EP0232651B1 - Elektronen-Zyklotron-Resonanz-Ionenquelle - Google Patents

Elektronen-Zyklotron-Resonanz-Ionenquelle Download PDF

Info

Publication number
EP0232651B1
EP0232651B1 EP19860402874 EP86402874A EP0232651B1 EP 0232651 B1 EP0232651 B1 EP 0232651B1 EP 19860402874 EP19860402874 EP 19860402874 EP 86402874 A EP86402874 A EP 86402874A EP 0232651 B1 EP0232651 B1 EP 0232651B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
bars
magnets
magnetic
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19860402874
Other languages
English (en)
French (fr)
Other versions
EP0232651A1 (de
Inventor
Bernard Jacquot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0232651A1 publication Critical patent/EP0232651A1/de
Application granted granted Critical
Publication of EP0232651B1 publication Critical patent/EP0232651B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the present invention relates to an ion source with electronic cyclotron resonance indicated in the first part of claim 1, in particular allowing the production of multicharged positive ions. It finds many applications, depending on the different values of the kinetic energy of the extracted ions, in the field of ion implantation, microgravure, and more particularly in the equipment of particle accelerators, used both in the scientific than medical.
  • the ions are obtained by ionizing, in a closed enclosure of the microwave cavity type, a gaseous medium, consisting of one or more gases or metallic vapors, by means of a plasma of electrons strongly accelerated by electronic cyclotron resonance.
  • This resonance is obtained thanks to the combined action of a high frequency electromagnetic field, injected at a first end of the enclosure, and a magnetic field with axial symmetry prevailing in this same enclosure.
  • This axial magnetic field which has an increasing amplitude from the center of the enclosure to the ends of the latter, has in particular an amplitude B r which satisfies the condition of electronic cyclotron resonance Br-f.2n m / e, in which e represents the charge of electrons, m its mass, f the frequency of the electromagnetic field.
  • This axial magnetic field is generally created by solenoids or coils surrounding the enclosure.
  • the ions thus created are extracted from the enclosure by a second end.
  • the quantity of ions that can be produced results from the competition between two processes, on the one hand the formation of ions by electronic impact on neutral atoms constituting the gas to be ionized, and on the other hand the destruction of these same ions by recombination due to a collision of these ions with a neutral atom; this neutral atom can come from the gas not yet ionized or else be produced on the walls of the enclosure by the impact of an ion on said walls.
  • the problem in this type of source is therefore to minimize the destruction of the ions formed by avoiding any collision of these with a neutral atom.
  • the local radial fields are in particular generated by several magnetized bars, arranged symmetrically around the enclosure and each consisting of several elementary magnets, placed side by side.
  • This magnetic configuration has local magnetic disturbances (or edge effects) at these two ends generating parasitic axial magnetic components which add to or subtract, depending on the polarity of the magnets, from the main magnetic field with axial symmetry.
  • magnets of ternary compositions in particular magnets based on iron, praseodymium and boron.
  • These rare earth magnets have the advantage of having a high magnetic rigidity, which, in addition to their high magnetic performance, allows the superposition of two opposing fields without risk of demagnetization of these magnets.
  • a high magnetic rigidity allows in particular the making of composite multipole structures where the axial and radial fields are composed algebraically.
  • these resonant caps are always harmful on the side of the injection of the high frequency since they take energy in the electromagnetic wave which should normally be used for the ionization of the gaseous medium contained in the enclosure.
  • the subject of the present invention is precisely an ion source with electronic cyclotron resonance which makes it possible to remedy the various drawbacks above.
  • gas intended to form a plasma is meant a gaseous medium containing one or more gases or vapors of one or more solid materials.
  • gaseous medium containing one or more gases or vapors of one or more solid materials.
  • the stacked layers forming the magnetic structure can be fictitious or real.
  • the magnetic structure comprises a first and a second alternating series of magnetic bars, disjoint, distributed around the axis and formed of elementary magnets oriented radially, the poles of the bars of the first series oriented inwards of the enclosure having the first polarity and the poles of the bars of the second series oriented towards the inside of the enclosure having the second polarity, the terminal magnet of each bar of the first series, located opposite the first end of the enclosure, having magnetic performance lower than that of the other magnets of the corresponding bar.
  • the inventor has found that the annoying magnetic disturbances at the ends of the bars or edge effects only appear for the elementary magnets having the same polarity as that associated with the main magnetic field with axial symmetry.
  • the terminal magnets located on this side create parasitic axial magnetic fields which are cut off from the main driven axial magnetic field. nant a resulting magnetic field (axial + radial) whose amplitude is lower the stronger the radial magnetic field.
  • the value B r corresponding to the resonance can be easily achieved locally with all the drawbacks already mentioned.
  • the parasitic axial magnetic fields created by the terminal magnets having their south pole oriented towards the interior of the enclosure are added to the main axial magnetic field generating a resulting magnetic field whose amplitude is much greater than Br.
  • the polarity, associated with the main axial magnetic field located on the side of the electromagnetic injection is a south polarity
  • the lower magnetic performances of the terminal magnet of each bar of the first series can be obtained by producing these terminal magnets in a material different from that constituting the other magnets of the corresponding bar.
  • the material of the terminal magnet of each bar of the first series may have a binary composition and that of the other magnets of the bar corresponding to a ternary composition.
  • the material of the terminal magnet can be based on cobalt and samarium and that of the other magnets based on iron, praseodymium and boron.
  • Another solution for reducing the magnetic performance of the terminal magnet of each bar of the first series lies in the reduction of the length of the terminal magnet compared to that of the other magnets of the corresponding bar.
  • These terminal magnets of shorter length can be made of the same material as that of the other magnets of the corresponding bar or else of another material with lower magnetic performance, as described above.
  • Another solution for reducing the magnetic performance of the terminal magnets of the bars of the first series lies in the use of a wedge of non-magnetic material attached to each terminal magnet, this wedge, disposed towards the inside of the enclosure, has a thickness such that the length of the terminal magnet assembly is equal the length of the other magnets of the corresponding bar.
  • This solution is particularly combined with the use of terminal magnets of the bars of the first series made of a material different from those of the other magnets and in particular of weaker magnetic performance.
  • the magnetic structure comprises first and second alternating series of magnetized and disjointed main bars, distributed around the axis and formed of elementary magnets oriented radially, the poles of the bars of the first series oriented towards the inside the enclosure having the first polarity and the poles of the bars of the second series oriented towards the inside of the enclosure, having the second polarity, as well as intermediate magnetic bars, inserted between the main bars and of length less than that of these main bars, the intermediate bars, set back relative to the main bars at the first end of the enclosure, having their poles in contact with the lateral faces of each main bar identical to the pole of the latter oriented towards the inside the enclosure.
  • this terminal layer of the magnetic structure devoid of intermediate magnets, does not generate a sufficiently weak local magnetic field, it is possible to play on the magnetic performances of the terminal magnets of the main magnetic bars of the first series, located next to the high frequency injection device.
  • the magnetic modifications of these terminal magnets can be carried out by using a different material for these magnets, by reducing their length and / or by attaching thereto a shim made of non-magnetic material, as described above.
  • FIG. 1 there is shown schematically, in longitudinal section, an ion source with electronic cyclotron resonance according to the invention.
  • This source comprises a vacuum containment enclosure 2 constituting a resonant cavity which can be excited by a microwave electromagnetic field, continuous or pulsed, having a frequency between 1 and 100 GHz.
  • This enclosure 2 has a longitudinal axis 4, passing through the center 7 of the enclosure, which in the case of a cylindrical enclosure represents the axis of revolution, and two ends 3 and 5 oriented along this axis.
  • the electromagnetic wave produced by a source 6 such as a Klystron, is introduced into the resonant cavity, at the end 3 of the enclosure, by means of a waveguide 8 of circular or rectangular section.
  • a pipe 10 makes it possible to introduce a gas or a vapor of a material inside the cavity 2, intended to form a plasma in said cavity.
  • Enclosure 2 can be filled with hydrogen, neon, xenon, oxygen, carbon, nitrogen, tungsten, titanium, molybdenum, zirconium, etc. at a pressure of order of 10- 5 mbar for a wave of 10 GHz.
  • Means not shown, such as a vacuum pump can be mounted on the cavity 2.
  • Coils 12 and 14 respectively surrounding the ends 3 and 5 of the enclosure 2 make it possible to create a magnetic field of axial symmetry symbolized by the arrows 15, in the form of a magnetic bottle.
  • This magnetic field 15 has a minimum amplitude at the center 7 of the cavity and a maximum amplitude at the ends of the enclosure 2.
  • This magnetic field which can be either continuous or pulsed is notably oriented from the end 3 to the end 5 of the enclosure. It then defines an axial north pole on the side of the end 3 of the enclosure 2 and an axial south pole on the side of the end 5 of said enclosure. An orientation of the axial magnetic field from the end 5 to the end 3 can of course be envisaged.
  • the amplitude of the axial magnetic field 15 can vary from 0.3 to 0.5 Tesla (3000 to 5000 Gauss) for a wave of 10 GHz.
  • Magnetic bars 16 and 18 distributed all around the cavity and parallel to the longitudinal axis 4 of the enclosure make it possible to create local magnetic fields, symbolized by the arrows 20, located radially with respect to the axis 4. These fields Magnetic radials can go up to 0.5 Tesla (5000 Gauss) for a 10 GHz wave.
  • the magnetic field 15 with axial symmetry and the local radial magnetic fields 20 allow the formation of at least one closed "equimagnetic" sheet 22 having no contact with the walls of the enclosure 2.
  • the resonance condition is notably satisfied for an amplitude B r , of 0.36 Tesla (3600 Gauss) and a frequency of the electromagnetic field of 10 GHz.
  • the highly charged ions thus formed can be extracted from the enclosure 2 by an extraction orifice 24 located on the side of the end 5.
  • This orifice is located on the longitudinal axis 4 of the enclosure and in the extension of the waveguide 8 used for injecting the high frequency into the enclosure.
  • the ions thus extracted from the enclosure can then be selected according to their degree of ionization using any known means using a magnetic field and / or an electric field.
  • the magnetic bars 16 and 18 can be four, six, eight, etc.
  • the bars 16 are formed of several permanent elementary magnets joined 30 and 31 having their north poles oriented towards the inside of the enclosure 2 and their south poles facing outwards.
  • the magnetized bars 18 are formed of elementary magnets 32 joined, identical, having their south poles oriented towards the inside of the enclosure 2 and their north poles oriented towards the outside. These two types of bars, as shown in Figures 2a, 2b and 3, are arranged alternately, a bar 16 being interposed between two bars 18 and vice versa.
  • the terminal magnets 31 of the bars 16, located on the side of the end 3 of the enclosure 2, that is to say - say on the injection side of the electromagnetic wave have lower magnetic performance than that of the magnets 30 of the corresponding bar 16. Indeed, this makes it possible, taking into account the direction of flow of the creepage line 33 of the terminal elementary magnets 31, shown in FIG. 1, to greatly reduce the antagonistic magnetic field created at the end 3 of the enclosure 2 by the component axial of the leakage field represented by 33.
  • the reduction of the magnetic performances of the terminal magnets 31 of the bars 16 can be obtained by using a binary material and in particular in SmCos to constitute the magnets 31, the magnets 30 then being formed of a ternary material containing for example praseodymium, iron and boron.
  • Another solution consists, as shown in FIG. 2a, of using terminal magnets 31 for the bars 16 having a length less than the length L of the magnets 30 of these same bars.
  • the magnets 31 can measure 5 cm long and the magnets 30 can measure 7 cm long.
  • the terminal magnets 31 can be made of the same material as that constituting the other magnets 30 of the corresponding bars, but also of a different material having magnetic properties inferior to those of the magnets 30.
  • the terminal magnets 31 can be made of SmCos and magnets 30 made of Fe-Pr-B.
  • the terminal magnets 31 of the bars 16 will all have the same length and will all be made of the same material.
  • the magnets 30 of the bars 16 and the magnets 32 of the bars 18 will have the same length L and will be made of the same material.
  • the terminal magnets 31 of the bars 16 located on the side of the injection of the electromagnetic wave into the enclosure can moreover be each associated with a wedge 34 made of a non-magnetic material.
  • Each wedge 34 is located between the corresponding terminal magnet 31 and the enclosure 2.
  • the shims 34 may have a thickness ranging from 1 to 10 mm.
  • these terminal magnets 31 associated with the shims 34 can be made of a material different from those constituting the other magnets 30 and possibly 32.
  • This structure comprises intermediate magnetic bars 36 and 39, inserted between the bars 16 and 18.
  • the bars 36 and 39 are joined in pairs and are located respectively in contact with the lateral faces 38 and 40 of the bars 16 and 18.
  • the intermediate bars 36 have their north poles in contact with the lateral faces 38 of the bars 16 whose north is oriented towards the inside of the enclosure 2.
  • the intermediate bars 39 have their south poles in contact with the lateral faces 40 of the bars 18, the south of which is oriented towards the interior of the enclosure 2.
  • This arrangement makes it possible, as shown in FIG. 4, to artificially increase the polar surfaces of the bars 16 and 18 and therefore to maximize the radial magnetic fields emitted by these bars in the vicinity of their poles oriented towards the inside of the enclosure.
  • This structure makes it possible in particular to double the local radial fields emitted by the magnets constituting the magnetic bars 16 and 18.
  • terminal magnets 31 of the bars 16 having magnetic performance lower than those of the bars 30 constituting the same can be used bars 16 and possibly lower performance than the magnets 32 of bars 18. This can be achieved by using terminal magnets 31 made of SmCo 5 and magnets 30 and 32 made of Pr-Fe-B and / or using magnets 31 shorter than magnets 30 and 32 and / or by inserting a non-magnetic shim between the magnets 31 and enclosure 2, as described above.
  • the means making it possible to generate the local radial magnetic fields may be different provided that these are in the form of a magnetic structure, distributed around the longitudinal axis of the enclosure, generating at its end located opposite the high frequency injection of local magnetic fields lower than those of the rest of the magnetic structure.
  • This magnetic structure could in particular be produced using cylindrical bars, arranged parallel to one another along the axis of the enclosure and being in a superconductive state (see US-A-4,417,178).
  • the magnetic field with axial symmetry could be produced by ferrites in place of the two coils surrounding the enclosure. This field could also be oriented from the extraction orifice to the high frequency injection device. In this case, it is the terminal magnets of the bars 18 which must have the lowest magnetic performance.
  • the enclosure may have a shape other than a cylindrical shape, for example a rectangular or polygonal shape.
  • the ion source according to the invention makes it possible in particular to obtain ion beams highly charged with rare gases, such as for example ion beams of Ne-1-10, Ar + 13, Xe +33 as well as ions of C + 6, N + 7, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Particle Accelerators (AREA)

Claims (8)

1. Elektronen-Zyklotron-Resonanz-lonenquelle mit:
- einer geschlossenen Hülle (2) mit einer longitudinalen Achse (4), mit einem ersten (3) und einem zweiten (5) Ende, die entlang dieser Achse orientiert sind, wobei diese Hülle (2) ein Gas enthält, das bestimmt ist ein in der Hülle eingeschlossenes Plasma zu bilden,
- einer Anordnung (6, 8) zum Einführen eines elektromagnetischen Hochfrequenzfeldes in das erste (3) Ende der Hülle,
- Vorrichtungen (12, 14) zur Erzeugung eines magnetischen Hauptfeldes in der Hülle mit einer axialen Symmetrie, das eine erste Polarität (N oder S) im ersten Ende der Hülle und eine zweite Polarität (S oder N) im zweiten Ende (3) der Hülle definiert,
- einem System (24, 26) zum Gewinnen von Ionen aus der Hülle, wobei sich dieses System in dem zweiten Ende befindet, und
- eine magnetische Struktur (16, 18, 36, 39), die um die Achse (4) verteilt ist und aus mehreren entlang der Achse aufgestapelten Schichten besteht, wobei jede Schicht lokale, radiale magnetische Felder (20) erzeugt, dadurch gekennzeichnet, daß die abschließende Schicht gegenüber dem ersten Ende (3) der Hülle liegt und ein lokales magnetisches Feld der Pole dieser ersten Polarität erzeugt und eine geringere magnetische Leistung besitzt als die von den anderen Schichten erzeugte.
2. lonenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die magnetische Struktur eine erste und eine zweite wechselnde Reihe von getrennten Stabmagneten (16, 18) aufweist, die um die Achse (4) verteilt sind und aus radial ausgerichteten Elementarmagneten (30, 31, 32) bestehen, wobei die zum Innern der Hülle (2) gerichteten Pole der Stäbe (16) der ersten Reihe die erste Polarität (N) darstellen und die zum Innern der Hülle (2) gerichteten Pole der Stäbe (18) der zweiten Serie die zweite Polarität (S) darstellen und wobei jeder abschließende Magnet (31) jedes Stabes (16) der ersten Reihe, der sich gegenüber dem ersten Ende (3) der Hülle befindet, geringere magnetische Leistungen besitzt als die der anderen Magnete (30) des entsprechenden Stabes (16).
3. lonenquelle nach Anspruch 1, dadurch gekennzeichnet, daß die magnetische Struktur eine erste und eine zweite wechselnde Reihe von getrennten Hauptstabmagneten (16, 18) aufweist, die um die Achse (4) verteilt sind und aus radial ausgerichteten Elementarmagneten (30, 31, 32) bestehen, wobei die zum Innern der Hülle (2) gerichteten Pole der Stäbe (16) der ersten Reihe die erste Polarität (N) darstellen und die zum Innern der Hülle (2) gerichteten Pole der Stäbe (18) der zweiten Serie die zweite Polarität (S) darstellen, und ebenso Zwischenstabmagnete (36, 39) aufweist, die zwischen den Hauptstabmagneten (16, 18) liegen und eine geringe Länge als die Hauptstabmagnete besitzen, wobei, die Zwischenstäbe (36, 39), die am ersten Ende (3) der Hülle bezüglich der Hauptstäbe (16, 18) zurückgezogen angeordnet sind, ihre Pole in Kontakt mit den seitlichen Flächen (38, 40) jedes Hauptstabs (16, 18) haben, die identisch sind mit dem Pol dieses letzteren, der zum Inneren der Hülle gerichtet ist.
4. lonenquelle nach Anspruch 3, dadurch gekennzeichnet, daß jeder Hauptstabmagnet der ersten Reihe einen abschließenden Magnet (31) besitzt, der sich gegenüber dem ersten Ende (3) der Hülle befindet und geringere magnetische Leistungen besitzt als die der anderen Magnete (30) des entsprechenden Stabes (16).
5. Ionenquelle nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß der abschließende Magnet (31) jedes Stabes (16) der ersten Reihe aus einem Material besteht, das verschieden ist von dem Material der anderen Magnete (30) des entsprechenden Stabes (16).
6. Ionenquelle nach Anspruch 5, dadurch gekennzeichnet, daß das Material des abschließenden Magneten (31) auf Kobalt und Samarium basiert und das der anderen Magnete (30) auf Eisen, Praseodym und Bor basiert.
7. lonenquelle nach einem der Ansprüche 2, 4 bis 6, dadurch gekennzeichnet, daß der abschließende Magnet (31) jedes Stabes (16) der ersten Reihe eine Länge (I) aufweist, die geringer ist als die Länge (L) der anderen Magnete (30) des entsprechenden Stabes (16).
8. lonenquelle nach Anspruch 7, dadurch gekennzeichnet, daß ein nichtmagnetischer Keil (34) an jeden abschließenden Magneten (31) geklebt ist, wobei dieser Keil (34), der zum Inneren der Hülle angeordnet ist, eine solche Dicke (e) aufweist, daß die Länge der Anordnung Keil-Abschlußmagnet gleich ist der Länge (L) der anderen Magnete (30) des entsprechenden Stabes.
EP19860402874 1985-12-26 1986-12-19 Elektronen-Zyklotron-Resonanz-Ionenquelle Expired - Lifetime EP0232651B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8519252A FR2592518B1 (fr) 1985-12-26 1985-12-26 Sources d'ions a resonance cyclotronique electronique
FR8519252 1985-12-26

Publications (2)

Publication Number Publication Date
EP0232651A1 EP0232651A1 (de) 1987-08-19
EP0232651B1 true EP0232651B1 (de) 1990-03-14

Family

ID=9326207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860402874 Expired - Lifetime EP0232651B1 (de) 1985-12-26 1986-12-19 Elektronen-Zyklotron-Resonanz-Ionenquelle

Country Status (3)

Country Link
EP (1) EP0232651B1 (de)
DE (1) DE3669615D1 (de)
FR (1) FR2592518B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601498B1 (fr) * 1986-07-10 1988-10-07 Commissariat Energie Atomique Source d'ions a resonance cyclotronique electronique
US4947085A (en) * 1987-03-27 1990-08-07 Mitsubishi Denki Kabushiki Kaisha Plasma processor
JP2618001B2 (ja) * 1988-07-13 1997-06-11 三菱電機株式会社 プラズマ反応装置
DE4419970A1 (de) * 1994-06-08 1995-12-21 Juergen Prof Dr Andrae Vorrichtung zur Erzeugung von Strahlen hochgeladener Ionen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475798A1 (fr) * 1980-02-13 1981-08-14 Commissariat Energie Atomique Procede et dispositif de production d'ions lourds fortement charges et une application mettant en oeuvre le procede
FR2556498B1 (fr) * 1983-12-07 1986-09-05 Commissariat Energie Atomique Source d'ions multicharges a plusieurs zones de resonance cyclotronique electronique

Also Published As

Publication number Publication date
FR2592518B1 (fr) 1988-02-12
EP0232651A1 (de) 1987-08-19
FR2592518A1 (fr) 1987-07-03
DE3669615D1 (de) 1990-04-19

Similar Documents

Publication Publication Date Title
EP0145586B1 (de) Quelle von mehrfachgeladenen Ionen mit mehreren Elektronzyclotronresonanz-Zonen
FR2475798A1 (fr) Procede et dispositif de production d'ions lourds fortement charges et une application mettant en oeuvre le procede
EP0238397B1 (de) Elektronenzyklotronresonanz-Ionenquelle mit koaxialer Injektion elektromagnetischer Wellen
EP0127523B1 (de) Elektronzyklotronresonanz-Ionenquelle
EP1488443B1 (de) Vorrichtung zur begrenzung eines plasmas in einem volumen
EP2353347B1 (de) Einrichtung und verfahren zum erzeugen und/oder eingrenzen eines plasmas
FR2531570A1 (fr) Source d'ions negatifs et procede utilisant cette source pour reduire des electrons non voulus d'un flux de sortie
EP0711100B1 (de) Plasmaerzeugungsvorrichtung, ermöglichend eine Trennung zwischen Mikrowellenübertragung und -absorptionszonen
EP0232651B1 (de) Elektronen-Zyklotron-Resonanz-Ionenquelle
EP2044816A2 (de) Einrichtung und verfahren zum produzieren und/oder eingrenzen eines plasmas
EP0199625B1 (de) Elektronzyklotronresonanzquelle negativer Ionen
EP0252845B1 (de) Elektronzyklotronresonanz-Ionenquelle
EP0527082B1 (de) Elektroncyclotionresonanz-Ionenquelle vom Wellenleiter-Typ zur Erzeugung mehrfachgeladenen Ionen
EP0946961B1 (de) Magnetische vorrichtung, insbesondere fuer elektronzyklotronresonanzionenquellen, die die erzeugung geschlossener oberflaechen mit konstanter magnetfeldstaerke b und beliebiger groesse ermoeglichen
EP2311061B1 (de) Elektronenzyklotronresonanzionengenerator
EP0532411B1 (de) Elektronzyklotronresonanz-Ionenquelle mit koaxialer Zuführung elektromagnetischer Wellen
EP0483004B1 (de) Quelle starkgeladener Ionen mit polarisierbarer Probe und mit Elektronzyklotronresonanz
FR2925217A1 (fr) Structure hyperfrequences pour tube microondes avec dispositif de confinement du faisceau a aimants permanents et refroidissement ameliore
EP0500633A1 (de) Sektorfokussierte zyklotronen
WO1999003314A1 (fr) Cyclotron compact et son utilisation en proton therapie
EP0813223A1 (de) Magnetfelderzeugungsvorrichtung und ECR Ionenquelle dafür
FR2883410A1 (fr) Source de photons comprenant une source de plasma d'ions multicharges a la resonance cyclotron electronique.
Golovanivsky ECR activity in Patrice Lumumba University (Moscow)
FR2815810A1 (fr) Accelerateur d'electrons compact a cavite resonante
LU86554A7 (fr) Procede de production d'ions negatifs utilisant la resonancee cyclotron des electrons et dispositif destine a cet effet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB NL

17P Request for examination filed

Effective date: 19880121

17Q First examination report despatched

Effective date: 19881215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900314

Ref country code: GB

Effective date: 19900314

REF Corresponds to:

Ref document number: 3669615

Country of ref document: DE

Date of ref document: 19900419

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971227

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 19981231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001