WO2023170116A1 - Cyclotron à bi-secteurs séparés - Google Patents

Cyclotron à bi-secteurs séparés Download PDF

Info

Publication number
WO2023170116A1
WO2023170116A1 PCT/EP2023/055840 EP2023055840W WO2023170116A1 WO 2023170116 A1 WO2023170116 A1 WO 2023170116A1 EP 2023055840 W EP2023055840 W EP 2023055840W WO 2023170116 A1 WO2023170116 A1 WO 2023170116A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclotron
sectors
coils
median plane
main
Prior art date
Application number
PCT/EP2023/055840
Other languages
English (en)
Inventor
Pierre Mandrillon
Matthieu Conjat
Original Assignee
Aima Developpement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aima Developpement filed Critical Aima Developpement
Publication of WO2023170116A1 publication Critical patent/WO2023170116A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy
    • H05H2277/116Isotope production
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/13Nuclear physics, e.g. spallation sources, accelerator driven systems, search or generation of exotic elements

Definitions

  • the present invention relates to particle accelerators, and more particularly cyclotrons.
  • the latter constitute an interesting solution for accelerating heavy particles, protons, molecular hydrogen H2+ and other ions, to high energies for various medical, industrial applications or in the field of nuclear physics research.
  • the invention relates more particularly to cyclotrons with separate non-spiral sectors and with valleys between the sectors in which the direction of the magnetic field of the sectors is locally reversed.
  • the magnetic structures of the electromagnets consist of a magnetic circuit comprising horizontal yokes and yoke returns joining the horizontal yokes.
  • Excitation coils are arranged around two pole pieces fixed to the horizontal yokes. The assembly made up of the magnetic circuit and the excitation coils is symmetrical with respect to a horizontal plane called the median plane around which the particles are accelerated and guided.
  • a cyclotron comprising a single excitation coil.
  • the excitation coil described has a particular shape allowing it to invert the magnetic field between the pole pieces of the sectors.
  • Such a configuration makes it possible to improve the focusing of the particle beams as well as their extraction.
  • manufacturing such a coil can be complicated.
  • the invention aims to meet all or part of these needs and relates to a cyclotron with separate sectors, comprising:
  • main sectors each comprising a ferromagnetic yoke and an excitation coil associated with each main sector mounted on a return of the yoke, each main sector comprising a slot extending radially from a distance predefined from the center of the cyclotron, said slot separating the main sector into two secondary sectors,
  • the field reversal coils make it possible to generate a magnetic field with an orientation opposite to that generated by the excitation coils.
  • the particles are only subject to this reversal of the magnetic field between the sectors from a certain trajectory radius.
  • the main sectors each have a plane of symmetry passing through the center of the cyclotron. Consequently, the main sectors have a non-spiral shape, which makes it more compact and provides more space for the accelerating cavities and the field inversion coils. Furthermore, thanks to this field inversion, the centers of curvature of the trajectories between the sectors are outside the cyclotron, the trajectory of the extracted particles is therefore much shorter and the extraction of the accelerated beam is facilitated. Optionally, no part necessary for the deflection of the extracted beam is required to cross the median plane.
  • the invention can thus make it possible, particularly in the case of extraction with separate turns, to avoid the use of a septum and thus limit the problems of beam loss by collision on the septum and therefore of activation that this implies.
  • each main sector is divided into two secondary sectors by a slot while keeping a single return yoke, as illustrated in Figure 3. This improves the vertical focusing of the beams.
  • This bi-sector configuration makes it possible to double the periodic magnetic structure of the poles of the main sectors. This makes it possible to avoid resonances of horizontal oscillations, called betatronics, limiting the maximum energy of the cyclotron and thus allowing acceleration to higher energies.
  • the slots define secondary valleys which can be used for several types of beam diagnostics, essential for the acceleration of intense beams.
  • each slot passes through an axis of symmetry of the corresponding main sector.
  • Field reversal coils can be coreless for proton acceleration or with iron core for molecular hydrogen H2+ acceleration.
  • At least one of the accelerating cavities may preferably have a truncation at the junction of its radially outer and rear edges.
  • the truncation may have a general bevel shape.
  • the truncation can extend radially further than the radius at which the magnetic field reverses. Truncation can thus provide useful space for extracting the accelerated beam.
  • the truncation makes it possible to install an extraction channel, in particular an extraction channel producing a magnetic field gradient necessary for focusing.
  • the rear edge of the cavity is defined relative to the direction of the trajectory of the particles, this rear edge corresponding to the edge of the exit face of the cavity by the particles, as opposed to the front edge which corresponds to the edge of the face of entry of particles into the cavity.
  • the radially outer edge corresponds to the edge of the cavity furthest from the axis of the cyclotron as opposed to the radially inner edge which corresponds to the edge of the cavity closest to the axis of the cyclotron.
  • each excitation coil has a shape substantially identical to that of the corresponding yoke return.
  • each excitation coil is generally kidney-shaped.
  • Each excitation coil can comprise either two parts arranged on either side of the median plane for the acceleration of protons, or a single-part coil arranged in the median plane for the acceleration of molecular hydrogen H2+.
  • the excitation coil is preferably single.
  • each of the parts of at least one of the excitation coils can deviate from the median plane so as to define an interior exit window on the radially interior side of the coil and an exterior exit window on the radially exterior side of the coil coil, these output windows allowing the extraction of the accelerated beam.
  • Each exit window preferably has the general shape of a policeman's hat.
  • the interior and exterior exit windows each have a concave portion towards the median plane which is extended on each side by a portion of inverse concavity.
  • At least one of the yokes may include an outlet passage passing through the outlet windows, for the acceleration of the protons.
  • the cyclotron can be with multiple injection, in particular axial.
  • the cyclotron may include for this purpose a multiple injection line, in particular at least two parallel injection lines, as described in application WO2020169846, incorporated here by reference. Several beams are thus accelerated simultaneously, which makes it possible to obtain a higher average intensity.
  • the cyclotron according to the invention can be at fixed frequency, in particular of the isochronous cyclotron type.
  • the cyclotron can be non-superconducting in the case of proton acceleration.
  • the energy of the output beam is preferably greater than or equal to 10 MeV, preferably in the range 30 to 100 MeV.
  • the intensity of the output beam is greater than or equal to 3 mA.
  • the cyclotron according to the invention can make it possible to have a cyclotron capable of accelerating and extracting, in particular without beam losses, at least twice as much intensity as current isochronous cyclotrons, in particular for applications in the fields of the production of isotopes or high neutron fluxes.
  • the particles accelerated using the cyclotron according to the invention can be used in numerous applications, for example the manufacture of radioactive isotopes by directing the beam towards a target, or even to power a sub-critical nuclear reactor controlled by an accelerator. , called “ADS”, with a cyclotron according to the invention adapted for higher energies, for example several hundred MeV.
  • the invention also relates to the use of the system according to the invention for the production of medical radioisotopes and/or the control of a small subcritical reactor for the production of nuclear energy.
  • Figure 1 represents, schematically and partially in perspective, an example of a cyclotron according to the invention
  • Figure 2 is a view similar to Figure 1 in which the upper part of one of the main sectors is hidden
  • Figure 3 is a horizontal section made in the median plane of the cyclotron according to the invention.
  • Figure 4 represents the last round of the acceleration of the protons in the midplane of the cyclotron and the extraction of the beam through the yoke
  • Figure 5 is another perspective view of the cyclotron of Figure 1,
  • Figure 6 represents a perspective view illustrating the secondary sectors of a main sector of the cyclotron of Figure 1
  • Figure 7 represents the last round of the acceleration of molecular hydrogen H2+ ions and their extraction by peeling in a stripper thus delivering 2 H+ protons exiting into the valley.
  • Figure 1 illustrates an example of cyclotron 1, with three separate main sectors according to the invention.
  • the cyclotron 1 has main sectors 10. These sectors 10 are distributed around the axis center of the cyclotron.
  • the sectors 10 each define an air gap, under vacuum, in which the beam of accelerated particles propagates, the cyclotron generally having a symmetrical structure with respect to a median plane PM.
  • the sectors 10 comprise a ferromagnetic yoke 13 and excitation coils 30 carried by the return of the yokes 15.
  • the excitation coils 30 generate a magnetic field substantially perpendicular to the median plane. This magnetic field makes it possible to guide the accelerated particles along a trajectory around the axis of the cyclotron.
  • each excitation coil has a shape substantially identical to that of the cylinder head return 15 carrying it and is in the illustrated example kidney-shaped.
  • each main sector 10 is divided into two secondary sectors 11 by a slot 12 passing through the axis of symmetry Y of the main sector.
  • the slot 12 extends radially from a predefined radius r and thus defines a secondary valley 22 between the secondary sectors 11.
  • a structure with 3 main sectors forms a “pseudo-6 sectors” structure.
  • This “bi-sector” principle is not limited to 3 main sectors.
  • each excitation coil 30 comprises two parts brought together axially and arranged on either side of the median plane PM.
  • the cyclotron 1 includes accelerating cavities 40 which produce a radio frequency (RF) electric field making it possible to accelerate the particles injected into the cyclotron.
  • RF radio frequency
  • the injection of particles to be accelerated into the cyclotron can be carried out in various ways. It is preferable to carry out a multi-injection, with injection points distributed angularly around the X axis of the cyclotron. Under these conditions, the cyclotron can simultaneously accelerate several beams injected into these locations.
  • an injection line 50 is arranged along the central axis X of the cyclotron.
  • This line 50 comprises a High Voltage platform for the ion sources 51, a first guiding and focusing system 53, a resonant cavity called a grouper 55, a second guiding and/or focusing system 57, a second resonant grouping cavity (not shown) and deflection systems (not shown) making it possible to inject the charged particles into the desired areas of the accelerating cavities.
  • the cyclotron 1 also includes pairs of field inversion coils 60 arranged in the main valleys 20. These field inversion coils 60 are distinct from the excitation coils 30, that is to say the coils 60 do not do not have a common portion with the excitation coils 30.
  • the coils 60 of each pair are arranged respectively above and below the median plane.
  • Field reversal coils are preferably coreless for proton acceleration, as shown.
  • Such an arrangement of the field inversion coils makes it possible to generate in the main valleys a magnetic field with an orientation opposite to that of the sectors. From a certain radius, the magnetic field at the level of the median plane in the valleys main inverts and becomes negative, reversing the direction of curvature of the trajectories, as can be seen in Figure 4.
  • the cyclotron 1 is suitable for so-called separate-turn extraction, by ensuring that two consecutive trajectories are radially offset sufficiently to allow the beam to deviate on its last turn.
  • the accelerating cavity 40 presents at the junction of its radially outer edges 42 and rear edges 43 a truncation 45 in the shape of a bevel.
  • the truncation 45 extends further than the radius at which the magnetic field reverses in the valley 20, as illustrated in Figure 3. This allows the installation of an accelerated beam gradient extraction channel, as can be seen in Figure 4.
  • the two parts 32 and 34 of at least one excitation coil deviate from the median plane to define an interior exit window 35 on the side radially interior of the coil and an exterior outlet window 37 on the radially exterior side of the coil. These exit windows allow the extraction of the accelerated beam through the yoke.
  • Each output window thus has a general shape like a policeman's hat for the acceleration of the protons.
  • the interior exit windows 35 and 37 each include a portion concave towards the median plane which is extended on each side by a portion of inverse concavity.
  • the yoke 13 carrying the excitation coil 30 having the two outlet windows comprises an extraction passage passing through the outlet windows.
  • the excitation coils surround the return yokes can have a shape adapted to these yokes.
  • the excitation coil 30 is unique.
  • the extraction of the two H+ protons is carried out by peeling using a stripper 46 located at the entrance to the valleys 20 as illustrated in Figure 7.
  • the excitation and/or field inversion coils may be superconducting.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Cyclotron à secteurs séparés, comportant: Une pluralité de secteurs principaux, divisés en bi-secteurs, comportant chacun une culasse ferromagnétique et une bobine d'excitation associée montée sur un retour de la culasse, entre les secteurs principaux, dans les vallées, des cavités accélératrices et des paires de bobines d'inversion de champ, distinctes des bobines d'excitation et disposées de part et d'autre du plan médian du cyclotron.

Description

Description
Titre : Cyclotron à bi-secteurs séparés
Domaine technique
La présente invention concerne les accélérateurs de particules, et plus particulièrement les cyclotrons. Ces derniers constituent une solution intéressante pour accélérer des particules lourdes, protons, Hydrogène moléculaire H2+ et autres ions, à de hautes énergies pour diverses applications médicales, industrielles ou dans le domaine de la recherche en physique nucléaire.
L’invention concerne plus particulièrement les cyclotrons à secteurs séparés non spiralés et à vallées entre les secteurs dans lesquelles le sens du champ magnétique des secteurs est localement inversé.
Dans le type classique de cyclotrons à secteurs séparés, les structures magnétiques des électroaimants se composent d’un circuit magnétique comprenant des culasses horizontales et des retours de culasse joignant les culasses horizontales. Des bobines d’excitation sont disposées autour de deux pièces polaires fixées aux culasses horizontales. L’ensemble constitué par le circuit magnétique et les bobines d’excitation est symétrique par rapport à un plan horizontal dénommé plan médian autour duquel sont accélérées et guidées les particules.
Deux exemples de structures magnétiques à secteurs séparés permettant l’accélération de faisceaux intenses sont décrits dans les publications suivantes: C.Baumgarten, Current limits of PSI’ s High Power Cyclotrons: Theory and Practice, September 2021 (cas classique de cyclotron à secteurs séparés spiralés) et P. Mandrillon and M. Conjat “ Single Stage Cyclotron for an ADS”; Proceedings of the Int. Conf, on Cyclotrons and their Applications (Zurich-2016), pp. 387-393 (cas de cyclotron à secteurs séparés non spiralés et à vallées à champ magnétique inversé)
Dans cette dernière publication, il est proposé un cyclotron comportant une bobine d'excitation unique. La bobine d'excitation décrite présente une forme particulière lui permettant d'inverser le champ magnétique entre les pièces polaires des secteurs. Une telle configuration permet d'améliorer la focalisation des faisceaux de particules ainsi que leur extraction. Toutefois, la fabrication d'une telle bobine peut s'avérer compliquée. Il existe un besoin pour accroitre encore les performances des cyclotrons afin de permettre notamment la réalisation de cyclotrons, en particulier isochrones, capables d’accélérer des particules à des énergies comprises entre 10 et environ 100 MeV et avec une intensité relativement importante si cela est recherché, et qui soit par ailleurs de fabrication relativement simple, de fonctionnement fiable et compatible avec une fabrication sous encombrement relativement réduit.
Afin d’extraire des faisceaux de forte intensité sans pertes, il demeure aussi un besoin impératif de simplifier l’extraction de faisceaux accélérés.
Exposé de l’invention
L’invention vise à répondre à tout ou partie de ces besoins et a pour objet un cyclotron à secteurs séparés, comportant :
- une pluralité de secteurs dits « secteurs principaux » comportant chacun une culasse ferromagnétique et une bobine d’excitation associée à chaque secteur principal montée sur un retour de la culasse, chaque secteur principal comportant une fente s’étendant radialement à partir d’une distance prédéfinie du centre du cyclotron, ladite fente séparant le secteur principal en deux secteurs secondaires,
- entre les secteurs principaux, des cavités accélératrices et des paires de bobines d’inversion de champ, distinctes des bobines d’excitation et disposées de part et d’autre du plan médian du cyclotron.
Les bobines d’inversion de champ permettent de générer un champ magnétique d’orientation inverse à celui généré par les bobines d’excitation. De préférence, les particules ne sont soumises à cette inversion du champ magnétique entre les secteurs qu’à partir d’un certain rayon de trajectoire.
Cette inversion du champ magnétique au niveau du plan médian entre les secteurs présente plusieurs avantages.
Tout d’abord, elle permet d’éviter la spiralisation des secteurs et d’accroître les propriétés de focalisation verticale permettant l’accélération des particules jusqu’à des énergies élevées. De préférence, les secteurs principaux présentent chacun un plan de symétrie passant par le centre du cyclotron. Par conséquent, les secteurs principaux présentent une forme non spiralée, ce qui permet de gagner en compacité et de disposer de davantage de place pour les cavités accélératrices et les bobines d’inversion de champ. En outre, grâce à cette inversion de champ, les centres de courbure des trajectoires entre les secteurs sont à l’extérieur du cyclotron, la trajectoire des particules extraites est donc beaucoup plus courte et l’extraction du faisceau accéléré s’en trouve facilitée. Eventuellement, aucune pièce nécessaire à la déviation du faisceau extrait n’est tenue de traverser le plan médian.
L’invention peut ainsi permettre, notamment dans le cas d’une extraction à tours séparés, d’éviter l’emploi d’un septum et de limiter ainsi les problèmes de pertes de faisceau par collision sur le septum et donc d’activation que cela entraine.
D’autre part, disposer de bobines d’inversion de champ distinctes des bobines d’excitation permet une simplification du cyclotron.
Dans la présente invention, chaque secteur principal est divisé en deux secteurs secondaires par une fente en gardant une seule culasse de retour, comme illustré à la figure 3 . Cela permet d’améliorer la focalisation verticale des faisceaux.
Cette configuration en bi- secteurs permet de doubler la structure magnétique périodique des pôles des secteurs principaux. Cela permet d’éviter des résonances des oscillations horizontales, dites bétatroniques, limitant l’énergie maximale du cyclotron et autorisant ainsi l’accélération à de plus hautes énergies.
Par ailleurs, les fentes définissent des vallées secondaires qui sont utilisables pour plusieurs types de diagnostics de faisceau, indispensables pour l’accélération de faisceaux intenses.
De préférence, chaque fente passe par un axe de symétrie du secteur principal correspondant.
Les bobines d’inversion de champ peuvent être sans noyau pour l’accélération des protons ou avec noyau en fer pour l’accélération des Hydrogène moléculaire H2+.
L’une au moins des cavités accélératrices peut présenter de préférence à la jonction de ses bords radialement extérieur et arrière une troncature. La troncature peut présenter une forme générale de biseau. La troncature peut s’étendre radialement plus loin que le rayon auquel le champ magnétique s’inverse. La troncature peut ainsi permettre de disposer d’espace utile pour l’extraction du faisceau accéléré. En particulier, la troncature permet d’installer un canal d’extraction, notamment un canal d’extraction produisant un gradient de champ magnétique nécessaire à la focalisation. Le bord arrière de la cavité est défini par rapport au sens de la trajectoire des particules, ce bord arrière correspondant au bord de la face de sortie de la cavité par les particules, par opposition au bord avant qui correspond au bord de la face d’entrée des particules dans la cavité.
Le bord radialement extérieur correspond au bord de la cavité le plus éloigné de l’axe du cyclotron par opposition au bord radialement interne qui correspond au bord de la cavité le plus proche de l’axe du cyclotron.
De préférence, chaque bobine d’excitation présente une forme sensiblement homothétique à celle du retour de culasse correspondant. Par exemple chaque bobine d’excitation est généralement réniforme.
Chaque bobine d’excitation peut comporter soit deux parties disposées de part et d’autre du plan médian pour l’accélération des protons, ou une bobine en une seule partie disposée dans le plan médian pour l’accélération des Hydrogène moléculaire H2+.
Dans le cas de l’accélération des Hydrogène moléculaire H2+, la bobine d’excitation est de préférence unique.
Dans le cas de l’accélération des protons :
• chacune des parties de l’une au moins des bobines d’excitation peut s’écarter du plan médian de manière à définir une fenêtre de sortie intérieure du côté radialement intérieur de la bobine et une fenêtre de sortie extérieure du côté radialement extérieur de la bobine, ces fenêtres de sortie permettant l’extraction du faisceau accéléré.
• Chaque fenêtre de sortie présente de préférence une forme générale en chapeau de gendarme.
• Par «forme en chapeau de gendarme », on entend une forme présentant une portion d’une certaine concavité qui se prolonge de chaque côté par une portion de concavité inverse.
• A titre d’exemple, les fenêtres de sortie intérieure et extérieure comportent chacune une portion concave vers le plan médian qui se prolonge de chaque côté par une portion de concavité inverse.
• L’une au moins des culasses peut comporter un passage de sortie traversant les fenêtres de sortie, pour l’accélération des protons . Le cyclotron peut être à injection multiple, notamment axiale. Le cyclotron peut comporter à cet effet une ligne d’injection multiple, notamment au moins deux lignes d'injection parallèles, telle que décrite dans la demande WO2020169846, incorporée ici par référence. On accélère ainsi simultanément plusieurs faisceaux, ce qui permet d’obtenir une intensité moyenne plus élevée.
Le cyclotron selon l’invention peut être à fréquence fixe, notamment du type cyclotron isochrone.
Le cyclotron peut être non supraconducteur dans le cas de l’accélération des protons.
L’énergie du faisceau de sortie est de préférence supérieure ou égale à 10 MeV, au mieux dans la gamme 30 à 100 MeV.
L’intensité du faisceau de sortie est-supérieure ou égale à 3 mA.
Le cyclotron selon l’invention peut permettre de disposer d’un cyclotron capable d’accélérer et d’extraire, notamment sans pertes de faisceau au moins deux fois plus d’intensité que les cyclotrons isochrones actuels, notamment pour des applications dans les domaines de la production d’isotopes ou de hauts flux de neutrons.
Les particules accélérées à l’aide du cyclotron selon l’invention peuvent être utilisées dans de nombreuses applications, par exemple la fabrication d’isotopes radioactifs en dirigeant le faisceau vers une cible, ou encore pour alimenter un réacteur nucléaire sous- critique piloté par accélérateur, dit « ADS », avec un cyclotron selon l’invention adapté pour des énergies plus élevées, par exemple plusieurs centaines de MeV.
L’invention a encore pour objet une utilisation du système selon l’invention pour la production de radioisotopes médicaux et/ou le pilotage d’un petit réacteur sous-critique pour la production d’énergie nucléaire.
Brève description des dessins
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemple non limitatifs de mise en œuvre de celle-ci, et à l’examen du dessin annexé, sur lequel :
La figure 1 représente, de façon schématique et partielle en perspective, un exemple de cyclotron selon l’invention, La figure 2 est une vue similaire à la Figure 1 dans laquelle la partie supérieure d’un des secteurs principaux est masquée,
La figure 3 est une coupe horizontale réalisée dans le plan médian du cyclotron selon l’invention,
La figure 4 représente le dernier tour de l’accélération des protons dans le plan médian du cyclotron et l’extraction du faisceau à travers la culasse,
La figure 5 est une autre vue en perspective du cyclotron de la figure 1,
La figure 6 représente une vue en perspective illustrant les secteurs secondaires d’un secteur principal du cyclotron de la figure 1, et
La figure 7 représente le dernier tour de l’accélération des ions Hydrogène moléculaire H2+ et leur extraction par épluchage dans un stripper délivrant ainsi 2 protons H+ sortant dans la vallée.
Description détaillée
On a illustré à la figure 1 un exemple de cyclotron 1, à trois secteurs principaux séparés selon l’invention.
Comme illustré, le cyclotron 1 comporte des secteurs principaux 10. Ces secteurs 10 sont répartis autour de l’axe X du cyclotron et séparés par des régions appelées « vallées principales » 20. Les secteurs principaux présentent chacun un axe de symétrie Y passant par le centre du cyclotron.
Les secteurs 10 définissent chacun un entrefer, sous vide, dans lequel se propage le faisceau de particules accélérées, le cyclotron présentant globalement une structure symétrique par rapport à un plan médian PM.
Les secteurs 10 comportent une culasse ferromagnétique 13 et des bobines d’excitation 30 portées par le retour des culasses 15. Les bobines d’excitation 30 génèrent un champ magnétique sensiblement perpendiculaire au plan médian. Ce champ magnétique permet de guider les particules accélérées selon une trajectoire autour de l’axe du cyclotron.
Dans l’exemple illustré, chaque bobine d’excitation présente une forme sensiblement homothétique de celle du retour de culasse 15 la portant et est dans l’exemple illustré réniforme.
Comme illustré à la figure 2, chaque secteur principal 10 est divisé en deux secteurs secondaires 11 par une fente 12 passant par l’axe de symétrie Y du secteur principal. La fente 12 s’étend radialement à partir d’un rayon r prédéfini et définit ainsi une vallée secondaire 22 entre les secteurs secondaires 11.
Ainsi, dans l’exemple illustré, une structure à 3 secteurs principaux forme une structure « pseudo-6 secteurs ». Ce principe de « bi-secteur » ne se limite pas à 3 secteurs principaux.
Dans cet exemple, chaque bobine d’excitation 30 comporte deux parties rapprochées axialement et disposées de part et d’autre du plan médian PM.
Le cyclotron 1 comporte des cavités accélératrices 40 qui produisent un champ électrique radiofréquence (RF) permettant d’accélérer les particules injectées dans le cyclotron.
L’injection des particules à accélérer dans le cyclotron peut s’effectuer de diverses façons. Il est préférable de réaliser une multi-injection, avec des points d’injection répartis angulairement autour de l’axe X du cyclotron. Dans ces conditions, le cyclotron peut accélérer simultanément plusieurs faisceaux injectés en ces emplacements.
Dans l’exemple illustré aux figures 1 et 2, une ligne d’injection 50 est disposée le long de l’axe central X du cyclotron. Cette ligne 50 comporte une plateforme Haute Tension pour les sources d’ions 51 un premier système de guidage et de focalisation 53, une cavité résonnante dite groupeur 55, un deuxième système de guidage et/ou de focalisation 57, une deuxième cavité résonante de groupement (non représentée) et des systèmes de déviation (non représentés) permettant d’injecter les particules chargées dans les zones voulues des cavités accélératrices.
Le cyclotron 1 comporte également des paires de bobines d’inversion de champ 60 disposées dans les vallées principales 20. Ces bobines d’inversion de champ 60 sont distinctes des bobines d’excitation 30, c’est-à-dire les bobines 60 ne disposent pas de portion commune avec les bobines d’excitation 30.
Comme cela est visible à la figure 1, les bobines 60 de chaque paire sont disposées respectivement au-dessus et en dessous du plan médian. Les bobines d’inversion de champ sont de préférence sans noyau pour l’accélération des protons, comme illustré.
Un tel agencement des bobines d’inversion de champ permet de générer dans les vallées principales un champ magnétique d’orientation inverse de celui des secteurs. A partir d’un certain rayon, le champ magnétique au niveau du plan médian dans les vallées principales s’inverse et devient négatif, inversant le sens de courbure des trajectoires, comme cela est visible à la figure 4.
L’introduction de champ inverse dans les vallées 20 permet d’accroître les propriétés de focalisation verticale permettant l’accélération du faisceau de particules jusqu’à des énergies élevées.
Le cyclotron 1 convient à une extraction dite à tours séparés, en faisant en sorte que deux trajectoires consécutives soient décalées radialement suffisamment pour permettre la déviation du faisceau sur son dernier tour.
Comme illustré à la figure 4, en présence du champ inverse dans les vallées 20, les centres de courbure des trajectoires des particules dans les vallées sont à l’extérieur du cyclotron quand le rayon des trajectoires augmente. L’extraction de faisceau accéléré est par conséquent facilitée. Cette extraction peut être obtenue sans la nécessité d’introduire des pièces dans le plan médian entre le faisceau extrait et la dernière orbite interne pour créer la courbure précitée.
Dans la zone d’extraction, la cavité accélératrice 40 présente à Injonction de ses bords radialement extérieur 42 et arrière 43 une troncature 45 en forme de biseau. La troncature 45 s’étend plus loin que le rayon auquel le champ magnétique s’inverse dans la vallée 20, comme illustré à la figure 3. Cela permet d’installer un canal d’extraction à gradient du faisceau accéléré, comme cela est visible à la figure 4.
Dans cette zone d’extraction, comme cela est visible en particulier aux figures 5 et 6, les deux parties 32 et 34 d’au moins une bobine d’excitation s’écartent du plan médian pour définir une fenêtre de sortie 35 intérieure du côté radialement intérieur de la bobine et une fenêtre de sortie 37 extérieure du côté radialement extérieur de la bobine. Ces fenêtres de sortie permettent l’extraction du faisceau accéléré à travers la culasse.
Chaque fenêtre de sortie présente ainsi une forme générale en chapeau de gendarme pour l’accélération des protons.
En particulier, les fenêtres de sortie intérieure 35 et 37 comportent chacune une portion concave vers le plan médian qui se prolonge de chaque côté par une portion de concavité inverse.
La culasse 13 portant la bobine d’excitation 30 présentant les deux fenêtres de sortie comporte un passage d’extraction traversant les fenêtres de sortie.
L’invention n’est pas limitée à l’exemple qui vient d’être décrit. Le nombre des secteurs principaux peut être différent de celui représenté sur les figures.
Les bobines d’excitation entourent les culasses de retour peuvent avoir une forme adaptée à ces culasses. Dans le cas de l’accélération des Hydrogène moléculaire H2+, la bobine d’excitation 30 est unique. L’extraction des deux protons H+ s’effectue par épluchage à l’aide d’un stripper 46 situé en entrée des vallées 20 comme illustré à la Figure 7.
Les bobines d’excitation et/ou d’inversion de champ peuvent être supraconductrices .

Claims

Revendications
1. Cyclotron (1) à secteurs séparés, comportant
Une pluralité de secteurs (10), dits « secteurs principaux », comportant chacun une culasse ferromagnétique (13) et une bobine d’excitation (30) associée montée sur un retour de la culasse (15), chaque secteur principal (10) comportant une fente (12) s’étendant radialement à partir d’une distance prédéfinie du centre du cyclotron, ladite fente séparant le secteur principal en deux secteurs secondaires (11), entre les secteurs principaux (15), des cavités accélératrices (40) et des paires de bobines d’inversion de champ (60), distinctes des bobines d’excitation (30) et disposées de part et d’autre du plan médian (PM) du cyclotron (1).
2. Cyclotron selon la revendication 1, l’une au moins des cavités accélératrices (30) présentant à la jonction de ses bords radialement extérieur (42) et arrière (43) une troncature (45).
3. Cyclotron selon l’une des revendications précédentes, chaque bobine d’excitation (30) comportant au moins deux parties (32 ; 34) disposées de part et d’autre du plan médian.
4. Cyclotron selon la revendication précédente, les deux parties de l’une au moins des bobines d’excitation (30) s’écartant du plan médian pour définir une fenêtre de sortie intérieure (35) du côté radialement intérieur de la bobine et une fenêtre de sortie extérieure (37) du côté radialement extérieur de la bobine, ces fenêtres de sortie permettant l’extraction d’un faisceau accéléré.
5. Cyclotron selon la revendication précédente, chaque fenêtre de sortie (35 ; 37) présentant une forme générale présentant une portion d’une certaine concavité qui se prolonge de chaque côté par une portion de concavité inverse.
6. Cyclotron selon l’une quelconque des revendications 4 ou 5, l’une au moins des culasses comportant un passage de sortie (19) traversant les fenêtres de sortie (35 ; 37), pour l’accélération des protons.
. Cyclotron selon l’une quelconque des revendications précédentes, chaque bobine d’excitation (30) ayant une forme générale réniforme, adaptée au profil des culasses.
8. Cyclotron selon l’une quelconque des revendications précédentes, comportant une bobine unique d’excitation (30) pour l’accélération des ions
Hydrogène moléculaires H2+.
9. Cyclotron selon l’une quelconque des revendications précédentes, étant à injection multiple, le cyclotron comportant au moins deux lignes d'injection parallèles.
10. Utilisation du système selon la revendication précédente pour la production de radioisotopes médicaux et/ou le pilotage d’un petit réacteur sous-critique pour la production d’énergie nucléaire.
PCT/EP2023/055840 2022-03-09 2023-03-08 Cyclotron à bi-secteurs séparés WO2023170116A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2202057A FR3133513B1 (fr) 2022-03-09 2022-03-09 Cyclotron à bi-secteurs séparés
FRFR2202057 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023170116A1 true WO2023170116A1 (fr) 2023-09-14

Family

ID=82319993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/055840 WO2023170116A1 (fr) 2022-03-09 2023-03-08 Cyclotron à bi-secteurs séparés

Country Status (2)

Country Link
FR (1) FR3133513B1 (fr)
WO (1) WO2023170116A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2544580A1 (fr) * 1983-04-12 1984-10-19 Cgr Mev Cyclotron a systeme de focalisation-defocalisation
JPS63307699A (ja) * 1987-06-09 1988-12-15 Iwao Miura 加速空胴共振器
EP3244708A1 (fr) * 2016-05-13 2017-11-15 Ion Beam Applications S.A. Conception de secteurs de collines périphérique pour cyclotron
WO2020169846A1 (fr) 2019-02-22 2020-08-27 Aima Developpement Ligne d'injection multiple pour cavité accélératrice de particules
US20210315091A1 (en) * 2020-04-02 2021-10-07 Varian Medical Systems Particle Therapy Gmbh. Isochronous cyclotrons employing magnetic field concentrating or guiding sectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2544580A1 (fr) * 1983-04-12 1984-10-19 Cgr Mev Cyclotron a systeme de focalisation-defocalisation
JPS63307699A (ja) * 1987-06-09 1988-12-15 Iwao Miura 加速空胴共振器
EP3244708A1 (fr) * 2016-05-13 2017-11-15 Ion Beam Applications S.A. Conception de secteurs de collines périphérique pour cyclotron
WO2020169846A1 (fr) 2019-02-22 2020-08-27 Aima Developpement Ligne d'injection multiple pour cavité accélératrice de particules
US20210315091A1 (en) * 2020-04-02 2021-10-07 Varian Medical Systems Particle Therapy Gmbh. Isochronous cyclotrons employing magnetic field concentrating or guiding sectors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C.BAUMGARTEN, CURRENT LIMITS OF PSI'S HIGH POWER CYCLOTRONS: THEORY AND PRACTICE, September 2021 (2021-09-01)
MANDRILLON P ET AL: "SINGLE STAGE CYCLOTRON FOR AN ADS THE PIONEERS OF HIGH POWER CYCLOTRONS", PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON CYCLOTRONS AND THEIR APPLICATIONS, 1 January 2017 (2017-01-01), pages 387 - 393, XP055972575 *
P. MANDRILLONM. CONJAT: "Single Stage Cyclotron for an ADS", PROCEEDINGS OF THE INT. CONF. ON CYCLOTRONS AND THEIR APPLICATIONS, 2016, pages 387 - 393
YANG JIANJUN ET AL: "Magnet Design of an 800 MeV High Power Proton Cyclotron", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE, USA, vol. 26, no. 4, 1 June 2016 (2016-06-01), pages 1 - 4, XP011605380, ISSN: 1051-8223, [retrieved on 20160405], DOI: 10.1109/TASC.2016.2540005 *
YANO Y ET AL: "BEAM INJECTION AND EXTRACTION SYSTEM FOR THE IPCR SSC", PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CYCLOTRONS AND THEIR APPLICATIONS, 1 October 2013 (2013-10-01), pages 743 - 745, XP055972548 *

Also Published As

Publication number Publication date
FR3133513B1 (fr) 2024-03-22
FR3133513A1 (fr) 2023-09-15

Similar Documents

Publication Publication Date Title
BE1005530A4 (fr) Cyclotron isochrone
BE1009669A3 (fr) Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode.
EP0359774B1 (fr) Accelerateur d'electrons a cavite coaxiale
EP1496727B1 (fr) Accélérateur à plasma à dérive fermée d'électrons
EP0222786B1 (fr) Cyclotron
WO1995000758A1 (fr) Moteur a plasma de longueur reduite a derive fermee d'electrons
WO1994002739A1 (fr) Moteur a plasma a derive fermee d'electrons
EP0127523B1 (fr) Source d'ions à résonance cyclotronique des électrons
EP2591643A1 (fr) Cyclotron comprenant un moyen de modification du profil de champ magnétique et procédé associé
EP1130949B1 (fr) Dispositif électromagnetique pour la production d'atomes froids
BE1019557A3 (fr) Synchrocyclotron.
WO2023170116A1 (fr) Cyclotron à bi-secteurs séparés
CN110430659A (zh) 一种矩形波导型船形谐振腔
WO2014068477A1 (fr) Cyclotron
FR2650448A1 (fr) Laser a electrons libres a accelerateur d'electrons perfectionne
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP4032373B1 (fr) Ligne d'injection multiple pour cavité accélératrice de particules et procédé correspondant
EP2633741B1 (fr) Synchrocyclotron
BE1031179A1 (fr) Cyclotron
Bieth et al. Studies and Design of a Dual Beam Axial Injection System Using H− Cusp Source and ECR Ion Source for He for IBA C70 Cyclotron
FR3055507A1 (fr) Synchrocyclotron supraconducteur
WO2016116440A1 (fr) Accelerateur de particules a eplucheur integre
EP3479384A1 (fr) Installation compacte de production de radio-isotopes
Blanc-Lapeerre et al. Design of an annular storage device at Orsay for electrons and positrons having a maximum energy of 450 MeV
FR2820880A1 (fr) Source d'ions multicharges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23708831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023708831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023708831

Country of ref document: EP

Effective date: 20241009