoren gesteuerter, konfigurierbarer kollimator |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2872574A (en) * | 1956-04-12 | 1959-02-03 | Edwin M Mcmillan | Cloverleaf cyclotron |
US3883761A (en) * | 1972-12-08 | 1975-05-13 | Cyclotron Corp | Electrostatic extraction method and apparatus for cyclotrons |
LU85895A1 (fr) * | 1985-05-10 | 1986-12-05 | Univ Louvain | Cyclotron |
GB8512804D0 (en) * | 1985-05-21 | 1985-06-26 | Oxford Instr Ltd | Cyclotrons |
BE1003551A3 (fr) * | 1989-11-21 | 1992-04-21 | Ion Beam Applic Sa | Cyclotrons focalises par secteurs. |
-
1991
- 1991-11-22 BE BE9101080A patent/BE1005530A4/fr not_active IP Right Cessation
-
1992
- 1992-11-20 DK DK92923442.5T patent/DK0613607T3/da active
- 1992-11-20 WO PCT/BE1992/000050 patent/WO1993010651A1/fr active IP Right Grant
- 1992-11-20 DE DE69209312T patent/DE69209312T2/de not_active Expired - Lifetime
- 1992-11-20 US US08/240,786 patent/US5521469A/en not_active Expired - Lifetime
- 1992-11-20 CA CA002122583A patent/CA2122583C/en not_active Expired - Lifetime
- 1992-11-20 EP EP92923442A patent/EP0613607B1/de not_active Expired - Lifetime
- 1992-11-20 JP JP05508837A patent/JP3100634B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103493603A (zh) * | 2010-10-27 | 2014-01-01 | 离子束应用股份有限公司 | 同步回旋加速器 |
Also Published As
Publication number | Publication date |
---|---|
WO1993010651A1 (fr) | 1993-05-27 |
JP3100634B2 (ja) | 2000-10-16 |
BE1005530A4 (fr) | 1993-09-28 |
DE69209312T2 (de) | 1996-08-22 |
DE69209312D1 (de) | 1996-04-25 |
CA2122583C (en) | 2001-12-11 |
CA2122583A1 (en) | 1993-05-23 |
DK0613607T3 (da) | 1996-08-05 |
JPH07501171A (ja) | 1995-02-02 |
EP0613607A1 (de) | 1994-09-07 |
US5521469A (en) | 1996-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0613607B1 (de) | Kompaktes isochrones zyklotron | |
EP0853867B1 (de) | Verfahren zum entfernen der geladenen teilchen aus einem isochronen zyklotron und dieses verfahren verwendende vorrichtung | |
EP1566082B1 (de) | Zyklotron | |
WO1988009597A1 (fr) | Accelerateur d'electrons a cavite coaxiale | |
EP0222786B1 (de) | Zyklotron | |
EP2591643B1 (de) | Zyklotron mit einer vorrichtung zur veränderung des magnetfeldprofils und zugehöriges verfahren | |
EP1527658A1 (de) | Zyklotron mit neuen teilchenstrahl-ablenkungsmitteln | |
FR2671931A1 (fr) | Dispositif de repartition d'une energie micro-onde pour l'excitation d'un plasma. | |
CH623182A5 (de) | ||
EP1095390B1 (de) | Mehrstrahlelektronenröhre mit magnetischem strahlenbahnkorrekturfeld | |
EP0248689A1 (de) | Mehrstrahlklystron | |
BE1019557A3 (fr) | Synchrocyclotron. | |
FR2544580A1 (fr) | Cyclotron a systeme de focalisation-defocalisation | |
FR2949601A1 (fr) | Dispositif d'aimant permanent cylindrique a champ magnetique induit d'orientation predeterminee et procede de fabrication | |
BE1003551A3 (fr) | Cyclotrons focalises par secteurs. | |
WO2014068477A1 (fr) | Cyclotron | |
EP2311061B1 (de) | Elektronenzyklotronresonanzionengenerator | |
FR2544128A1 (fr) | Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences | |
EP0232651B1 (de) | Elektronen-Zyklotron-Resonanz-Ionenquelle | |
EP2633741B1 (de) | Frequenzmoduliertes zyklotron | |
WO2023170116A1 (fr) | Cyclotron à bi-secteurs séparés | |
EP0122186B1 (de) | Mikrowellenerzeuger | |
WO1999003314A1 (fr) | Cyclotron compact et son utilisation en proton therapie | |
FR2516720A1 (fr) | Amplificateur gyromagnetique | |
EP0550322A1 (de) | Verfahren zur Herstellung eines Magnetkopfes für Schichten mit hohen koercitiven Feldern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE DK FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19950622 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE DK FR GB IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: JEAN S. ROBERT ING.-CONSEIL |
|
REF | Corresponds to: |
Ref document number: 69209312 Country of ref document: DE Date of ref document: 19960425 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960401 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20101021 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20101025 Year of fee payment: 19 Ref country code: DE Payment date: 20101025 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20101106 Year of fee payment: 19 Ref country code: GB Payment date: 20101026 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20111027 Year of fee payment: 20 Ref country code: FR Payment date: 20111205 Year of fee payment: 20 Ref country code: CH Payment date: 20111026 Year of fee payment: 20 Ref country code: BE Payment date: 20111027 Year of fee payment: 20 Ref country code: SE Payment date: 20111026 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69209312 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69209312 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20121120 |
|
BE20 | Be: patent expired |
Owner name: S.A. *ION BEAM APPLICATIONS Effective date: 20121120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20121119 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20121119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111120 |