EP0082799A2 - Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart - Google Patents

Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart Download PDF

Info

Publication number
EP0082799A2
EP0082799A2 EP82730126A EP82730126A EP0082799A2 EP 0082799 A2 EP0082799 A2 EP 0082799A2 EP 82730126 A EP82730126 A EP 82730126A EP 82730126 A EP82730126 A EP 82730126A EP 0082799 A2 EP0082799 A2 EP 0082799A2
Authority
EP
European Patent Office
Prior art keywords
driver
base
transistor
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82730126A
Other languages
English (en)
French (fr)
Other versions
EP0082799B1 (de
EP0082799A3 (en
Inventor
Manfred Ing. Grüner (grad.)
Bernd Dipl.-Ing. Gugel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Priority to AT82730126T priority Critical patent/ATE31124T1/de
Publication of EP0082799A2 publication Critical patent/EP0082799A2/de
Publication of EP0082799A3 publication Critical patent/EP0082799A3/de
Application granted granted Critical
Publication of EP0082799B1 publication Critical patent/EP0082799B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J9/00Hammer-impression mechanisms
    • B41J9/44Control for hammer-impression mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/30Control circuits for actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1883Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings by steepening leading and trailing edges of magnetisation pulse, e.g. printer drivers

Definitions

  • the invention relates to a driver circuit for printers, in particular for matrix printers of the needle or hammer type with a character generator which generates pressure signals and start signals.
  • a pressure signal and a start signal at the signal input are linked by AND gates, further with monostable flip-flops connected to the AND gates, each of which has a timing element and whose outputs are connected separately to the base of control transistors via control gates are whose emitters are connected to the base of transistors via base resistors, their collectors or their emitters being switchable at voltage levels and the driver magnet coil for the needle to be fired or for the hammer being provided on one of the transistors.
  • Such driver circuits are used in matrix printers in order to transmit an electrical current pulse in a time-controlled manner to the pressure needles or pressure hammers provided by means of electromagnetic coils. Because of the current pulse, the printing needles or the printing hammers are fired and produce a dot print on the recording medium opposite them (e.g. a paper strip) via the ink ribbon, a large number of dot prints forming a character. After the printing needles or printing hammers have been fired, the recording medium is advanced in the direction of its longitudinal extent, so that either a new line (line printer) or a new series of dots (series printer) can be written. With serial printers it is also common to transport the record carrier within the character height, ie within the line.
  • the invention is therefore based on the object of avoiding excessive heating of the printhead or hammer bank. It is also an object of the invention to counteract heating in higher frequency ranges (such as, for example, the ranges of the cut-off frequency) in order to increase the overall service life of the elements located in the area of heating and to save overall forced cooling.
  • the object is achieved in the input designated driver circuit in that the current at the driver solenoid in the end region of a time increasing current is kept at a predetermined level by means of a current limiting circuit and can be switched off after a period of constant current intensity, so that the current profile on the Driver solenoid approximately forms an unequal leg trapezoid.
  • the main advantage of this current limitation is less heating of the printhead or a hammer bank.
  • the lower current intensity naturally results in less heating and enables the frequency to be increased up to the limit frequency of the mechanical system of the printing needles or the printing hammers.
  • the service life of the printhead or hammer bank is therefore increased at higher frequencies.
  • forced cooling of the print head or hammer bank can be dispensed with.
  • the current limiting circuit consists of a reference resistor located at the emitter of the driver transistor and a zener diode lying parallel to the reference resistor and base-emitter path, the anode of which is located on the base of the driver transistor and the cathode of which is on the reference resistor.
  • Another embodiment of the invention provides that the collectors of the drive transistors are each connected to a positive mains voltage, that the emitter of the one drive transistor is connected to the base of the driver transistor via a series resistor and the emitter of the other drive transistor is connected to the base of a switching transistor via a series resistor are switched, the base of the driver transistor being at a voltage that is positive with respect to the base potential and the base of the switching transistor is at a voltage that is negative with respect to the base potential, and that the negative voltage at the time when - the positive voltage is the operating voltage for the driver - Solenoid forms, is switched off.
  • This measure means that the one voltage stage is switched off after reaching the point in time at which the other voltage stage is sufficient to maintain the current through the driver magnet coil in order not to unnecessarily heat the driver transistor.
  • a residual energy remaining in the driver magnet coil from a previous pressure pulse can be additionally detected by the current limiting circuit.
  • This measure means that the current limitation in the current in the solenoid coil does not exceed the predetermined value, even if a residual energy from the previous energization is still stored, which would allow the current rise to occur more quickly, but no significantly higher power loss in the driver solenoid coil in comparison to energize without current limitation.
  • the current limiting circuit with the exception of the electromagnetic coil, is arranged on a printed circuit board together with the other circuit elements at a distance from the needle printhead or from the hammer bank of the matrix printer.
  • a heating due to the current heat in the reference resistor can thus be easily dissipated via the intended cooling of the housing of the printer, without affecting the sensitive components of the needle printhead or the hammer bank.
  • the pressure pulse la for a needle or a hammer is fed via line 1 in the AND gate circuit, consisting of gates G1 and G2, to input 13 of gate G1, line 1 via line 2 with input 9 of the gate G2 is connected.
  • the start signal 3a is input via line 4 to input 10 of gate G2, the link being carried out via line 5 to input 12 of gate G1.
  • the two gates G1 and G2 each start the signals at the same time.
  • the pressure pulse la and the start signal 3a are supplied to the monostable flip-flops T1 and T2, for which purpose the gate G1 at the output 11 is connected to the input 14 of the flip-flop T1 and the gate G2 at the output 8 is connected to the input 15 of the flip-flop T2.
  • the timing elements R1 / C1 or R2 / C2 integrated in the flip-flops Tl and T2 are connected to the supply voltage for the flip-flops Tl and T2 with their supply lines 16 and 17, respectively, and are connected to the inputs 6, 7 (flip-flop Tl) and 6a, 7a (flip-flop T2) switched.
  • Inputs B and Cl are each connected to a fixed voltage (e.g. 5 volts).
  • the Q-dash outputs are not connected.
  • the control gates G3 and G4 (designed as negation modules) are connected to the outputs Q. of the flip-flops Tl and T2 in order to adapt the preceding 5-volt logic to the subsequent operating voltage.
  • the control gates G3 and G4 represent an "open collector circuit” what means that the collector circuit is open for a transistor stage.
  • the collector of this output transistor is connected to the operating voltage via the resistor R1 connected outside the IC.
  • the output signal of the "open collector circuit” then shows an "activ-low behavior", that is to say only in the case of the gate whose output emits a signal does the output transistor carry current, and as a result the point in question is connected to ground potential.
  • the outputs Q of the flip-flops T1 and T2 generate the signals corresponding to the respective length of time designated 18 and 19 (the signal 18 is longer than the signal 19).
  • the inputs 20 and 21 of these control gates G3 and G4 are connected.
  • the series resistors R3 and R4 for the base voltage of the drive transistors T3 and T4 are connected to the outputs 22 and 23.
  • the collector 24 of the drive transistor T3 and the collector 25 of the drive transistor T4 are connected to the positive mains voltage + U network (of, for example, plus 18 volts), which is supplied through the phase line 26.
  • the base of the drive transistor T3 or the base for the drive transistor T4 is stabilized to the desired base voltage via the voltage divider resistors R5 and R6, respectively.
  • the emitter 27 is connected via the series resistor R7 to the base of the driver transistor T5 and the emitter 28 via the series resistor R8 to the base of the switching transistor T6 (of the NPN transistor type).
  • the base and emitter 29 of the switching transistor T6 are also connected via the voltage divider resistor R9 to an operating voltage minus the U network (of, for example, minus 36 volts) which is negative compared to the basic potential 30.
  • the collector 31 of the switching transistor T6 and the collector 32 of the driver transistor T5 are connected to the positive operating voltage potential (eg to plus 18 volts).
  • the reference resistor R10 is switched on and a diode V2 is connected between the latter and the collector 31 of the switching transistor T6, which is connected to the base potential 30.
  • the Zener diode V1 is connected to the collector 31 of the switching transistor T6 or to the reference resistor R10 and the diode V2.
  • the Zener diode V1 and the reference resistor R10 together form a current limiting circuit, the reference resistor R10 being connected to the emitter 33 of the driver transistor T5 and the Zener diode V1 lying in parallel with the reference resistor-emitter path.
  • both gates G3 and G4 are opened, whereby the drive transistors T3 and T4 are turned on.
  • a current flows from the positive potential (plus 18 volts) via the line 26 and the drive transistor T4, the series resistor R8 to the base of the switching transistor T6 and the voltage divider resistor R9 to the negative potential (minus 36 volts) and via the drive transistor T3 and the series resistor R7 to the base of the driver transistor T5, so that the current rise in the driver magnet coil L1 begins under increased voltage (54 volts).
  • this steep current increase within the time t1 is shown by the edge 35.
  • a current also flows in the through-connected driver transistor T5 and in the switching transistor T6.
  • the current rising in this case is limited in the zener diode V1 by the reference resistor R10, so that the current profile for a period 36 is very exactly constant (FIG. 2), the operating voltage after reaching the time value t3 to a lower value (plus 18 volts ) is switched. In this period of time, therefore, only a current flows from the positive potential (plus 18 volts) through the driver magnet coil L1 via the driver transistor T5 and the reference resistor R10 through the diode V2 to the basic potential 30.
  • the pressure pulse la drops after the predetermined time t2 and the current intensity drops according to the edge 37 (FIG. 2) up to Zero down.
  • the next pressure pulse la can now be initiated.
  • the pressure pulses take up a time t2 of approximately 200 msec, the time segment t1 for the rising current in the electromagnetic coil L1 being approximately 100 msec.
  • FIG. 3 shows the current profile on the rising edge 35 with current limitation and with residual energy left in the driver magnet coil L1 by a previous pressure pulse la.
  • the falling edge 37 results from the current limitation without residual energy.
  • the outer curve 38 forms a current profile without current limitation with residual energy and the inner profile of the current curve 39 forms the current profile theoretically to be achieved without current limitation and without residual energy.
  • the current curve in FIG. 3 results in a substantially lower energy loss (characterized by the hatching there) than the area (also hatched) shown in FIG. 4 according to the current curve without current limitation with residual energy from the driver magnet coil L1.
  • the current in the driver solenoid L1 does not exceed the predetermined value due to the current limitation, even if residual energy from the previous energization is still stored, which would make the current increase faster.
  • FIGS. 3 and 4 consequently does not result in a significantly higher power loss in the driver magnet coil L1 in comparison with an energization without current limitation according to FIG. 4.
  • the hatched areas in FIGS. 3 and 4 represent the power loss that occurs within the Components are converted into heat and a portion of which can also lead to the heating of the transistors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Impact Printers (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Stored Programmes (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

Die Erfindung betrifft eine Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel-bzw. Hammerbauart. Zwecks Vermeidung einer größeren Verlustleistung beim Bestromen der Treibermagnetspule (L1), die eine schädliche Erwärmung des Nadeldruckkopfes bzw. der Hammerbank bzw. der umgebenden Bauteile bzw. von elektronischen Bauteilen, wie z. B. Transistoren, zur Folge hat, und zwecks Steigerung der Grenzfrequenz bei gleichbleibender oder höherer Lebensdauer, wird der Strom an der Treiber-Magnetspule (L1) im Endbereich einer Zeit (t1) ansteigenden Stroms mittels einer Strombegrenzungsschaltung (V1, R10) auf einer vorbestimmten Höhe gehalten und ist nach einer Zeit (t2) gleichbleibender Stromstärke abschaltbar, so daß der Stromverlauf an der Treiber-Magnetspule (L1) näherungsweise ein ungleichschenkliges Trapez (35, 36, 37) bildet. Hierbei besteht die Strombegrenzungsschaltung (V1, R10) aus einem am Emitter (33) des Treibertransistors (T5) liegenden Referenzwiderstand (R10) und einer parallel zur Refernzwiderstand- und Basis-Emitter-Strecke liegenden Zenerdiode (V1), deren Anode an der Basis des Treibertransistors (T5) und deren Kathode am Referenzwiderstand (R10) liegen.

Description

  • Die Erfindung betrifft eine Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart mit einem Drucksignale und Startsignale erzeugenden Zeichengenerator, . wobei jeweils ein Drucksignal und ein Startsignal am Signaleingang durch UND-Gatter verknüpft sind, ferner mit jeweils an die UND-Gatter angeschlossene, monostabile Kippstufen, die jeweils ein Zeitglied aufweisen und deren Ausgänge über Ansteuer-Gatter separat mit der Basis von Ansteuer-Transistoren verbunden sind, deren Emitter über Basiswiderstände jeweils an der Basis von Transistoren liegen, wobei deren Kollektor bzw. deren Emitter an Spannungsstufen schaltbar sind und wobei an einem der Transistoren die Treiber-Magnetspule für die abzuschießende Nadel bzw. für den Hammer vorgesehen ist.
  • Derartige Treiberschaltungen gelangen in Matrixdruckern zur Anwendung, um den mittels Elektromagnetspulen versehenen Drucknadeln oder Druckhämmern einen elektrischen Stromimpuls zeitgesteuert zu übertragen. Aufgrund des Stromimpulses werden die Drucknadeln oder die Druckhämmer abgeschossen und erzeugen auf dem ihnen gegenüberliegenden Aufzeichnungsträger (z. B. einem Papierstreifen) über das Farbband einen Punktabdruck, wobei eine große Anzahl von Punktabdrucken ein Schriftzeichen bilden. Nach dem Abschießen der Drucknadeln oder Druckhämmer wird der Aufzeichnungsträger in Richtung seiner Längserstreckung vorgeschoben, so daß entweder eine neue Zeile (Zeilendrucker) oder eine neue Serie von Punkten (Seriendrucker) geschrieben werden können. Bei Seriendruckern ist es auch üblich, den Aufzeichnungsträger innerhalb der Zeichenhöhe, d. h. innerhalb .der Zeile weiterzutransportieren. In jedem Fall ist zur Erzeugung einer hohen Zahl von Druckpunkten wichtig, eine Drucknadel oder einen Druckhammer nach einem erfolgten Abschießen sobald wie möglich erneut betätigen zu können. Diese Bestrebung stößt jedoch dann auf Schwierigkeiten, wenn die Drucknadel oder der Druckhammer etwa zeitgleich mit der - Rückkehr in die Ausgangsposition bereits erneut abgeschossen werden soll. Die mögliche Anzahl von Abschieß-Impulsen einer Drucknadel oder eines Druckhammers pro Sekunde wird als Grenzfrequenz bezeichnet.
  • Im Schrifttum finden sich für Nadeldruckköpfe Angaben über Grenzfrequenzen von bis zu 2000 pro Sekunde. Die physikalischen Bedingungen beim Antreiben einer Drucknadel oder eines Druckhammers gestatten jedoch bei derartig hohen Frequenzen. keineswegs, die der Elektromagnetspule zugeführte Energie vollständig in Bewegungsenergie für die Drucknadel oder für den Druckhammer umzusetzen. Vielmehr wird ein erheblicher Anteil dieser elektrischen Energie in Wärme umgewandelt, wodurch die Organe, die die Drucknadeln oder die Druckhämmer tragen, erwärmt werden und gleichzeitig ihre Umgebung mit erwärmen. Diese Erwärmung stellt nicht nur einen Energieverlust dar, sondern auch eine Beeinträchtigung aller innerhalb eines Druckkopfes oder einer Hammerbank befindlichen Elemente (z.B. von elektronischen Bauteilen, wie Transistoren) und bedingt eine geringere Lebenszeit einzelner Elemente oder des ganzen Druckkopfes bzw. der ganzen Hammerbank. In einigen Fällen -ist es auch unerläßlich, diese Verlustwärme durch besondere Maßnahmen, wie z. B. durch Zwangskühlung des Druckers, abzuführen, was jedoch den Aufwand an Konstruktionsteilen sowie die Störanfälligkeit erhöht und die Wartung des Druckers verteuert.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine übermäßige Erwärmung des Druckkopfes bzw. der Hammerbank zu vermeiden. Es ist außerdem Aufgabe der Erfindung, in höheren Frequenzbereichen (wie z. B. den Bereichen der Grenzfrequenz) der Erwärmung entgegenzuwirken, um insgesamt die Lebensdauer der im Bereich der Erwärmung befindlichen Elemente zu erhöhen und um insgesamt eine Zwangskühlung einzusparen.
  • Die gestellte Aufgabe wird bei der Eingangs bezeichneten Treiberschaltung dadurch gelöst, daß der Strom an der Treiber-Magnetspule im Endbereich einer Zeit ansteigenden Strom mittels einer Strombegrenzungsschaltung auf einer vorbestimmten Höhe gehalten wird und nach einer Zeit gleichbleibender Stromstärke abschaltbar ist, so daß der Stromverlauf an der Treiber-Magnetspule näherungsweise ein ungleichschenkliges Trapez bildet. Der Hauptvorteil dieser Strombegrenzung ist eine geringere Erwärmung des Druckkopfes bzw. einer Hammerbank. Die geringere Stromstärke bewirkt eine geringere Erwärmung von Natur aus und ermöglicht, die Frequenz bis an die Grenzfrequenz des mechanischen Systems der Drucknadeln bzw. der Druckhämmer zu steigern. Die Lebensdauer des Druckkopfes bzw. der Hammerbank wird deshalb bei höheren Frequenzen erhöht. Außerdem kann von einer Zwangskühlung des Druckkopfes bzw. der Hammerbank abgesehen werden.
  • In einer Ausgestaltungsform der Erfindung ist vorgesehen, daß die Strombegrenzungsschaltung aus einem am Emitter des Treibertransistors liegenden Referenzwiderstand und einer parallel zur Referenzwiderstand- und Basis-Emitter-Strecke liegenden Zenerdiode besteht, deren Anode an der Basis des Treibertransistors und deren Kathode am Referenzwiderstand liegen.
  • In einer anderen Ausgestaltungsform der Erfindung ist vorgesehen, daß die Kollektoren der Ansteuertransistoren jeweils an einer positiven Netzspannung liegen, daß ferner der Emitter des einen Ansteuertransistors über einen Vorwiderstand an die Basis des Treibertransistors und der Emitter des anderen Ansteuertransistors über einen Vorwiderstand an die Basis eines Schalttransistors geschaltet sind, wobei die Basis des Treibertransistors an einer gegenüber dem Grundpotential positiven Spannung und die Basis des Schalttransistors an einer gegenüber dem Grundpotential negativen Spannung liegen und daß die negative Spannung im Zeitpunkt, in dem - die positive Spannung die Betriebsspannung für die Treiber- Magnetspule bildet, abgeschaltet ist. Diese Maßnahme bedeutet, daß die eine Spannungsstufe nach Erreichen des Zeitpunktes, in welchem die andere Spannungsstufe für die Aufrechterhaltung des Stromes durch die Treiber-Magnetspule ausreicht, abgeschaltet wird, um den Treibertransistor nicht unnötig zu erwärmen.
  • Nach einem weiteren Gedanken ist vorgesehen, daß durch die Strombegrenzungsschaltung eine in der Treiber-Magnetspule aus einem vorhergegangenen Druckimpuls verbliebene Restenergie additional erfaßbar ist. Diese Maßnahme bedeutet, daß durch die Strombegrenzung der Strom in der Magnetspule den vorgegebenen Wert nicht überschreitet, auch wenn vom vorhergehenden Bestromen noch eine Restenergie gespeichert ist, die den Stromanstieg schneller erfolgen lassen würde, aber keine wesentlich höhere Verlustleistung in der Treiber-Magnetspule im Vergleich zu einer Bestromung ohne Strombegrenzung hervorruft.
  • Vorteilhaft ist ferner, daß die Strombegrenzungsschaltung mit Ausnahme der Elektromagnetspule auf einer Leiterplatte zusammen mit den übrigen Schaltungsgliedern in Entfernung vom Nadeldruckkopf bzw. von der Hammerbank des Matrixdruckers angeordnet sind. Eine Erwärmung aufgrund der Stromwärme im Referenzwiderstand kann somit leicht über die vorgesehene Gehäusekühlung des Druckers abgeführt werden, ohne die empfindsamen Bauteile des Nadeldruckkopfes bzw. der Hammerbank zu beeinträchtigen.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen
    • Fig. 1 einen Schaltplan für die erfindungsgemäße Treiberschaltung und
    • Fig. 2 das mit der Treiberschaltung erzielbare Stromverlaufsdiagramm in Abhängigkeit der Zeit.
    • Fig. 3 ein Stromverlaufsdiagramm in Abhängigkeit der Zeit in einer Gegenüberstellung von Strombegrenzung und Restenergie,
    • Fig. 4 ein Stromverlaufsdiagramm in Abhängigkeit der Zeit mit einer Gegenüberstellung von fehlender Strombegrenzung mit Restenergie und einem Stromverlaufsdiagramm ohne Strombegrenzung und ohne Restenergie.
  • Der Druckimpuls la für eine Nadel oder einen Hammer wird über die Leitung 1 in der UND-Gatter-Schaltung, bestehend aus den Gattern G1 und G2, dem Eingang 13 des Gatters G1 zugeführt, wobei die Leitung 1 über die Leitung 2 mit dem Eingang 9 des Gatters G2 verbunden ist. Gleichzeitig erfolgt die Eingabe des Startsignals 3a über die Leitung 4 auf den Eingang 10 des Gatters G2, wobei die Verknüpfung über die Leitung 5 mit dem Eingang 12 des Gatters Gl ausgeführt ist. Die beiden Gatter G1 und G2 starten die Signale jeweils zu einem gleichen Zeitpunkt. Der Druckimpuls la und das Startsignal 3a werden den monostabilen Kippstufen Tl und T2 zugeführt, wozu das Gatter G1 am Ausgang 11 mit dem Eingang 14 der Kippstufe Tl verbunden ist und das Gatter G2 am Ausgang 8 mit dem Eingang 15 der Kippstufe T2 liegt.
  • Die in die Kippstufen Tl und T2 integrierten Zeitglieder R1/C1 bzw. R2/C2 liegen mit ihrer Zuleitung 16 bzw. 17 jeweils an der Versorgungsspannung für die Kippstufen Tl bzw. T2 und sind an die Eingänge 6,7 (Kippstufe Tl) bzw. 6a, 7a (Kippstufe T2) geschaltet.
  • Die Eingänge B und Cl (clear) liegen jeweils an einer festen Spannung (von z. B. 5 Volt). Die Ausgänge Q-Strich sind nicht beschaltet. An die Ausgänge Q.der Kippstufen Tl und T2 sind die Ansteuergatter G3 bzw. G4 (als Negationsbausteine ausgeführt) geschaltet, um die Anpassung der vorausgehenden 5-Volt-Logik an die nachfolgende Betriebsspannung durchzuführen. Die Ansteuer- gatter G3 bzw. G4 stellen eine "open-collector-Schaltung" dar, was bedeutet, daß bei einer Transistorstufe der Kollektorkreis offen ist. Der Kollektor dieses Ausgangstransistors ist über den außerhalb des IC's angeschlossenen Widerstand R1 mit der Betriebsspannung verbunden. Das Ausgangssignal der "open-collector-Schaltung" zeigt dann ein "activ-low-Verhalten", d. h. nur bei dem Gatter, dessen Ausgang ein Signal abgibt, wird der Ausgangstransistor stromführend, und dadurch wird der betreffende Punkt auf Massepotential gelegt.
  • Die Ausgänge Q der Kippstufen Tl bzw. T2 erzeugen die mit 18 bzw. 19 bezeichneten Signale entsprechender Zeitlänge (das Signal 18 ist zeitlänger als das Signal 19).
  • Weiterhin sind die Eingänge 20 und 21 dieser Ansteuergatter G3 bzw. G4 beschaltet. An den Ausgängen 22 und 23 liegen die Vorwiderstände R3 bzw. R4 für die Basisspannung der Ansteuertransistoren T3 bzw. T4. Der Kollektor 24 des Ansteuertransistors T3 und der Kollektor 25 des Ansteuertransistors T4 liegen an der positiven Netzspannung +U-Netz (von z. B. plus 18 Volt), die durch die Phasenleitung 26 zugeführt wird. Die Basis des Ansteuertransistors T3 bzw. die Basis für den Ansteuertransistor T4 wird jeweils über die Spannungsteiler-Widerstände R5 bzw. R6 auf die gewünschte Basisspannung stabilisiert. Der Emitter 27 ist über den Vorwiderstand R7 an die Basis des Treibertransistors T5 und der Emitter 28 über den Vorwiderstand R8 an die Basis des Schalttransistors T6 (vom Typ NPN-Transistor) geschaltet. Basis und Emitter 29 des _Schalttransistors T6 liegen außerdem über den Spannungsteiler-Widerstand R9 an einer gegenüber dem Grundpotential 30 negativen Betriebsspannung minus U-Netz (von z. B. minus 36 Volt) an.
  • Der Kollektor 31 des Schalttransistors T6 bzw. der Kollektor 32 des Treibertransistors T5 sind an das positive Betriebsspannungspotential (d. h. z. B. an plus 18 Volt) gelegt. Hierbei ist zwischen dem Kollektor 31 und dem Emitter 33 der Referenzwiderstand R10 eingeschaltet und zwischen diesen und dem Kollektor 31 des Schalttransistors T6 eine Diode V2 geschaltet, die mit dem Grundpotential 30 verbunden ist. Außerdem ist an den Kollektor 31 des Schalttransistors T6 bzw. an den Referenzwiderstand R10 und die Diode V2 die Zenerdiode V1 geschaltet. Die Zenerdiode V1 und der Referenzwiderstand R10 bilden zusammen eine Strombegrenzungsschaltung, wobei der Referenzwiderstand R10 an den Emitter 33 des Treibertransistors T5 geschaltet ist und die Zenerdiode V1 parallel zur Referenzwiderstand-Emitter-Strecke liegt.
  • Zu Beginn eines Zyklus', in dem eine Nadel oder ein Hammer abgeschossen wird, sind beide Gatter G3 und G4 aufgesteuert, wodurch die Ansteuertransistoren T3 und T4 durchgeschaltet werden. In diesem Zeitabschnitt fließt ein Strom vom positiven Potential (plus 18 Volt) über die Leitung 26 und den Ansteuertransistor T4, den Vorwiderstand R8 zur Basis des Schalttransistors T6 und den Spannungsteiler-Widerstand R9 zum negativen Potential (minus 36 Volt) sowie über den Ansteuertransistor T3 und den Vorwiderstand R7 zur Basis des Treiber-Transistors T5, so daß der Stromanstieg in der Treiber-Magnetspule Ll unter erhöhter Spannung (54 Volt) beginnt. In Fig. 2 ist dieser steile Stromanstieg innerhalb der Zeit tl durch die Flanke 35 dargestellt. Damit fließt auch ein Strom in dem durchgeschalteten Treibertransistor T5 und in dem Schalttransistor T6. Der hierbei ansteigende Strom wird jedoch in der Zenerdiode V1 durch den Referenzwiderstand R10 begrenzt, so daß der Stromverlauf für einen Zeitabschnitt 36 sehr exakt gleichbleibend verläuft (Fig. 2), wobei die Betriebsspannung nach Erreichen des Zeitwerts t3 auf einen niedrigeren Wert (plus 18 Volt) geschaltet wird. In diesem Zeitabschnitt fließt daher nur noch ein Strom vom positiven Potential (plus 18 Volt) durch die Treiber-Magnetspule L1 über den Treibertransistor T5 und den Referenzwiderstand R10 durch die Diode V2 nach dem Grundpotential 30. Der Druckimpuls la fällt nach der vorbestimmten Zeit t2 ab und die Stromstärke sinkt entsprechend der Flanke 37 (Fig. 2) bis auf Null ab. Nunmehr kann bereits der nächste Druckimpuls la eingeleitet werden. Die Druckimpulse nehmen in einem praktischen Ausführungsbeispiel eine Zeit t2 von ca. 200 msec ein, wobei der Zeitabschnitt tl für den ansteigenden Strom in der Elektromagnetspule L1 ca. 100 msec beträgt.
  • In Fig. 3 ist der Stromverlauf an der ansteigenden Flanke 35 mit Strombegrenzung und mit von einem vorangegangenen Druckimpuls la zurückgebliebener Restenergie in der Treiber-Magnetspule L1 dargestellt. Die abfallende Flanke 37 ergibt sich durch die Strombegrenzung ohne Restenergie.
  • Gemäß Fig. 4 bildet die äußere Kurve 38 einen Stromverlauf ohne Strombegrenzung mit Restenergie und der innere Verlauf der Stromkurve 39 den theoretisch zu erzielenden Stromverlauf ohne Strombegrenzung und ohne Restenergie. Daran wird deutlich, daß die Stromverlaufskurve in Fig. 3 einen wesentlich geringeren Energieverlust (gekennzeichnet durch die dortige Schraffur) ergibt als die in Fig. 4 dargestellte (ebenfalls schraffierte) Fläche gemäß dem Stromverlauf ohne Strombegrenzung mit Restenergie der Treiber- Magnetspule Ll. Demzufolge überschreitet aufgrund der Strombegrenzung der Strom in der Treiber-Magnetspule L1 den vorgegebenen Wert nicht, auch wenn vom vorhergehenden Bestromen noch Restenergie gespeichert ist, die den Stromanstieg schneller erfolgen lassen würde. Die in Fig. 3 schraffierte Fläche ergibt demzufolge keine wesentlich höhere Verlustleistung in der Treiber- Magnetspule L1 im Vergleich zu einer Bestromung ohne Strombegrenzung gemäß Fig. 4. Die jeweils schraffierten Flächen in den Fig. 3 und 4 stellen die Verlustleistung dar, die innerhalb der Bauteile in Wärme umgesetzt wird und von der ein Anteil auch zur Erwärmung der Transistoren führen kann.

Claims (5)

1. Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart, mit einem Drucksignale und Startsignale erzeugenden Zeichengenerator, wobei jeweils ein Drucksignal und ein Startsignal am Signaleingang durch UND-Gatter verknüpft sind, ferner mit jeweils an die UND-Gatter angeschlossene, monostabile Kippstufen, die jeweils ein Zeitglied aufweisen und deren Ausgänge über Ansteuer-Gatter separat mit der Basis von Ansteuer- Transistoren verbunden sind, deren Emitter über Basiswiderstände jeweils an der Basis von Transistoren liegen, wobei deren Kollektor bzw. deren Emitter an Spannungsstufen schaltbar sind und wobei an einem der Transistoren die Treiber-Magnetspule für die abzuschießende Nadel bzw. den Hammer vorgesehen ist,
dadurch gekennzeichnet,
daß der Strom an der Treiber-Magnetspule (Ll) im Endbereich einer Zeit (tl) ansteigenden Stroms mittels einer Strombegrenzungsschaltung (Vl,R10) auf einer vorbestimmten Höhe gehalten wird und nach einer Zeit (t2) gleichbleibender Stromstärke abschaltbar ist, so daß der Stromverlauf an der Treiber-Magnetspule (Ll) näherungsweise ein ungleichschenkliges Trapez (35,36,37) bildet.
2. Treiberschaltung nach Anspruch 1,
dadurch gekennzeichnet,
daß die Strombegrenzungsschaltung (Vl,R10) aus einem am Emitter (33) des Treibertransistors (T5) liegenden Referenzwiderstand (R10) und einer parallel zur Referenzwiderstand- und Basis-Emitter-Strecke liegenden Zenerdiode (VI) besteht, deren Anode an der Basis des Treibertransistors (T5) und deren Kathode am Referenzwiderstand (R10) liegen.
3. Treiberschaltung nach den Ansprüchen 1 und 2,
dadurch gekennzeichnet,
daß die Kollektoren (24,25) der Ansteuertransistoren (T3,T4) jeweils an einer positiven Netzspannung (+U) liegen, daß ferner der Emitter (27) des einen Ansteuertransistors (T3) über einen Vorwiderstand (R7) an die Basis des Treibertransistors (T5) und der Emitter (28) des anderen Ansteuertransistors (T4) über einen Vorwiderstand (R8) an die Basis eines Schalttransistors (T6) geschaltet sind, wobei die Basis des Treibertransistors (T5) an einer gegenüber dem Grundpotential positiven Spannung (+U-Netz) und die Basis des Schalttransistors (T5) an einer gegenüber dem Grundpotential negativen Spannung (-U-Netz) liegen und daß die negative Spannung im Zeitpunkt (t3), in dem die positive Spannung (+U-Netz) die Betriebsspannung für die Treiber-Magnetspule (L1) bildet, abgeschaltet ist.
4. Treiberschaltung nach den Ansprüchen 1 bis 3,
dadurch gekennzeichnet,
daß durch die Strombegrenzungsschaltung (V1, R10) eine in der Treiber-Magnetspule (L1) aus einem vorhergegangenen Druckimpuls (la) verbliebene Restenergie additional erfaßbar ist.
5. Treiberschaltung nach den Ansprüchen 1 bis 4,
dadurch gekennzeichnet,
daß die Strombegrenzungsschaltung (Vl, R10) mit Ausnahme der Treiber-Magnetspule (L1) auf einer Leiterplatte zusammen mit den übrigen Schaltungsgliedern in Entfernung vom Nadeldruckkopf bzw. in Entfernung von der Hammerbank des Matrixdruckers angeordnet sind.
EP82730126A 1981-12-21 1982-09-27 Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart Expired EP0082799B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82730126T ATE31124T1 (de) 1981-12-21 1982-09-27 Treiberschaltung fuer drucker, insbesondere fuer matrixdrucker der nadel- bzw. hammerbauart.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3151242 1981-12-21
DE3151242A DE3151242C2 (de) 1981-12-21 1981-12-21 Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart

Publications (3)

Publication Number Publication Date
EP0082799A2 true EP0082799A2 (de) 1983-06-29
EP0082799A3 EP0082799A3 (en) 1984-02-15
EP0082799B1 EP0082799B1 (de) 1987-11-25

Family

ID=6149631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82730126A Expired EP0082799B1 (de) 1981-12-21 1982-09-27 Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart

Country Status (5)

Country Link
US (1) US4485425A (de)
EP (1) EP0082799B1 (de)
JP (1) JPS58112765A (de)
AT (1) ATE31124T1 (de)
DE (1) DE3151242C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220559A1 (de) * 1985-10-10 1987-05-06 Honeywell Inc. Verfahren zum Ansteuern einer gleichstrombetriebenen elektromagnetischen Spule und Steuerschaltung zur Durchführung des Verfahrens

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018903A (ja) * 1983-07-12 1985-01-31 Sharp Corp ソレノイド駆動方式
US4667117A (en) * 1984-10-31 1987-05-19 International Business Machines Corporation Self-timing and self-compensating print wire actuator driver
JP2584442B2 (ja) * 1986-12-12 1997-02-26 キヤノン株式会社 記録装置
US4875409A (en) * 1987-07-01 1989-10-24 Printronix, Inc. Magnetic print hammer actuator protection circuit
DE3904441A1 (de) * 1987-08-12 1990-08-23 Mannesmann Ag Chopperschaltung fuer die ansteuerung von elektromagnet- und/oder schrittmotoren-spulen, insbesondere fuer einen matrixdrucker
EP0326781B1 (de) * 1988-02-05 1992-11-11 MANNESMANN Aktiengesellschaft Ansteuerung für Drucker
JPH02143874A (ja) * 1988-09-16 1990-06-01 Ncr Corp ドツトプリンタの印字制御装置
JPH05286150A (ja) * 1992-03-05 1993-11-02 Internatl Business Mach Corp <Ibm> プリントハンマーコイル電流のモニタ回路及び制御回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628100A (en) * 1970-09-08 1971-12-14 Data Printer Corp Hammer driving circuits for high-speed printers
DE2412016A1 (de) * 1973-03-16 1974-09-19 Ibm Treiberschaltung fuer eine magnetspule
DE2515124B1 (de) * 1975-04-07 1976-09-23 Mannesmann Ag Schaltung zur Ansteuerung der Nadelmagnete eines Nadeldruckers
DE2724192A1 (de) * 1976-06-01 1977-12-15 Levin Maskin Ab K E Elektrische schalteinrichtung zum schalten des betriebsstroms fuer eine zweipolige elektrische last

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660730A (en) * 1970-12-16 1972-05-02 Design Elements Inc Solenoid drive circuit
JPS5945209B2 (ja) * 1978-09-14 1984-11-05 沖電気工業株式会社 マグネツト駆動回路
DE2933616C2 (de) * 1979-08-20 1982-09-23 Siemens AG, 1000 Berlin und 8000 München Dämpfungsvorrichtung für einen als Klappankermagnetsystem ausgebildeten elektromagnetischen Antrieb für den Druckhammer in einer Druckhammeranordnung
US4399483A (en) * 1982-02-08 1983-08-16 Chandler Evans, Inc. Solenoid current control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628100A (en) * 1970-09-08 1971-12-14 Data Printer Corp Hammer driving circuits for high-speed printers
DE2412016A1 (de) * 1973-03-16 1974-09-19 Ibm Treiberschaltung fuer eine magnetspule
DE2515124B1 (de) * 1975-04-07 1976-09-23 Mannesmann Ag Schaltung zur Ansteuerung der Nadelmagnete eines Nadeldruckers
DE2724192A1 (de) * 1976-06-01 1977-12-15 Levin Maskin Ab K E Elektrische schalteinrichtung zum schalten des betriebsstroms fuer eine zweipolige elektrische last

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEWLETT-PACKARD JOURNAL, Vol. 29, No. 15, November 1978, Palo Alto, USA J. IGNOFFO et al. "Managing Dot--Matrix Printing with a Microprocessor" Seiten 8-19 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220559A1 (de) * 1985-10-10 1987-05-06 Honeywell Inc. Verfahren zum Ansteuern einer gleichstrombetriebenen elektromagnetischen Spule und Steuerschaltung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
US4485425A (en) 1984-11-27
JPS58112765A (ja) 1983-07-05
ATE31124T1 (de) 1987-12-15
EP0082799B1 (de) 1987-11-25
DE3151242A1 (de) 1983-07-07
DE3151242C2 (de) 1985-05-02
JPS6359387B2 (de) 1988-11-18
EP0082799A3 (en) 1984-02-15

Similar Documents

Publication Publication Date Title
DE3033911C2 (de) Punktzeilendrucker
EP0082799B1 (de) Treiberschaltung für Drucker, insbesondere für Matrixdrucker der Nadel- bzw. Hammerbauart
DE3223274C2 (de) Schlagdrucker
DE1107971B (de) Elektrischer Code-Umsetzer
EP0306437A2 (de) Chopperschaltung für die Ansteuerung von Elektromagnet-und/oder Schrittmotoren-Spulen, insbesondere für einen Matrixdrucker
DE1424528A1 (de) Leseschaltung mit erhoehter Ablesegeschwindigkeit fuer den eine magnetisierbare Oberflaeche spurweise abtastenden,bewickelten Lesekopf eines Oberflaechenspeichers
DE2648828A1 (de) Vorrichtung zum betaetigen von elektromagneten
DE2825620A1 (de) Verfahren und einrichtung zum drucken von punktmatrixzeichen
EP0408122A2 (de) Schaltungsanordnung für einen Matrixdrucker
DE1256451B (de) Elektromagnetischer Druckhammerantrieb fuer schnellaufende Datendruckvorrichtungen
DE3139321A1 (de) Druckkopf-ansteuerschaltung fuer einen thermodrucker
DE3208660A1 (de) Steuerschaltung
EP0326781B1 (de) Ansteuerung für Drucker
DE2405315A1 (de) Druckhammersteuerung
EP0019890B1 (de) Schaltungsanordnung zur Ansteuerung von Magneten in Aufzeichnungsgeräten der Fernschreibtechnik
DE1185849B (de) Photographische Speicheranordnung
DE3415449C2 (de)
DE1037509B (de) Impulsuebertragungssystem mit einem Transformator, der einen Kern von im wesentlichen rechteckiger Hysteresisschleife aufweist
DE3904441A1 (de) Chopperschaltung fuer die ansteuerung von elektromagnet- und/oder schrittmotoren-spulen, insbesondere fuer einen matrixdrucker
DE2827959C3 (de) Schaltungsanordnung zur Auswertung der von einem Taktgeber abgegebenen glockenförmigen Taktgebersignale verschiedener Amplituden
DE3219383C2 (de)
DE3139502A1 (de) Schaltung fuer magnetisch ausloesbare druckelemente, wie beispielsweise drucknadeln, druckhaemmer oder dgl.fuer drucker, insbesondere fuer matrixdrucker
DE1774992C3 (de)
DE2253328C2 (de) Einrichtung zur Erkennung von Daten
DE1774992B2 (de) Schaltungsanordnung zur Erzeugung des Austastsignals für eine Koinzidenz Kernspeichermatrix

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT FR GB IT NL SE

17P Request for examination filed

Effective date: 19830610

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT NL SE

REF Corresponds to:

Ref document number: 31124

Country of ref document: AT

Date of ref document: 19871215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890821

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890824

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910808

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910814

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920927

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930528

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82730126.8

Effective date: 19910527