EP0414684A1 - Steuer-/regelsystem für eine brennkraftmaschine. - Google Patents
Steuer-/regelsystem für eine brennkraftmaschine.Info
- Publication number
- EP0414684A1 EP0414684A1 EP88909290A EP88909290A EP0414684A1 EP 0414684 A1 EP0414684 A1 EP 0414684A1 EP 88909290 A EP88909290 A EP 88909290A EP 88909290 A EP88909290 A EP 88909290A EP 0414684 A1 EP0414684 A1 EP 0414684A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- memory
- air ratio
- internal combustion
- setpoint
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 39
- 230000001105 regulatory effect Effects 0.000 title description 2
- 230000015654 memory Effects 0.000 claims abstract description 41
- 239000000446 fuel Substances 0.000 claims abstract description 38
- 239000000523 sample Substances 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 238000005259 measurement Methods 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 230000006399 behavior Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 101100027969 Caenorhabditis elegans old-1 gene Proteins 0.000 description 1
- 101100203596 Caenorhabditis elegans sol-1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2496—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories the memory being part of a closed loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
Definitions
- the invention relates to a control system for adjusting the air / fuel mixture of an internal combustion engine
- Such systems have a ⁇ probe which is exposed to the exhaust gas of the internal combustion engine and which emits an output signal which represents a measure of the air ratio ⁇ .
- the control system also has a basic memory, a setpoint memory and a control device. Fuel metering times (e.g. injection times for the injection valves of the internal combustion engine) are stored in the basic memory as a function of operating parameters of the internal combustion engine, and setpoint values for the air ratio ⁇ are stored in the setpoint value memory as a function of operating parameters of the internal combustion engine.
- the control device corrects the fuel metering time read from the basic memory as a function of a respectively measured output signal of the ⁇ probe and an assigned target value read from the target value memory.
- Low-emission vehicles are usually operated with a three-way catalytic converter arranged in the exhaust gas of the internal combustion engine.
- the invention has for its object to improve a control system for adjusting the air / fuel mixture, in particular for regulation in the lean area.
- the control system is characterized in that the setpoint memory stores the reciprocal of the air number ⁇ and, depending on the operating parameters of the internal combustion engine, the fuel metering time read out from the basic memory for piloting the internal combustion engine to a predetermined air number ⁇ with the assigned readout from the setpoint memory Reciprocal of the air ratio ⁇ for obtaining a fuel metering time adapted to a change in the predetermined air ratio ⁇ is multiplicatively linked.
- a pre-control is superimposed on a ⁇ control.
- the control system according to the invention has a conversion device which, with the aid of an at least approximately known characteristic characteristic relationship between the output signal of the ⁇ probe and the air ratio ⁇ , converts the output signal into a corresponding reciprocal value of the air ratio ⁇ , and the control device of the control system according to the invention / Control system is fed a control deviation, which is based on the difference of in speed of operating characteristics of the internal combustion engine from the setpoint memory, reciprocal values of the air ratio ⁇ and the associated reciprocal values of the air ratio determined by the conversion unit on the basis of the output signal of the ⁇ probe are determined as actual values.
- the control system according to the invention has the advantage that, for example in the case of control in the lean range ( ⁇ ⁇ 0.9 to 1.4), only one control device is required in the entire range and additional complex circuitry measures are avoided.
- the known control systems regulate the air ratio ⁇ and change the fuel metering time in proportion to the control deviation. In reality, however, there is no! linear relationship between the air ratio ⁇ and the amount of fuel added.
- the air ratio ⁇ is proportional to the reciprocal of the fuel quantity or, conversely, the amount of fuel added is proportional to the reciprocal of the air ratio ⁇ .
- the control system according to the invention has the advantage that the control in the entire ⁇ range to be controlled is linear, since the conversion device supplies the reciprocal value of the air ratio ⁇ to the control device and that the output signals of the ⁇ probe are not used directly for control, as is customary become. Regardless of the level of the respective setpoint, a certain percentage control deviation corresponds to the setpoint of the same manipulated variable, so that the gain of the controller can be selected independently of the setpoint.
- the memories basic memory, setpoint memory
- the control device and the conversion unit are functional units of a microcomputer. It is particularly advantageous to store the fuel metering times, the setpoints of the air ratio ⁇ and the characteristic relationship between the output signal of the ⁇ probe and the air ratio ⁇ in maps that are addressed by means of the operating parameters of the internal combustion engine.
- FIG. 1 shows a block diagram of an embodiment of a control system that regulates fuel injection times on the basis of 1 / ⁇ values.
- the control system has a basic memory 10 from which fuel metering times T LKF for piloting an internal combustion engine (BKM) 12 are read out.
- the speed n and a load parameter L of the internal combustion engine 12 serve as input parameters of the basic memory 10.
- the throttle valve position of the internal combustion engine, the pressure in the intake manifold of the internal combustion engine or the air mass drawn in by the internal combustion engine can be used as the load parameter.
- the control system also has a ⁇ probe 14, a conversion unit 16, a sol 1 value memory 18 and a control device 20.
- the control device 20 has a timer 20.1 and a correction device 20.2. Furthermore, a switchover device 22 and a control release device 24 are present.
- the target value memory 18, which is addressable like the basic memory 10 via the speed and a load parameter of the internal combustion engine, is divided into three areas, namely in a region in which the reciprocal values of the target air number ⁇ for ⁇ are stored greater than and less than 1, and in which the The target reciprocal of the air ratio ⁇ 1 is stored for control with a catalytic converter and an area in which the target reciprocal values of the air ratio ⁇ are stored for controlling the internal combustion engine 12 in certain operating phases (e.g.
- the switching device 22 determines the engine temperature T w , the rate of change of a load parameter dL / dt and the information whether a catalyst is present in the exhaust gas of the internal combustion engine and which, on the basis of the variables mentioned, controls the assigned area via a switch 22.1, in which the reciprocal of the air ratio ⁇ is stored as the desired value.
- the fuel metering times T LKF read from the basic memory 10 are multiplicatively linked to the reciprocal values of the air ratio ⁇ read from the target value memory in accordance with the position of the sight holder 22.1 of the switching device 22, which at the same time represent correction factors (MFK), resulting in the fuel metering time T LKF *. If the internal combustion engine 12 has not yet reached its operating temperature or if the internal combustion engine 12 is in an unsteady phase (acceleration, deceleration), the fuel metering time T LKF * is used to pre-control the Internal combustion engine 12.
- the control release device 24 closes a switch 24.1 and the fuel metering time T LKF * is multiplied by one of the correction factor FALK outputted to the control device 20, resulting in the fuel metering time T E.
- the determination of the correction factor FALK is explained in more detail below.
- the ⁇ probe 14 arranged in the exhaust gas of the internal combustion engine 12 emits an output signal U S , which is fed to a conversion unit 16.
- the conversion unit 16 uses an at least approximately known probe characteristic relationship between the output signal of the ⁇ probe 14 and the air ratio ⁇ to determine the corresponding reciprocal of the air ratio ⁇ .
- This current reciprocal of the air ratio ⁇ as the actual value is fed to a comparator 26.
- the comparator 26 has a corresponding reciprocal of the air ratio ⁇ read from the setpoint memory 18 as the setpoint.
- the difference between the actual value and the desired value of the air ratio ⁇ is fed to the timing element 20.1 of the control device 20 as a control deviation.
- the subsequent correction device 20.2 determines the correction factor FALK.
- a sudden change in the air ratio ⁇ in the event of relatively large deviations of the desired value from the actual value and thus a sudden change in the fuel metering time results in a sudden change in the torque of the internal combustion engine.
- This jerk is absolutely desirable when accelerating.
- a jerk is felt to be negative if a sudden change (enlargement) during delay phases the air ratio ⁇ into the lean area.
- a slowdown from the old 1 / ⁇ setpoint to the new 1 / ⁇ setpoint is carried out by a control unit (27) with a predetermined lowering speed.
- the lowering speed is selected to change a few percent of the setpoint per second.
- a filter device to filter out higher-frequency components of the probe signal, which have their cause, for example, in a scattering of the air-fuel mixture from cylinder to cylinder or in other interference signals, in order to "noise" the probe signal to suppress.
- a lean such a high control speed is not required for control, ie it is not necessary for the control device to work in the vicinity of its stability limit, since the probe signal exhibits constant behavior in the lean range.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873741527 DE3741527A1 (de) | 1987-12-08 | 1987-12-08 | Steuer-/regelsystem fuer eine brennkraftmaschine |
DE3741527 | 1987-12-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0414684A1 true EP0414684A1 (de) | 1991-03-06 |
EP0414684B1 EP0414684B1 (de) | 1992-02-12 |
Family
ID=6342105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880909290 Expired - Lifetime EP0414684B1 (de) | 1987-12-08 | 1988-11-03 | Steuer-/regelsystem für eine brennkraftmaschine |
Country Status (6)
Country | Link |
---|---|
US (1) | US5040513A (de) |
EP (1) | EP0414684B1 (de) |
JP (1) | JPH03502952A (de) |
KR (1) | KR0121315B1 (de) |
DE (2) | DE3741527A1 (de) |
WO (1) | WO1989005397A1 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3839634A1 (de) * | 1988-11-24 | 1990-05-31 | Bosch Gmbh Robert | Verfahren und vorrichtung zum festlegen mindestens einer schwellspannung bei lambda-eins-regelung |
JP3138498B2 (ja) * | 1991-06-14 | 2001-02-26 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
DE69408757T2 (de) * | 1993-09-13 | 1998-06-25 | Honda Motor Co Ltd | Luft-Kraftstoff-Verhältnis-Erfassungsvorrichtung für eine Brennkraftmaschine |
US5427070A (en) * | 1994-05-04 | 1995-06-27 | Chrysler Corporation | Method of averaging coolant temperature for an internal combustion engine |
JPH0814092A (ja) * | 1994-06-24 | 1996-01-16 | Sanshin Ind Co Ltd | 2サイクルエンジンの燃焼制御装置 |
US5551410A (en) * | 1995-07-26 | 1996-09-03 | Ford Motor Company | Engine controller with adaptive fuel compensation |
DE19612453C2 (de) * | 1996-03-28 | 1999-11-04 | Siemens Ag | Verfahren zum Bestimmen der in das Saugrohr oder in den Zylinder einer Brennkraftmaschine einzubringenden Kraftstoffmasse |
DE102006053104B4 (de) * | 2006-11-10 | 2019-10-31 | Robert Bosch Gmbh | Verfahren zur Anpassung eines Kennfeldes |
DE102006061682B4 (de) * | 2006-12-28 | 2022-01-27 | Robert Bosch Gmbh | Verfahren zur Vorsteuerung einer Lambdaregelung |
DE102009047646A1 (de) * | 2009-12-08 | 2011-06-09 | Robert Bosch Gmbh | Verfahren zum Betreiben einer mit einem Gas als Kraftstoff betriebenen Brennkraftmaschine |
JP5548114B2 (ja) * | 2010-12-24 | 2014-07-16 | 川崎重工業株式会社 | 内燃機関の空燃比制御装置及び空燃比制御方法 |
DE102011006587A1 (de) * | 2011-03-31 | 2012-10-04 | Robert Bosch Gmbh | Verfahren zur Adaption eines Kraftstoff-Luft-Gemischs für eine Brennkraftmaschine |
FR3065991B1 (fr) * | 2017-05-03 | 2021-03-12 | Peugeot Citroen Automobiles Sa | Procede de reglage de la consigne de richesse d’une sonde lors d’un balayage d’air |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55125334A (en) * | 1979-03-19 | 1980-09-27 | Nissan Motor Co Ltd | Fuel controller |
DE3231122C2 (de) * | 1982-08-21 | 1994-05-11 | Bosch Gmbh Robert | Regeleinrichtung für die Gemischzusammensetzung einer Brennkraftmaschine |
JPH065047B2 (ja) * | 1983-06-07 | 1994-01-19 | 日本電装株式会社 | 空燃比制御装置 |
JPH0635844B2 (ja) * | 1983-06-15 | 1994-05-11 | 本田技研工業株式会社 | 内燃エンジンの燃料供給制御方法 |
JPH0713493B2 (ja) * | 1983-08-24 | 1995-02-15 | 株式会社日立製作所 | 内燃機関の空燃比制御装置 |
DE3533197A1 (de) * | 1985-09-18 | 1987-03-19 | Atlas Fahrzeugtechnik Gmbh | Gemischregelung fuer einen verbrennungsmotor |
US4763629A (en) * | 1986-02-14 | 1988-08-16 | Mazda Motor Corporation | Air-fuel ratio control system for engine |
GB2194359B (en) * | 1986-08-02 | 1990-08-22 | Fuji Heavy Ind Ltd | Air-fuel ratio control system for an automotive engine |
-
1987
- 1987-12-08 DE DE19873741527 patent/DE3741527A1/de not_active Withdrawn
-
1988
- 1988-11-03 EP EP19880909290 patent/EP0414684B1/de not_active Expired - Lifetime
- 1988-11-03 US US07/499,301 patent/US5040513A/en not_active Expired - Fee Related
- 1988-11-03 JP JP63508590A patent/JPH03502952A/ja active Pending
- 1988-11-03 WO PCT/DE1988/000679 patent/WO1989005397A1/de active IP Right Grant
- 1988-11-03 DE DE88909290T patent/DE3868416D1/de not_active Expired - Lifetime
- 1988-11-03 KR KR1019890701459A patent/KR0121315B1/ko not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO8905397A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE3868416D1 (de) | 1992-03-26 |
EP0414684B1 (de) | 1992-02-12 |
KR900700738A (ko) | 1990-08-16 |
KR0121315B1 (ko) | 1997-11-24 |
JPH03502952A (ja) | 1991-07-04 |
US5040513A (en) | 1991-08-20 |
WO1989005397A1 (en) | 1989-06-15 |
DE3741527A1 (de) | 1989-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2829958C2 (de) | ||
DE4324312C2 (de) | Verfahren zum Betreiben einer Brennkraftmaschine in einem Magergemisch-Verbrennungsbereich | |
DE3500594C2 (de) | Zumeßsystem für eine Brennkraftmaschine zur Beeinflussung des Betriebsgemisches | |
DE69318012T2 (de) | Luft/kraftstoff-verhältnissteuerung | |
EP0442873B1 (de) | Verfahren und vorrichtung zur lambdaregelung | |
EP0414684B1 (de) | Steuer-/regelsystem für eine brennkraftmaschine | |
DE3853434T2 (de) | System für brennstoffsteuerung. | |
DE19747128A1 (de) | Integrierte Regelung eines Magermotors und eines kontinuierlich veränderlichen Getriebes | |
DE3837984A1 (de) | Verfahren und vorrichtung zur lambdaregelung | |
DE4214648A1 (de) | System zur steuerung einer brennkraftmaschine | |
DE3039436A1 (de) | Regeleinrichtung fuer ein kraftstoffzumesssystem einer brennkraftmaschine | |
DE4337793A1 (de) | Verfahren und Vorrichtung zum Beurteilen des Funktionszustandes eines Katalysators | |
US4408585A (en) | Fuel control system | |
DE4001362C2 (de) | ||
WO2000028200A1 (de) | VERFAHREN ZUM BESTIMMEN DER NOx-ROHEMISSION EINER MIT LUFTÜBERSCHUSS BETREIBBAREN BRENNKRAFTMASCHINE | |
DE19926139A1 (de) | Kalibrierung eines NOx-Sensors | |
EP0805914B1 (de) | Verfahren zur steuerung des abgasverhältnisses von kraftstoff zu sauerstoff im abgastrakt vor einem katalysator | |
DE4024212C2 (de) | Verfahren zur stetigen Lambdaregelung einer Brennkraftmaschine mit Katalysator | |
WO1996035048A1 (de) | Verfahren zur zylinderselektiven lambda-regelung einer mehrzylinder-brennkraftmaschine | |
EP0187649A2 (de) | Gemischregelungsvorrichtung für einen Verbrennungsmotor | |
EP1317610B1 (de) | Verfahren zur bestimmung des kraftstoffgehaltes des regeneriergases bei einem verbrennungsmotor mit benzindirekteinspritzung im schichtbetrieb | |
EP0416197A1 (de) | Verfahren und Vorrichtung zur Verbesserung des Abgasverhaltens von gemischverdichtenden Brennkraftmaschinen | |
EP0391062B1 (de) | Elektronischer Drehzahlregler für eine luftverdichtende Brennkraftmaschine | |
DE69414552T2 (de) | Adaptives Verdünnungsregelungssystem zur Erhöhung der Motorwirkungsgrade und zur Reduzierung der Emissionen | |
DE10252111A1 (de) | Kraftstoffregelungsverfahren für einen Verbrennungsmotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19910503 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3868416 Country of ref document: DE Date of ref document: 19920326 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19961115 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970124 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19971130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19971103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051103 |