EP0079570B1 - Regeleinrichtung für die Luftzahl von Brennkraftmaschinen - Google Patents
Regeleinrichtung für die Luftzahl von Brennkraftmaschinen Download PDFInfo
- Publication number
- EP0079570B1 EP0079570B1 EP82110341A EP82110341A EP0079570B1 EP 0079570 B1 EP0079570 B1 EP 0079570B1 EP 82110341 A EP82110341 A EP 82110341A EP 82110341 A EP82110341 A EP 82110341A EP 0079570 B1 EP0079570 B1 EP 0079570B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- throughput
- air
- fuel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 title claims description 19
- 238000002485 combustion reaction Methods 0.000 title claims description 13
- 230000001105 regulatory effect Effects 0.000 claims 3
- 239000007789 gas Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1445—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1458—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
Definitions
- the invention relates to a control device for the air ratio of internal combustion engines, with an intake air flow meter, an exhaust gas sensor and a controller which variably controls the fuel flow rate according to the respective operating conditions with the signals of the flow meter and the exhaust gas sensor.
- the exhaust gas sensor is usually a so-called lambda probe which responds to a component of the exhaust gas, here oxygen.
- a component of the exhaust gas here oxygen.
- Such a probe shows the air ratio, that is to say the ratio of the amount of air supplied to the amount of air required for stoichiometric combustion, of 1, that is to say a stoichiometric mixture, a characteristic jumping behavior.
- the air ratio S it is only possible to regulate the air ratio S to the value 1 using the lambda probe.
- consumption-optimized designs require air ratio values that are significantly higher than 1, i.e. around 1.2 to 1.4.
- the lambda probe can only be used with unleaded fuel. This eliminates use, for example, in Western Europe with the leaded fuel present there.
- the invention has for its object to provide a control device of the type mentioned, with which the air ratio can be controlled to any value and regardless of the quality of the fuel or its additives.
- the mass of fuel supplied can be determined using the mass flow ratios. In stationary operation or in non-stationary operation without taking phase shifts into account, it is the difference between the throughputs of exhaust gas and intake air.
- the advantage of this computational method is that it also enables, for example in fuel injection systems with a fuel return, an exact determination of the fuel mass supplied to the combustion chamber.
- the actual air ratio can be determined in the usual way and compared with a target value stored, for example, in characteristic diagrams. In the event of deviations, a correction signal for the fuel metering device can easily be obtained.
- the time bases of the intake air and exhaust gas flow meters be approximately equal to the duration of one To select crankshaft rotation.
- An schematically illustrated internal combustion engine 1 receives its intake air via an intake duct 2, into which an injection nozzle 3 introduces fuel.
- the exhaust gases are discharged via an exhaust duct 4.
- a mass meter 5 or 6 which is designed in the usual way as a hot wire, vortex or ultrasonic transmitter and which supplies a signal s L or s A proportional to the respective mass flow rate m L and m A .
- the output signals of the mass meters 5 and 6 are summed in an integrator 7 and 8, respectively.
- the time base of the two integrators 7 and 8 is selected to be equal to the duration of a crank rotation.
- a corresponding signal for this is obtained with the aid of an inductive pickup 9, which responds to a marking 10 of a vibration damper 11 of the internal combustion engine 1.
- the output signals S L and S A of the two integrators 7 and 8 correspond to the intake and exhaust gas (mass) throughput per Crankshaft revolution of the internal combustion engine.
- the phase delay of the exhaust gas with respect to the intake air caused by the running time is additionally taken into account by a corresponding delay in the pulse signal 12 of a time base generator 13 that controls the operation of the integrator 8 compared to the corresponding pulse signal 14 for the integrator 7.
- the relationship between the speed-proportional signal of the transducer 9 and the two pulse signals 12 and 14 is shown schematically within the generator 13.
- the air ratio ⁇ can now be calculated with the aid of the in-phase signals S L and S A.
- the mass flow ratios are assumed, which are shown in the drawing as equation 1.
- a signal corresponding to the quantity m A is in the form of the signal S A.
- a corresponding signal for the quantity m L is the signal S L.
- the difference between these two values is proportional to the value -m K , that is to say the fuel throughput.
- the proportionality constant assuming the integrators 7 and 8 operate in the same way, is the same for the three values of equation 1.
- the air ratio ⁇ can be obtained by using the corresponding output signals of the integrator 7 or, in the case of the fuel throughput, the difference in the output signals in the equation 11 likewise given in the drawing, instead of the values for air or fuel throughput used there of the two integrators 8 and 7 is set. Since the fraction in the Henner des fraction is a constant that depends on the fuel quality, the air ratio of the mixture actually supplied to the internal combustion engine is obtained directly by correspondingly converting the output signals of the two integrators 7 and 8 in accordance with equation 11 in a computing circuit 15.
- the value thus obtained for ⁇ for the air ratio of the internal combustion engine actually supplied mixture is input to a target value to comparator 16, which communicates with a set-value memory 17 in connection.
- the setpoints of the air ratio X are stored in the memory 17 as characteristic maps in accordance with the operating conditions of the internal combustion engine.
- the target value comparator 16 supplies a correction signal AS k for a control device 18 which controls the injection valve 3. In this way it is possible to correct the initially selected control signal S k for the injection valve 3 in accordance with the actual requirements and to set it to the correct value.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
- Die Erfindung bezieht sich auf eine Regeleinrichtung für die Luftzahl von Brennkraftmaschinen, mit einem Ansaugluft-Durchsatzmesser, einem Abgassensor und einem Regler, der mit den Signalen des Durchsatzmessers und des Abgassensors den Kraftstoffdurchsatz entsprechend den jeweiligen Betriebsbedingungen variabel regelt.
- Bei einer derartigen Regeleinrichtung, wie sie beispielsweise aus der DE-A- 24 07 859 bekannt ist, ist der Abgassensor üblicherweise eine sogenannte Lambda-Sonde, die auf einen Bestandteil des Abgases, hier Sauerstoff, anspricht. Eine derartige Sonde zeigt beiwerten der Luftzahl das heißt dem Verhältnis der zugeführten Luftmenge zu der für stöchiometrische Verbrennung notwendigen Luftmenge, von 1, das heißt einem stöchiometrischen Gemisch, ein charakteristisches Sprungverhalten. Aus diesem Grund ist es lediglich möglich, mit Hilfe der Lambda-Sonde die Luftzahl S auf den Wert 1 zu regeln. Verbrauchsoptimale Auslegungen erfordern aber Luftzahlwerte, die wesentlich höher als 1, das heißt etwa bei 1,2 bis 1,4, liegen. Neben diesem Nachteil, mit Hilfe der Lambda-Sonde derartige magere Gemische üblicherweise nicht regeln zu können, ist die Verwendung der Lambda-Sonde nur bei bleifreiem Kraftstoff möglich, Damit Scheidet die Verwendung beispielsweise in Westeuropa mit dem dort vorhandenen bleihaltigen Kraftstoff aus.
- Der Erfindung liegt die Aufgabe zugrunde, eine Regeleinrichtung der eingangs genannten Art zu schaffen, mit der die Luftzahl auf beliebige Werte und unabhängig von der Qualität des Kraftstoffs bzw. dessen Zusätzen geregelt werden kann.
- Die Erfindung löst diese Aufgabe durch die kennzeichnenden Merkmale des unabhängigen Patentansprüchs.
- Durch die Bestimmung der Durchsätze von Ansaugluft und Abgas läßt sich mit Hilfe der Massenstromverhältnisse die zugeführte Kraftstoffmasse bestimmen. Sie ist im stationären Betrieb bzw. im instationären Betrieb ohne Berücksichtigung von Phasenverschiebungen gleich der Differenz der Durchsätze von Abgas und Ansaugluft. Der Vorteil dieser rechnerischen Methode besteht darin, daß sie auch beispielsweise bei Kraftstoff-Einspritzsystemen mit Kraftstoff-Rücklauf eine exakte Bestimmung der dem Brennraum zugeführten Kraftstoffmasse ermöglicht.
- Aus den so gewonnenen Werten für Ansaugluft- und Kraftstoffdurchsatz kann die tatsächliche Luftzahl in der üblichen Weise bestimmt und mit einem beispielsweise in Kennfeldern gespeicherten Sollwerten verglichen werden. Bei Abweichungen läßt sich ohne weiteres ein Korrektursignal für die Kraftstoffzumemeinrichtung gewinnen.
- Durch die Berücksichtigung des gesamten Abgasdurchsatzes sind ferner empfindliche und meist nicht langzeitstabile Abgassensoren für spezielle Abgaskomponenten nicht erforderlich. Vielmehr können die bereits für die Ansaugluft hinreichend bekannten Durchsatzmesser verwendet werden, die beispielsweise nach dem Hitzdraht-, dem Wirbel- oder dem Ultraschallverfahren arbeiten.
- Zwar ist es bekannt, die Luftzahl aus der Abgaszusammensetzung zu berechnen. Hierzu ist jedoch eine chemische Analyse des Abgases erforderlich. Aufgrund des damit verbundenen Zeitaufwands ist dieses Verfahren insbesondere bei instationärem Betrieb der Brennkraftmaschine völlig ungeeignet. (Vgl. Motortechnische Zeitschrift 37 (1976) 3, Seite 75). Ferner ist aus der FR-A- 21 19 155 eine mechanische Regeleinrichtung der eingangs genannten Art bekannt, bei der der Kraftstoff mit einem Druck entsprechend dem Abgasdruck eingespritzt wird. Der Abgasdruck wird mittels eines Druckgebers im Abgassammler bestimmt.
- Um einerseits durch Pulsationserscheinungen der Ansaugluft und des Abgases verursachte Schwankungen des Ausgangssignals der beiden Durchsatzmesser zu eliminieren und andererseits ein schnelles Ansprechen aud Durchflußänderungen infolge von Lastwechsel zu gewährleisten, ist es vorteilhaft, die Zeitbasen des Ansaugluft- und des Abgas-Durchsatzmessers etwa gleich der Dauer einer Kurbelwellenumdrehung zu wählen.
- Weiterhin ist es vorteilhaft, die Ausgangssignale des Abgas- und des Ansaugluft-Durchsatzmessers etwa um die Laufzeit der Gasmassen zwischen den beiden Durchsatzmessern in ihrer Phase zu verschieben. Dadurch werden die "richtigen" Gasmassen miteinander in Beziehung gesetzt.
- Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels weiter erläutert.
- Eine schematisch dargestellte Brennkraftmaschine 1 erhält ihre Ansaugluft über einen Ansaugkanal 2, in den eine Einspritzdüse 3 Kraftstoff einbringt. Die Abgase werden über einen Abgaskanal 4 abgeführt.
- Im Ansaugkanal 2 und im Abgaskanal 4 sitzt jeweils ein Massenmesser 5 bzw. 6, der in der üblichen Weise als Hitzdraht-, Wirbeloder Ultraschallgeber ausgebildet ist, und der ein dem jeweiligen Massendurchsatz mL und mA proportionales Signal sL bzw. sA liefert. Die Ausgangssignale der Massenmesser 5 und 6 werden in einem Integrator 7 bzw. 8 summiert. Die Zeitbasis der beiden integratoren 7 bzw. 8. ist gleich der Dauer einer Kurbelweilenumdrehung gewählt.
- Ein entsprechendes Signal hierfür wird mit Hilfe eines induktiven Aufnehmers 9 gewonnen, der auf eine Markierung 10 eines Schwingungsdämpfers 11 der Brennkraftmaschine 1 anspricht.
- Die Ausgangssignale SL bzw. SA der beiden Integratoren 7 bzw. 8 entsprechen dem Ansaug- bzw. Abgas-(Massen-)Durchsatz pro Kurbelwellenumdrehung der Brennkraftmaschine. Der durch die Laufzeit bedingte Phasenverzug des Abgases gegenüber der Ansaugluft ist dabei zusätzlich durch eine entsprechende Verzögerung des die Arbeitsweise des Integrators 8 steuernden Impulssignals 12 eines Zeitbasis-Generators 13 gegenüber dem entsprechenden Impulssignal 14 für den Integrator 7 berücksichtigt. Der Zusammenhang zwischen dem drehzahlproportionalen Signal des Aufnehmers 9 und den beiden Impulssignalen 12 und 14 ist schematisch innerhalb des Generators 13 dargestellt.
- Mit Hilfe der phasenrichtigen Signale SL und SA läßt sich nunmehr die Luftzahl λ berechnen. Hierzu wird von den Massenstromverhältnissen ausgegangen, die in der Zeichnung als Gleichung 1 wiedergegeben sind. Ein der Größe mA entsprechendes Signal liegt in Form des Signals SA vor. Ein entsprechendes Signal für die Größe mL ist das Signal SL. Die Differenz dieser beiden Werte ist dem Wert -mK, das heißt dem Kraftstoffdurchsatz proportional. Die Proportionalitätskonstante ist,gleiche Arbeitsweise der Integratoren 7 und 8 vorausgesetzt, für die drei Werte von Gleichung 1 gleich.
- Daraus ergibt sich, daß die Luftzahl λ dadurch gewonnen werden kann, daß in der ebenfalls in der Zeichnung angegebenen Gleichung 11 statt der dort verwendeten Werte für Luft- bzw. Kraftstoffdurchsatz die entsprechenden Ausgangssignale des Integrators 7 bzw. im Falle des Kraftstoffdurchsatzes die Differenz der Ausgangssignale der beiden Integratoren 8 und 7 gesetzt wird. Da der im Henner des-Bruches stehende Bruch eine von der Kraftstoffqualität abhängige Konstante ist, ergibt sich somit die Luftzahl des der Brennkraftmaschine tatsächlich zugeführten Gemisches unmittelbar durch entsprechende Umsetzung der Ausgangssignale der beiden Integratoren 7 und 8 entsprechend der Gleichung 11 in einer Rechenschaltung 15.
- Der so gewonnene Wert für λist für die Luftzahl des der Brennkraftmaschine tatsächlich zugeführten Gemisches wird in einen Sollwertvergleicher 16 eingegeben, der mit einem Sollwertspeicher 17 in Verbindung steht. Im Speicher 17 sind die Sollwerte der Luftzahl X entsprechend den Betriebsbedingungen der Brennkraftmaschine als Kennfelder gespeichert.
- Sofern Ist- und Sollwert der Luftzahlen nicht übereinstimmen, liefert der Sollwertvergleicher 16 ein Korrektursignal A Sk für eine Regeleinrichtung 18, die das Einspritzventil 3 steuert. Auf diese Weise ist es möglich, das zunächst gewählte Steuersignal Sk für das Einspritzventil 3 entsprechend den tatsächlichen Erfordernissen zu korrigieren und auf den richtigen Wert einzustellen.
- Mit Hilfe der Erfindung ist es somit möglich, die Luftzahl der Brennkraftmaschine, das heißt das zugeführte Gemisch, variabel zu regeln. Hierfür bedarf es neben dem ohnehin meist vorhandenen Durchsatzmesser für die Ansaugluft im westenlichen lediglich eines beispielsweise entsprechend arbeitenden Durchsatzmessers für das Abgas.
Claims (3)
- Regeleinrichtung für die Luftzahl von Brennkraftmaschinen, mit einem Ansaugluft-Massen-Durchsatzmesser (5), einem Abgassensor (6) und einem Regler, der mit den Signalen des Massen-Durchsatzmessers (5) und des Abgassensors (6) den Kraftstoffdurchsatz entsprechend den jeweiligen Betriebsbedingungen variabel regejt, dadurch gekennzeichnet, daß der Abgassensor ein Abgas-Massen-Durchsatzmesser ist und die Kraftstoffmasse mittels eines elektronischen Reglers aus der Differenz der Ansaugluft- und der Abgas-Massen-Durchsätze bestimmt ist.
- 2. Regeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitbasen des Ansaugluft- und des Abgas-Massen-durchsatzmessers (5 bzw. 6) etwa gleich der Dauer einer Kurbelwellenumdrehung sind.
- 3. Regeleinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ausgangssignale des Abgas- und des Ansaugluft-Massen-Durchsatzmessers (5 bzw. 6) etwa um die Laufzeit der Gasmassen zwischen den beiden Durchsatzmessern phasenverschoben werden.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3145235 | 1981-11-13 | ||
| DE3145235A DE3145235C1 (de) | 1981-11-13 | 1981-11-13 | Regeleinrichtung fuer die Luftzahl von Brennkraftmaschinen |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0079570A2 EP0079570A2 (de) | 1983-05-25 |
| EP0079570A3 EP0079570A3 (en) | 1984-12-05 |
| EP0079570B1 true EP0079570B1 (de) | 1987-01-14 |
Family
ID=6146374
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP82110341A Expired EP0079570B1 (de) | 1981-11-13 | 1982-11-10 | Regeleinrichtung für die Luftzahl von Brennkraftmaschinen |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0079570B1 (de) |
| DE (2) | DE3145235C1 (de) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2544353B2 (ja) * | 1986-09-03 | 1996-10-16 | 株式会社日立製作所 | エンジンの回転同期型制御方法 |
| DE3743315A1 (de) * | 1987-12-21 | 1989-06-29 | Bosch Gmbh Robert | Auswerteinrichtung fuer das messsignal einer lambdasonde |
| DE4003752A1 (de) * | 1990-02-08 | 1991-08-14 | Bosch Gmbh Robert | Verfahren zum zuordnen von verbrennungsfehlern zu einem zylinder einer brennkraftmaschine |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1698205A1 (de) * | 1968-02-14 | 1971-11-18 | Daimler Benz Ag | Verfahren und Einrichtung zur Abgasbestimmung bei Brennkraftmaschinen,insbesondere in Kraftfahrzeugen |
| FR2119155A5 (de) * | 1970-12-22 | 1972-08-04 | Brev Etudes Sibe | |
| DE2407859A1 (de) * | 1973-02-20 | 1974-08-22 | Lucas Electrical Co Ltd | Kraftstoffregelsystem |
| DE2448306C2 (de) * | 1974-10-10 | 1983-12-08 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstoffeinspritzanlage |
| US4005689A (en) * | 1975-04-30 | 1977-02-01 | The Bendix Corporation | Fuel injection system controlling air/fuel ratio by intake manifold gas sensor |
| DE2702863C2 (de) * | 1977-01-25 | 1986-06-05 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren und Vorrichtung zur Regelung der Gemischverhältnisanteile des einer Brennkraftmaschine zugeführten Betriebsgemischs |
| US4130095A (en) * | 1977-07-12 | 1978-12-19 | General Motors Corporation | Fuel control system with calibration learning capability for motor vehicle internal combustion engine |
| US4269156A (en) * | 1979-05-01 | 1981-05-26 | The Bendix Corporation | Air/fuel ratio management system with calibration correction for manifold pressure differentials |
-
1981
- 1981-11-13 DE DE3145235A patent/DE3145235C1/de not_active Expired
-
1982
- 1982-11-10 EP EP82110341A patent/EP0079570B1/de not_active Expired
- 1982-11-10 DE DE8282110341T patent/DE3275111D1/de not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| DE3145235C1 (de) | 1983-07-21 |
| DE3275111D1 (en) | 1987-02-19 |
| EP0079570A3 (en) | 1984-12-05 |
| EP0079570A2 (de) | 1983-05-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE60109671T2 (de) | Verfahren für zylinderindividuelle Kraftstoffregelung | |
| DE19606652B4 (de) | Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator | |
| DE3853434T2 (de) | System für brennstoffsteuerung. | |
| DE3737249C2 (de) | ||
| DE3039436A1 (de) | Regeleinrichtung fuer ein kraftstoffzumesssystem einer brennkraftmaschine | |
| EP0394306B1 (de) | Steuereinrichtung für eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung | |
| DE2938322A1 (de) | Hitzdraht-durchsatz-messgeraet | |
| DE3714543C2 (de) | ||
| DE2921976A1 (de) | Vorrichtung zur diagnose von fehlern eines motors | |
| DE19740917A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Gastemperatur in einem Verbrennungsmotor | |
| DE4337793C2 (de) | Verfahren und Vorrichtung zum Beurteilen des Funktionszustandes eines Katalysators | |
| DE4035731A1 (de) | Kraftstoffkonzentrationsueberwachungseinheit | |
| DE2739434A1 (de) | Anordnung und verfahren zum ermitteln der turbineneinlasstemperatur einer turbinenanlage | |
| DE4007557A1 (de) | Treibstoffregler fuer verbrennungsmotor | |
| DE102018216980A1 (de) | Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators | |
| DE4001362C2 (de) | ||
| WO1990015236A1 (de) | Verfahren zum bestimmen der verbrennungsluftmasse in den zylindern einer brennkraftmaschine | |
| DE3513086C2 (de) | ||
| DE3524592C1 (de) | Verfahren zur UEberpruefung der Funktionstuechtigkeit katalytischer Reaktoren und Einrichtung zur Durchfuehrung des Verfahrens | |
| EP0079570B1 (de) | Regeleinrichtung für die Luftzahl von Brennkraftmaschinen | |
| DE2757180C2 (de) | ||
| DE3885941T2 (de) | System zum Steuern des Luft-/Kraftstoff-Verhältnisses für Innenbrennkraftmotoren mit der Fähigkeit, einen korrektur-Koeffizient zu lernen. | |
| DE3713791A1 (de) | Verfahren zum regeln des luft/kraftstoff-verhaeltnisses des einer brennkraftmaschine gelieferten kraftstoffgemisches | |
| EP0414684A1 (de) | Steuer-/regelsystem für eine brennkraftmaschine. | |
| DE102004019315A1 (de) | Verfahren zur Bestimmung von Zustandsgrößen eines Gasgemisches in einer einem Verbrennungsmotor zugeordneten Luftstecke und entsprechend ausgestaltete Motostreuerung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
| 17P | Request for examination filed |
Effective date: 19850403 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
| REF | Corresponds to: |
Ref document number: 3275111 Country of ref document: DE Date of ref document: 19870219 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| ITTA | It: last paid annual fee | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921031 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921102 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921110 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921127 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19931110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19931111 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19931110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940802 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| EUG | Se: european patent has lapsed |
Ref document number: 82110341.3 Effective date: 19940610 |