EP0079570B1 - Regulation apparatus for the air/fuel ratio of an internal-combustion engine - Google Patents
Regulation apparatus for the air/fuel ratio of an internal-combustion engine Download PDFInfo
- Publication number
- EP0079570B1 EP0079570B1 EP82110341A EP82110341A EP0079570B1 EP 0079570 B1 EP0079570 B1 EP 0079570B1 EP 82110341 A EP82110341 A EP 82110341A EP 82110341 A EP82110341 A EP 82110341A EP 0079570 B1 EP0079570 B1 EP 0079570B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gas
- throughput
- air
- fuel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 title claims description 19
- 238000002485 combustion reaction Methods 0.000 title claims description 13
- 230000001105 regulatory effect Effects 0.000 claims 3
- 239000007789 gas Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1445—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1458—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
Definitions
- the invention relates to a control device for the air ratio of internal combustion engines, with an intake air flow meter, an exhaust gas sensor and a controller which variably controls the fuel flow rate according to the respective operating conditions with the signals of the flow meter and the exhaust gas sensor.
- the exhaust gas sensor is usually a so-called lambda probe which responds to a component of the exhaust gas, here oxygen.
- a component of the exhaust gas here oxygen.
- Such a probe shows the air ratio, that is to say the ratio of the amount of air supplied to the amount of air required for stoichiometric combustion, of 1, that is to say a stoichiometric mixture, a characteristic jumping behavior.
- the air ratio S it is only possible to regulate the air ratio S to the value 1 using the lambda probe.
- consumption-optimized designs require air ratio values that are significantly higher than 1, i.e. around 1.2 to 1.4.
- the lambda probe can only be used with unleaded fuel. This eliminates use, for example, in Western Europe with the leaded fuel present there.
- the invention has for its object to provide a control device of the type mentioned, with which the air ratio can be controlled to any value and regardless of the quality of the fuel or its additives.
- the mass of fuel supplied can be determined using the mass flow ratios. In stationary operation or in non-stationary operation without taking phase shifts into account, it is the difference between the throughputs of exhaust gas and intake air.
- the advantage of this computational method is that it also enables, for example in fuel injection systems with a fuel return, an exact determination of the fuel mass supplied to the combustion chamber.
- the actual air ratio can be determined in the usual way and compared with a target value stored, for example, in characteristic diagrams. In the event of deviations, a correction signal for the fuel metering device can easily be obtained.
- the time bases of the intake air and exhaust gas flow meters be approximately equal to the duration of one To select crankshaft rotation.
- An schematically illustrated internal combustion engine 1 receives its intake air via an intake duct 2, into which an injection nozzle 3 introduces fuel.
- the exhaust gases are discharged via an exhaust duct 4.
- a mass meter 5 or 6 which is designed in the usual way as a hot wire, vortex or ultrasonic transmitter and which supplies a signal s L or s A proportional to the respective mass flow rate m L and m A .
- the output signals of the mass meters 5 and 6 are summed in an integrator 7 and 8, respectively.
- the time base of the two integrators 7 and 8 is selected to be equal to the duration of a crank rotation.
- a corresponding signal for this is obtained with the aid of an inductive pickup 9, which responds to a marking 10 of a vibration damper 11 of the internal combustion engine 1.
- the output signals S L and S A of the two integrators 7 and 8 correspond to the intake and exhaust gas (mass) throughput per Crankshaft revolution of the internal combustion engine.
- the phase delay of the exhaust gas with respect to the intake air caused by the running time is additionally taken into account by a corresponding delay in the pulse signal 12 of a time base generator 13 that controls the operation of the integrator 8 compared to the corresponding pulse signal 14 for the integrator 7.
- the relationship between the speed-proportional signal of the transducer 9 and the two pulse signals 12 and 14 is shown schematically within the generator 13.
- the air ratio ⁇ can now be calculated with the aid of the in-phase signals S L and S A.
- the mass flow ratios are assumed, which are shown in the drawing as equation 1.
- a signal corresponding to the quantity m A is in the form of the signal S A.
- a corresponding signal for the quantity m L is the signal S L.
- the difference between these two values is proportional to the value -m K , that is to say the fuel throughput.
- the proportionality constant assuming the integrators 7 and 8 operate in the same way, is the same for the three values of equation 1.
- the air ratio ⁇ can be obtained by using the corresponding output signals of the integrator 7 or, in the case of the fuel throughput, the difference in the output signals in the equation 11 likewise given in the drawing, instead of the values for air or fuel throughput used there of the two integrators 8 and 7 is set. Since the fraction in the Henner des fraction is a constant that depends on the fuel quality, the air ratio of the mixture actually supplied to the internal combustion engine is obtained directly by correspondingly converting the output signals of the two integrators 7 and 8 in accordance with equation 11 in a computing circuit 15.
- the value thus obtained for ⁇ for the air ratio of the internal combustion engine actually supplied mixture is input to a target value to comparator 16, which communicates with a set-value memory 17 in connection.
- the setpoints of the air ratio X are stored in the memory 17 as characteristic maps in accordance with the operating conditions of the internal combustion engine.
- the target value comparator 16 supplies a correction signal AS k for a control device 18 which controls the injection valve 3. In this way it is possible to correct the initially selected control signal S k for the injection valve 3 in accordance with the actual requirements and to set it to the correct value.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Die Erfindung bezieht sich auf eine Regeleinrichtung für die Luftzahl von Brennkraftmaschinen, mit einem Ansaugluft-Durchsatzmesser, einem Abgassensor und einem Regler, der mit den Signalen des Durchsatzmessers und des Abgassensors den Kraftstoffdurchsatz entsprechend den jeweiligen Betriebsbedingungen variabel regelt.The invention relates to a control device for the air ratio of internal combustion engines, with an intake air flow meter, an exhaust gas sensor and a controller which variably controls the fuel flow rate according to the respective operating conditions with the signals of the flow meter and the exhaust gas sensor.
Bei einer derartigen Regeleinrichtung, wie sie beispielsweise aus der DE-A- 24 07 859 bekannt ist, ist der Abgassensor üblicherweise eine sogenannte Lambda-Sonde, die auf einen Bestandteil des Abgases, hier Sauerstoff, anspricht. Eine derartige Sonde zeigt beiwerten der Luftzahl das heißt dem Verhältnis der zugeführten Luftmenge zu der für stöchiometrische Verbrennung notwendigen Luftmenge, von 1, das heißt einem stöchiometrischen Gemisch, ein charakteristisches Sprungverhalten. Aus diesem Grund ist es lediglich möglich, mit Hilfe der Lambda-Sonde die Luftzahl S auf den Wert 1 zu regeln. Verbrauchsoptimale Auslegungen erfordern aber Luftzahlwerte, die wesentlich höher als 1, das heißt etwa bei 1,2 bis 1,4, liegen. Neben diesem Nachteil, mit Hilfe der Lambda-Sonde derartige magere Gemische üblicherweise nicht regeln zu können, ist die Verwendung der Lambda-Sonde nur bei bleifreiem Kraftstoff möglich, Damit Scheidet die Verwendung beispielsweise in Westeuropa mit dem dort vorhandenen bleihaltigen Kraftstoff aus.In such a control device, as is known for example from DE-A-24 07 859, the exhaust gas sensor is usually a so-called lambda probe which responds to a component of the exhaust gas, here oxygen. Such a probe shows the air ratio, that is to say the ratio of the amount of air supplied to the amount of air required for stoichiometric combustion, of 1, that is to say a stoichiometric mixture, a characteristic jumping behavior. For this reason, it is only possible to regulate the air ratio S to the value 1 using the lambda probe. However, consumption-optimized designs require air ratio values that are significantly higher than 1, i.e. around 1.2 to 1.4. In addition to this disadvantage of not being able to regulate such lean mixtures with the aid of the lambda probe, the lambda probe can only be used with unleaded fuel. This eliminates use, for example, in Western Europe with the leaded fuel present there.
Der Erfindung liegt die Aufgabe zugrunde, eine Regeleinrichtung der eingangs genannten Art zu schaffen, mit der die Luftzahl auf beliebige Werte und unabhängig von der Qualität des Kraftstoffs bzw. dessen Zusätzen geregelt werden kann.The invention has for its object to provide a control device of the type mentioned, with which the air ratio can be controlled to any value and regardless of the quality of the fuel or its additives.
Die Erfindung löst diese Aufgabe durch die kennzeichnenden Merkmale des unabhängigen Patentansprüchs.The invention solves this problem by the characterizing features of the independent patent claim.
Durch die Bestimmung der Durchsätze von Ansaugluft und Abgas läßt sich mit Hilfe der Massenstromverhältnisse die zugeführte Kraftstoffmasse bestimmen. Sie ist im stationären Betrieb bzw. im instationären Betrieb ohne Berücksichtigung von Phasenverschiebungen gleich der Differenz der Durchsätze von Abgas und Ansaugluft. Der Vorteil dieser rechnerischen Methode besteht darin, daß sie auch beispielsweise bei Kraftstoff-Einspritzsystemen mit Kraftstoff-Rücklauf eine exakte Bestimmung der dem Brennraum zugeführten Kraftstoffmasse ermöglicht.By determining the throughputs of intake air and exhaust gas, the mass of fuel supplied can be determined using the mass flow ratios. In stationary operation or in non-stationary operation without taking phase shifts into account, it is the difference between the throughputs of exhaust gas and intake air. The advantage of this computational method is that it also enables, for example in fuel injection systems with a fuel return, an exact determination of the fuel mass supplied to the combustion chamber.
Aus den so gewonnenen Werten für Ansaugluft- und Kraftstoffdurchsatz kann die tatsächliche Luftzahl in der üblichen Weise bestimmt und mit einem beispielsweise in Kennfeldern gespeicherten Sollwerten verglichen werden. Bei Abweichungen läßt sich ohne weiteres ein Korrektursignal für die Kraftstoffzumemeinrichtung gewinnen.From the values for intake air and fuel throughput obtained in this way, the actual air ratio can be determined in the usual way and compared with a target value stored, for example, in characteristic diagrams. In the event of deviations, a correction signal for the fuel metering device can easily be obtained.
Durch die Berücksichtigung des gesamten Abgasdurchsatzes sind ferner empfindliche und meist nicht langzeitstabile Abgassensoren für spezielle Abgaskomponenten nicht erforderlich. Vielmehr können die bereits für die Ansaugluft hinreichend bekannten Durchsatzmesser verwendet werden, die beispielsweise nach dem Hitzdraht-, dem Wirbel- oder dem Ultraschallverfahren arbeiten.By taking the total exhaust gas throughput into account, sensitive and mostly not long-term stable exhaust gas sensors are not required for special exhaust gas components. Rather, the flow meters already well known for the intake air can be used, which work for example according to the hot wire, the vortex or the ultrasonic method.
Zwar ist es bekannt, die Luftzahl aus der Abgaszusammensetzung zu berechnen. Hierzu ist jedoch eine chemische Analyse des Abgases erforderlich. Aufgrund des damit verbundenen Zeitaufwands ist dieses Verfahren insbesondere bei instationärem Betrieb der Brennkraftmaschine völlig ungeeignet. (Vgl. Motortechnische Zeitschrift 37 (1976) 3, Seite 75). Ferner ist aus der FR-A- 21 19 155 eine mechanische Regeleinrichtung der eingangs genannten Art bekannt, bei der der Kraftstoff mit einem Druck entsprechend dem Abgasdruck eingespritzt wird. Der Abgasdruck wird mittels eines Druckgebers im Abgassammler bestimmt.It is known to calculate the air ratio from the exhaust gas composition. However, this requires a chemical analysis of the exhaust gas. Because of the time involved, this method is completely unsuitable, particularly when the internal combustion engine is operating transiently. (See Motortechnische Zeitschrift 37 (1976) 3, page 75). Furthermore, from FR-A-21 19 155 a mechanical control device of the type mentioned is known, in which the fuel is injected at a pressure corresponding to the exhaust gas pressure. The exhaust gas pressure is determined using a pressure sensor in the exhaust manifold.
Um einerseits durch Pulsationserscheinungen der Ansaugluft und des Abgases verursachte Schwankungen des Ausgangssignals der beiden Durchsatzmesser zu eliminieren und andererseits ein schnelles Ansprechen aud Durchflußänderungen infolge von Lastwechsel zu gewährleisten, ist es vorteilhaft, die Zeitbasen des Ansaugluft- und des Abgas-Durchsatzmessers etwa gleich der Dauer einer Kurbelwellenumdrehung zu wählen.In order on the one hand to eliminate fluctuations in the output signal of the two flow meters caused by pulsation phenomena of the intake air and the exhaust gas and on the other hand to ensure a quick response to changes in flow rate due to load changes, it is advantageous for the time bases of the intake air and exhaust gas flow meters to be approximately equal to the duration of one To select crankshaft rotation.
Weiterhin ist es vorteilhaft, die Ausgangssignale des Abgas- und des Ansaugluft-Durchsatzmessers etwa um die Laufzeit der Gasmassen zwischen den beiden Durchsatzmessern in ihrer Phase zu verschieben. Dadurch werden die "richtigen" Gasmassen miteinander in Beziehung gesetzt.Furthermore, it is advantageous to shift the phase of the output signals of the exhaust gas and intake air flow meters by approximately the running time of the gas masses between the two flow meters. This means that the "correct" gas masses are related to each other.
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels weiter erläutert.The invention is further explained using an exemplary embodiment shown in the drawing.
Eine schematisch dargestellte Brennkraftmaschine 1 erhält ihre Ansaugluft über einen Ansaugkanal 2, in den eine Einspritzdüse 3 Kraftstoff einbringt. Die Abgase werden über einen Abgaskanal 4 abgeführt.An schematically illustrated internal combustion engine 1 receives its intake air via an
Im Ansaugkanal 2 und im Abgaskanal 4 sitzt jeweils ein Massenmesser 5 bzw. 6, der in der üblichen Weise als Hitzdraht-, Wirbeloder Ultraschallgeber ausgebildet ist, und der ein dem jeweiligen Massendurchsatz mL und mA proportionales Signal sL bzw. sA liefert. Die Ausgangssignale der Massenmesser 5 und 6 werden in einem Integrator 7 bzw. 8 summiert. Die Zeitbasis der beiden integratoren 7 bzw. 8. ist gleich der Dauer einer Kurbelweilenumdrehung gewählt.In the
Ein entsprechendes Signal hierfür wird mit Hilfe eines induktiven Aufnehmers 9 gewonnen, der auf eine Markierung 10 eines Schwingungsdämpfers 11 der Brennkraftmaschine 1 anspricht.A corresponding signal for this is obtained with the aid of an inductive pickup 9, which responds to a marking 10 of a vibration damper 11 of the internal combustion engine 1.
Die Ausgangssignale SL bzw. SA der beiden Integratoren 7 bzw. 8 entsprechen dem Ansaug- bzw. Abgas-(Massen-)Durchsatz pro Kurbelwellenumdrehung der Brennkraftmaschine. Der durch die Laufzeit bedingte Phasenverzug des Abgases gegenüber der Ansaugluft ist dabei zusätzlich durch eine entsprechende Verzögerung des die Arbeitsweise des Integrators 8 steuernden Impulssignals 12 eines Zeitbasis-Generators 13 gegenüber dem entsprechenden Impulssignal 14 für den Integrator 7 berücksichtigt. Der Zusammenhang zwischen dem drehzahlproportionalen Signal des Aufnehmers 9 und den beiden Impulssignalen 12 und 14 ist schematisch innerhalb des Generators 13 dargestellt.The output signals S L and S A of the two integrators 7 and 8 correspond to the intake and exhaust gas (mass) throughput per Crankshaft revolution of the internal combustion engine. The phase delay of the exhaust gas with respect to the intake air caused by the running time is additionally taken into account by a corresponding delay in the
Mit Hilfe der phasenrichtigen Signale SL und SA läßt sich nunmehr die Luftzahl λ berechnen. Hierzu wird von den Massenstromverhältnissen ausgegangen, die in der Zeichnung als Gleichung 1 wiedergegeben sind. Ein der Größe mA entsprechendes Signal liegt in Form des Signals SA vor. Ein entsprechendes Signal für die Größe mL ist das Signal SL. Die Differenz dieser beiden Werte ist dem Wert -mK, das heißt dem Kraftstoffdurchsatz proportional. Die Proportionalitätskonstante ist,gleiche Arbeitsweise der Integratoren 7 und 8 vorausgesetzt, für die drei Werte von Gleichung 1 gleich.The air ratio λ can now be calculated with the aid of the in-phase signals S L and S A. For this purpose, the mass flow ratios are assumed, which are shown in the drawing as equation 1. A signal corresponding to the quantity m A is in the form of the signal S A. A corresponding signal for the quantity m L is the signal S L. The difference between these two values is proportional to the value -m K , that is to say the fuel throughput. The proportionality constant, assuming the integrators 7 and 8 operate in the same way, is the same for the three values of equation 1.
Daraus ergibt sich, daß die Luftzahl λ dadurch gewonnen werden kann, daß in der ebenfalls in der Zeichnung angegebenen Gleichung 11 statt der dort verwendeten Werte für Luft- bzw. Kraftstoffdurchsatz die entsprechenden Ausgangssignale des Integrators 7 bzw. im Falle des Kraftstoffdurchsatzes die Differenz der Ausgangssignale der beiden Integratoren 8 und 7 gesetzt wird. Da der im Henner des-Bruches stehende Bruch eine von der Kraftstoffqualität abhängige Konstante ist, ergibt sich somit die Luftzahl des der Brennkraftmaschine tatsächlich zugeführten Gemisches unmittelbar durch entsprechende Umsetzung der Ausgangssignale der beiden Integratoren 7 und 8 entsprechend der Gleichung 11 in einer Rechenschaltung 15.The result of this is that the air ratio λ can be obtained by using the corresponding output signals of the integrator 7 or, in the case of the fuel throughput, the difference in the output signals in the equation 11 likewise given in the drawing, instead of the values for air or fuel throughput used there of the two integrators 8 and 7 is set. Since the fraction in the Henner des fraction is a constant that depends on the fuel quality, the air ratio of the mixture actually supplied to the internal combustion engine is obtained directly by correspondingly converting the output signals of the two integrators 7 and 8 in accordance with equation 11 in a
Der so gewonnene Wert für λist für die Luftzahl des der Brennkraftmaschine tatsächlich zugeführten Gemisches wird in einen Sollwertvergleicher 16 eingegeben, der mit einem Sollwertspeicher 17 in Verbindung steht. Im Speicher 17 sind die Sollwerte der Luftzahl X entsprechend den Betriebsbedingungen der Brennkraftmaschine als Kennfelder gespeichert.The value thus obtained for λ for the air ratio of the internal combustion engine actually supplied mixture is input to a target value to
Sofern Ist- und Sollwert der Luftzahlen nicht übereinstimmen, liefert der Sollwertvergleicher 16 ein Korrektursignal A Sk für eine Regeleinrichtung 18, die das Einspritzventil 3 steuert. Auf diese Weise ist es möglich, das zunächst gewählte Steuersignal Sk für das Einspritzventil 3 entsprechend den tatsächlichen Erfordernissen zu korrigieren und auf den richtigen Wert einzustellen.If the actual and target values of the air ratios do not match, the
Mit Hilfe der Erfindung ist es somit möglich, die Luftzahl der Brennkraftmaschine, das heißt das zugeführte Gemisch, variabel zu regeln. Hierfür bedarf es neben dem ohnehin meist vorhandenen Durchsatzmesser für die Ansaugluft im westenlichen lediglich eines beispielsweise entsprechend arbeitenden Durchsatzmessers für das Abgas.With the help of the invention it is thus possible to variably regulate the air ratio of the internal combustion engine, that is to say the mixture supplied. For this purpose, in addition to the flow meter for the intake air, which is usually present anyway, only a flow meter for the exhaust gas, for example, which works accordingly, is required.
Claims (3)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3145235 | 1981-11-13 | ||
| DE3145235A DE3145235C1 (en) | 1981-11-13 | 1981-11-13 | Control device for the air ratio of internal combustion engines |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0079570A2 EP0079570A2 (en) | 1983-05-25 |
| EP0079570A3 EP0079570A3 (en) | 1984-12-05 |
| EP0079570B1 true EP0079570B1 (en) | 1987-01-14 |
Family
ID=6146374
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP82110341A Expired EP0079570B1 (en) | 1981-11-13 | 1982-11-10 | Regulation apparatus for the air/fuel ratio of an internal-combustion engine |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP0079570B1 (en) |
| DE (2) | DE3145235C1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2544353B2 (en) * | 1986-09-03 | 1996-10-16 | 株式会社日立製作所 | Engine rotation synchronous control method |
| DE3743315A1 (en) * | 1987-12-21 | 1989-06-29 | Bosch Gmbh Robert | EVALUATION DEVICE FOR THE MEASURING SIGNAL OF A LAMB PROBE |
| DE4003752A1 (en) * | 1990-02-08 | 1991-08-14 | Bosch Gmbh Robert | METHOD FOR ASSIGNING COMBUSTION ERRORS TO A CYLINDER OF AN INTERNAL COMBUSTION ENGINE |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1698205A1 (en) * | 1968-02-14 | 1971-11-18 | Daimler Benz Ag | Method and device for determining exhaust gas in internal combustion engines, in particular in motor vehicles |
| FR2119155A5 (en) * | 1970-12-22 | 1972-08-04 | Brev Etudes Sibe | |
| DE2407859A1 (en) * | 1973-02-20 | 1974-08-22 | Lucas Electrical Co Ltd | FUEL CONTROL SYSTEM |
| DE2448306C2 (en) * | 1974-10-10 | 1983-12-08 | Robert Bosch Gmbh, 7000 Stuttgart | Fuel injection system |
| US4005689A (en) * | 1975-04-30 | 1977-02-01 | The Bendix Corporation | Fuel injection system controlling air/fuel ratio by intake manifold gas sensor |
| DE2702863C2 (en) * | 1977-01-25 | 1986-06-05 | Robert Bosch Gmbh, 7000 Stuttgart | Method and device for regulating the mixture ratio components of the operating mixture fed to an internal combustion engine |
| US4130095A (en) * | 1977-07-12 | 1978-12-19 | General Motors Corporation | Fuel control system with calibration learning capability for motor vehicle internal combustion engine |
| US4269156A (en) * | 1979-05-01 | 1981-05-26 | The Bendix Corporation | Air/fuel ratio management system with calibration correction for manifold pressure differentials |
-
1981
- 1981-11-13 DE DE3145235A patent/DE3145235C1/en not_active Expired
-
1982
- 1982-11-10 EP EP82110341A patent/EP0079570B1/en not_active Expired
- 1982-11-10 DE DE8282110341T patent/DE3275111D1/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| DE3145235C1 (en) | 1983-07-21 |
| DE3275111D1 (en) | 1987-02-19 |
| EP0079570A3 (en) | 1984-12-05 |
| EP0079570A2 (en) | 1983-05-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE60109671T2 (en) | Method for cylinder-specific fuel control | |
| DE19606652B4 (en) | Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter | |
| DE3853434T2 (en) | FUEL CONTROL SYSTEM. | |
| DE3737249C2 (en) | ||
| DE3039436A1 (en) | CONTROL DEVICE FOR A FUEL METERING SYSTEM OF AN INTERNAL COMBUSTION ENGINE | |
| EP0394306B1 (en) | Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment | |
| DE2938322A1 (en) | HEAT WIRE THROUGHPUT MEASURING DEVICE | |
| DE3714543C2 (en) | ||
| DE2921976A1 (en) | DEVICE FOR DIAGNOSING FAULTS IN AN ENGINE | |
| DE19740917A1 (en) | Cylinder gas temperature determination in combustion engine | |
| DE4337793C2 (en) | Method and device for assessing the functional state of a catalytic converter | |
| DE4035731A1 (en) | FUEL CONCENTRATION MONITORING UNIT | |
| DE2739434A1 (en) | ARRANGEMENT AND PROCEDURE FOR DETERMINING THE TURBINE INLET TEMPERATURE OF A TURBINE SYSTEM | |
| DE4007557A1 (en) | FUEL REGULATOR FOR COMBUSTION ENGINE | |
| DE102018216980A1 (en) | Method for regulating a filling of a storage device of a catalytic converter for an exhaust gas component as a function of aging of the catalytic converter | |
| DE4001362C2 (en) | ||
| WO1990015236A1 (en) | Process for determining the combustion air mass in the cylinders of an internal combustion engine | |
| DE3513086C2 (en) | ||
| DE3524592C1 (en) | Process for checking the functionality of catalytic reactors and device for carrying out the process | |
| EP0079570B1 (en) | Regulation apparatus for the air/fuel ratio of an internal-combustion engine | |
| DE2757180C2 (en) | ||
| DE3885941T2 (en) | Air / fuel ratio control system for internal combustion engines with the ability to learn a correction coefficient. | |
| DE3713791A1 (en) | METHOD FOR REGULATING THE AIR / FUEL RATIO OF THE FUEL MIXTURE DELIVERED TO AN INTERNAL COMBUSTION ENGINE | |
| EP0414684A1 (en) | Control and regulating system for internal combustion engines. | |
| DE102004019315A1 (en) | Engine management system with EGR especially for diesel engines has the recycled gasses mixed with metered amounts of fresh air before compression and with monitoring of the inlet system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
| 17P | Request for examination filed |
Effective date: 19850403 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
| REF | Corresponds to: |
Ref document number: 3275111 Country of ref document: DE Date of ref document: 19870219 |
|
| ET | Fr: translation filed | ||
| ITF | It: translation for a ep patent filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| ITTA | It: last paid annual fee | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921031 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921102 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921110 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921127 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19931110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19931111 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19931110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940802 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| EUG | Se: european patent has lapsed |
Ref document number: 82110341.3 Effective date: 19940610 |