EP0078954B1 - Bougie d'allumage pour moteurs à combustion interne - Google Patents

Bougie d'allumage pour moteurs à combustion interne Download PDF

Info

Publication number
EP0078954B1
EP0078954B1 EP82109767A EP82109767A EP0078954B1 EP 0078954 B1 EP0078954 B1 EP 0078954B1 EP 82109767 A EP82109767 A EP 82109767A EP 82109767 A EP82109767 A EP 82109767A EP 0078954 B1 EP0078954 B1 EP 0078954B1
Authority
EP
European Patent Office
Prior art keywords
spark plug
insulator
combustion chamber
metal
insulating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82109767A
Other languages
German (de)
English (en)
Other versions
EP0078954A1 (fr
Inventor
Friedrich Dr. Esper
Karl-Hermann Dr. Friese
Walter Dr. Gohl
Peter Sternad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OFFERTA DI LICENZA AL PUBBLICO
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0078954A1 publication Critical patent/EP0078954A1/fr
Application granted granted Critical
Publication of EP0078954B1 publication Critical patent/EP0078954B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation

Definitions

  • the invention relates to a spark plug for internal combustion engines according to the type of the main claim - as is already known from US Pat. No. 2,603,200.
  • the longitudinal bore of the insulator contains a liquid metal (e.g.
  • soot are only burned off relatively late on this area of the insulating body, as a result of which misfiring can occur or exist until the free-burning temperature is reached stay. If such spark plugs also have a narrow opening between the liquid metal and the spark gap, a short circuit also frequently occurs because liquid metal grows through the opening, forms a bridge in the direction of the ground electrode and can lead to a short circuit.
  • a spark plug is also described (FIGS. 1 and 6), the metal connecting pin of which extends on the combustion chamber side to the bottom of the insulating body, which contains a narrow opening; the connecting bolt forms the central electrode with its end section on the combustion chamber side, can be cemented in the longitudinal bore of the insulating body and consequently has no desired different effect with regard to heat dissipation during the warm-up phase or during the full load phase of the internal combustion engine.
  • spark plugs are already known which, in connection with their central electrode in the longitudinal bore of the insulating body, have a metal core which is made of copper or silver and which is introduced as a powder or rod into the longitudinal bore of the insulating body, heated and pressed in such that close contact between them the metal core and the insulator is reached; These spark plugs also have the disadvantage with regard to the free-burning temperature at the start or when the internal combustion engine is idling for a long time (British patent 547 119).
  • the spark plug according to the invention with the characterizing features of the main claim has the advantage that it quickly and functionally safely reaches the free-burning temperature of 400/450 ° C in the start-up phase, consequently burning electrically conductive deposits on the combustion chamber-side section of the insulating body, thereby causing misfiring leading, electrically conductive shunts are prevented;
  • glow ignition does not occur at high operating temperatures in the spark plug according to the invention, because in this temperature range they have good heat dissipation from the combustion chamber-side section of the insulating body.
  • a further advantage is that the spark plug according to the invention is suitable for a larger number of different internal combustion engines than is the case with known spark plugs, because the heat flow in the spark plug according to the invention largely adapts to the respective thermal load.
  • the measures listed in the subclaims enable advantageous developments and improvements of the spark plug specified in the main claim; It is particularly advantageous for the free-burning temperature of this spark plug, which is in the start-up phase, to be reached quickly if the end section of the insulating body on the combustion chamber side is thin-walled and / or if an insulating body material with poor thermal conductivity is used at low temperatures. In some applications, it may be expedient to install a separate center electrode made of a material which is inserted into the bottom of the insulating body and which dissipates heat only poorly at low temperatures. -
  • the spark plug according to the invention also allows considerable savings in manufacturing costs (wages, material, systems, energy), enables easier to achieve manufacturing security and has a long service life due to a small change in electrode spacing due to erosion and corrosion.
  • the combustion chamber-side end section of the spark plug 10 according to the invention shown in FIGS. 1 and 2 has a substantially tubular metal housing 11, which has a screw thread 12 on its outside and a key hexagon no longer recorded in FIGS. 1 and 2 for the installation of the spark plug 10 in has an internal combustion engine, not shown.
  • This metal housing 11 carries at its combustion chamber end a wire-shaped ground electrode 13, the free end portion of which is arranged in a hook shape in front of the through hole 14 of the metal housing 11; in certain spark plug designs, the metal housing 11 carries a plurality of ground electrodes 13, in other embodiments the ground electrode is formed by part of the internal combustion engine.
  • a shoulder 15 is formed in the through-bore 14 of the metal housing 11, which shoulder faces away from the combustion chamber of the internal combustion engine and, with the interposition of a sealing ring 16, supports the collar 17 of an essentially rotationally symmetrical insulating body 18.
  • This insulating body 18 is fixed in the metal housing through bore 14 in a known manner by flanging and shrinking, but can also be done in the housing in a different way, such as, for. B. Einkitten be installed. While the head of the insulating body 18, not shown, protrudes from the metal housing 11 on the connection side, the combustion chamber-side section (foot) of the insulating body 18 extends in the direction of the free end section of the ground electrode 13 and tapers in the same direction.
  • This insulating body 18 has an axial longitudinal bore 19, the connection-side region 19/1 merges into the region 19/3 on the combustion chamber side via a frustoconically tapering central region 19/2;
  • This thickness of 0.4 mm of the base 20 also extends over part of the adjoining insulating body 18, namely - measured from the base 20 in the axial direction of the insulating body 18 - over a length of 6 mm;
  • this thickness of the end section of the insulating body 18 with the base 20 on the combustion chamber side can be between 0.2 and 0.9 mm, but this thickness is preferably between 0.3 and 0.6 mm.
  • the length of this thin wall area from the insulating body 18 can, depending on the application, be between 2.5 and 12 mm, but preferably between 5 and 9 mm.
  • the transition from this thin-walled area of the insulating body 18 to the collar 17 must be adapted in length and wall thickness to the respective application - as is the case with known spark plugs.
  • the insulating body 18 consists essentially of aluminum oxide, the 10 weight percent flux (e.g. magnesium and / or calcium silicates) are added; the relatively high proportion of flux compared to conventional spark plug insulators (conventional insulators contain about 5 percent by weight flux) has the effect that the thermal conductivity of the insulator 18 at temperatures below 600 ° C. is lower than with conventional insulators, but that the insulator 18 at temperatures above from 600 to 700 ° C has essentially the same thermal conductivity as conventional material.
  • the lower softening point of the insulating body 18 due to the higher flux content does not hinder the function of the spark plug 10 because the operating temperatures occurring at the spark plug are far below the softening temperature of such a ceramic.
  • the proportion of flux in the insulating body 18 can be in the range between 3 and 20 percent by weight, but is preferably between 8 and 15 percent by weight.
  • connection-side area 19/1 of the insulating body longitudinal bore 19 a metallic connecting bolt 21 protrudes, the end section protruding from the insulating body 18 has a thread or the like (not shown) and at its end section on the combustion chamber side with an anchoring means 22 (e.g. thread, knurling) is provided.
  • This anchoring means 22 of the connecting bolt 21 is firmly and tightly embedded in an electrically conductive sealant 23, which contains the insulating body longitudinal bore 19 in this area.
  • sealants 23 are generally known and are preferably used as an electrically conductive glass melt flow (see, for example, US Pat. No. 3909459).
  • the sealant 23 is followed by a metal core 24 on the combustion chamber side, which - depending on the application - the region 19/3 on the combustion chamber side, possibly also partially the middle region 19/2 of the longitudinal bore 19 of the insulating body, except for a very narrow gap 25 between the metal core 24 and the surface the insulating body longitudinal bore 19 fills.
  • the gap 25 is only present as long as the temperature of the end section of the insulating body 18 on the combustion chamber side is below 450 ° C., and it closes after an operating temperature of 450 to 500 ° C. has been reached.
  • This behavior of the metal core 24 is due to its thermal expansion capacity, which is greater than that of the ceramic of the insulating body 18.
  • Such a metal core 24 preferably consists of aluminum bronze with 8% aluminum, but it can also be made of other materials with appropriate thermal expansion behavior and good thermal conductivity; In addition to aluminum alloys, copper alloys, silver or metal alloys, which mostly contain a considerable proportion of at least one of these substances (eg brass, tin bronze), are also well suited for such a metal core 24.
  • Metals or metal alloys suitable for this purpose preferably have a thermal conductivity of more than 90 W / mK and are liquid or plastically deformable at the melting temperatures used in the spark plug described below such that they melt in the insulating body 18 when the metal core 24 and sealant 23 melt down Fill the affected area 19/3 of the insulating body longitudinal bore 19 without any gaps.
  • this metal core 24 consists of aluminum bronze
  • the insulating body 18, the connecting bolts 21, the sealant 23 and the metal core 24 are mounted in such a way that an aluminum bronze rod of a certain volume is inserted into the combustion chamber-side area 19/3 of the insulating body longitudinal bore 19 , whose end pointing away from the combustion chamber fills the cross-section of the longitudinal bore 19, that a pre-metered amount of a granulated or preformed sealant 23 is then added above the aluminum bronze rod, that in a next step the connecting bolt 21 with its end section carrying the anchoring means 22 above the sealant 23 is inserted into the longitudinal bore 19 of the insulating body, so that in a further step the pre-assembled and upright unit is heated to about the melting temperature of the sealant 23 (e.g.
  • the volume of the metal core 24 can be of different sizes for setting the desired heat dissipation from the combustion chamber-side end section of the insulating body 18 in the direction of the connection side of the spark plug 10 be:
  • the metal core 24 may e.g. B. extend more or less into the area of the sealing ring 16, and / or it can have a different diameter. It should be mentioned that instead of the sealant 23, a combination of sealant 23 known per se with an interference suppressor, not shown, can occur.
  • the insulating body bottom 20 is at a distance 26 (spark gap) opposite the ground electrode 13; this distance 26 is approximately 0.8 mm.
  • the metal core 24 simultaneously serves as the central electrode 27 and the spark jump takes place between this central electrode 27 and the ground electrode 13 via a narrow opening 28 in the insulating body base 20 and the distance 26 between iso serving as an air spark gap lier Economics-bottom 20 and the ground electrode 13.
  • This opening 28 is preferably arranged centrally and has a diameter in the range between about 50 and 300 microns.
  • the insulating body base 20 can be provided with a small depression 29 at the corresponding point; such a depression 29 can be provided on the outside of the insulating body base 20 and / or on the inside of the base 20.
  • a small depression 29 can be provided on the outside of the insulating body base 20 and / or on the inside of the base 20.
  • several such openings 28 can also be present in the base 20. Openings 28 of this type can be produced either by drilling using a laser beam or simply by means of an electrical flashover corresponding voltage between the center electrode 27 and the ground electrode 13, but it can also be pressed into the insulating body 18 using a suitably designed needle (not shown).
  • the end of the insulating body 18 on the combustion chamber side heats up within a very short time, because the insulating body 18 consists of a material that is very poorly heat-conducting at this temperature and because of the gap 25 between Metal core 24 and insulating body 18 heat is dissipated only to a negligible extent; Due to this mode of action, the combustion chamber-side end section of the insulating body 18 quickly reaches the so-called free-burning temperature, which is between 400 and 450 ° C. and at which the insulating body 18 burns electrically conductive deposits on the outside of this area. Electrical shunts as a result of such electrically conductive deposits on the insulating body 18 are consequently avoided, which also contributes to avoiding misfiring.
  • the metal core 24, including its front end section acting as a central electrode 27, has expanded as a result of its thermal expansion behavior in such a way that it comes to bear on the surface of the insulating body longitudinal bore 19/3 with a considerable part of its surface and quickly dissipates heat from the combustion chamber-side region of the insulating body 18 into the rear region of the spark plug.
  • the dimensions and the material of the insulating body 18 are selected so that so much heat is dissipated in the rear part of the spark plug 10 that the metal core 24 remains firm and does not melt. Due to the solid physical state of the metal core 24, the escape of liquid metal parts from the opening 28 of the insulating body 18 and consequently also a short circuit between the center electrode 27 and the ground electrode 13 are avoided.
  • the insulating body 18 has the following dimensions: the outer diameter of the end section on the combustion chamber side is 3.8 mm, over a length of 6 mm; the diameter of the longitudinal bore 19 in the combustion chamber area 19/3 is 3 mm, over a length of 15 mm; the diameter of the collar 17 from the insulating body 18 is 9 mm and begins approximately 13 mm from the bottom 20 of the insulating body 18.
  • the metal core 24 has a length of 15 mm and thus extends somewhat into the central region 19/2 of the longitudinal bore of the insulating body 19.
  • the diameter of the combustion chamber-side region 19/3 of the insulating body longitudinal bore 19 is 1 to 3 mm in most of such spark plugs 10.
  • the metal core 24 consists of aluminum bronze, which is plastically deformed when the insulating body 18, the connecting bolt 21, the sealant 23 and the metal core 24 are assembled in the described method, material is also suitable for the metal core 24 that at the melting temperature of the sealant 23 is molten, but remains firm at the operating temperature of the spark plug, has a corresponding thermal expansion behavior and has good thermal conductivity; These materials also include aluminum, for example.
  • FIG. 3 shows another embodiment of a center electrode 27 'arranged in the insulating body base 20', in the form of a metal pin made of a corrosion and erosion-resistant material, preferably of a noble metal (e.g. platinum metal).
  • This metal pin 27 ' is fixed in an axially arranged opening 30' in the insulating body base 20 ', has a shaft diameter of 0.5 mm and bears a head facing the metal core 24' (without reference numerals);
  • the metal pin 27 'can have a thickness between 0.2 and 1 mm, but preferably has a diameter between 0.3 and 0.6 mm.
  • such a head can also be arranged at the end of the metal pin 27 'on the combustion chamber side, but it can also be omitted in certain applications.
  • the metal pin 27 ' is flush with the insulating body bottom 20', but can also be designed for some applications so that it protrudes up to about 1 mm from the insulating body bottom 20 '.
  • 3 shows such a state of the combustion chamber-side end section of insulating body 18 'and metal core 24', in which the metal core 24 'rests with its surface against the combustion chamber-side region 19' / 3 of the longitudinal bore 19 ', ie in one Temperature range is greater than 450 ° C.
  • this spark plug area had a temperature of less than 400/450 ° C., there would be a gap between the longitudinal insulator bore 19 'and the metal core 24' and thus an interruption in the electrical connection between the metal core 24 'and the metal pin 27'; however, since such a gap is only very narrow, as described, it forms a small spark gap, which is essential for the function of the spark plug known effects.
  • a suitable metal suspension can be introduced and sintered in; A platinum suspension has proven itself for this purpose (see DE-OS 3 132 903).
  • FIG. 4 also shows the combustion chamber-side section of an insulating body 18 "with a metal core 24" built into its longitudinal bore 19 ", but the central electrode 27" built into an opening 28 "is formed from an electrically conductive ceramic part.
  • electrical conductive ceramic part in the bottom 20 "of the insulating body 18" is a porous ceramic with metal in the pores is well suited, such a ceramic can for example consist of aluminum oxide without flux, and aluminum can be chosen as the metal housed in the pores, this in the pores located aluminum can be melted into the longitudinal bore 19 "of the insulating body 18" when the metal core 24 "is melted down;
  • another suitable material eg silver, aluminum bronze, tin bronze
  • the center electrode 27 " which is sintered into the insulating body base 20", cemented or fastened by means of glass, can also contain other metals (see DE-OS 2 854071); such a center electrode 27 "can also consist of semiconductor material (see DE- OS 2 729 099), also e.g. B. made of doped perovskite ceramic (see DE-OS 2824408); metal powder (eg Pt, Ni, Cr, Co) can optionally also be added to the semiconductor material or the Perowski ceramic.
  • substances can also be used which serve as electrical heating elements (see CH-PS 105078). 3 about the small spark gap applies accordingly to this embodiment in FIG. 4.
  • a further exemplary embodiment of a central electrode 27 '" is shown in the figure:
  • a central electrode 27"' is sintered into the bore 28 "'of the insulating body base 20'" and consists of an electrically insulating, ceramic carrier 30 "', which is coated on its surface with an electrically conductive layer 31 "'(e.g. made of platinum);
  • Such a center electrode 27 "' can be provided with a head (without reference number) which rests on the inside of the longitudinal bore 19"' of the insulating body 18 '”or is also arranged on the outside of the insulating body bottom 20"' (see DE- OS 3 038 720).
  • the respective center electrode 27 "or 27” ' is preferably flush with the respective insulating body bottom 20 "or 20"', but it can also be about 1 mm from the bottom 20 "or 20" 'protrude from the combustion chamber.

Landscapes

  • Spark Plugs (AREA)

Claims (14)

1. Bougie d'allumage avec un boîtier métallique de forme tubulaire, cette bougie comportant:
1. sur sa face externe, des moyens pour son montage dans un moteur à combustion interne,
2. dans un alésage traversant, un corps isolant résistant à la chaleur, présentant la plupart du temps une symétrie de révolution, et monté de façon étanche, et qui comporte dans sa partie d'extrémité côté chambre de combustion, un fond à parois minces avec un orifice,
3. sur sa partie d'extrémité côté chambre de combustion, la plupart du temps au moins une électrode de masse qui est placée à une certaine distance (trajet d'étincelles) d'une électrode médiane disposée dans la partie côté chambre de combustion du corps isolant et qui est placée en série côté raccordement avec un noyau métallique se trouvant dans le perçage longitudinal du corps isolant, ce noyau métallique étant consisté d'un matériau solide dans tous les états de fonctionnement du moteur à combustion interne,

bougie d'allumage caractérisé en ce que le noyau métallique (24 à 24"') présente pour des températures de fonctionnement au-dessous de 450 à 500° C, un intervalle (25) avec la surface du perçage longitudinal (19 à 19"') du corps isolant, mais du fait de ces caractéristiques de dilatation pour des températures de fonctionnement au-dessus de 450 à 500° C, ce noyau métallique s'applique sur la surface du perçage longidutinal (19 à 19"') du corps isolant.
2. Bougie d'allumage selon la revendication 1, caractérisée en ce que le noyau métallique (24 à 24"') est constitué d'un matériau avec une conductibilité thermique d'au moins 90 W/mk.
3. Bougie d'allumage selon la revendication 1 ou 2, caractérisée en ce que le fond (20 à 20"') du corps isolant (18 à 18"') a une épaisseur allant de 0,2 à 0,9 mm et se situant de préférence entre 0,3 et 0,6 mm.
4. Bougie d'allumage selon une des revendications 1 à 3, caractérisée en ce que le fond à parois minces (20 à 20"') du corps isolant s'étend sur une hauteur comprise entre 2,5 et 12 mm, de préférence entre 5 et 9 mm de l'extrémité côté chambre de combustion du corps isolant (18 à 18"'), et que ce fond (20 à 20"') revêt de préférence la forme d'une calotte.
5. Bougie d'allumage selon une des revendications 1 à 4, caractérisée en ce que le corps isolant (18 à 18"') est essentiellement constitué d'oxyde d'aluminium et comporte une teneur en fondant se situant entre 3 et 20% en poids, de préférence entre 8 et 15% en poids.
6. Bougie d'allumage selon une des revendications 1 à 5, caractérisée en ce que le noyau métallique (24 à 24"') est constitué d'un matériau qui pour la température de fusion d'un moyen d'étanchement électriquement conducteur (23) disposé entre la tige de raccordement (21) et le noyau métallique (24 à 24"') est déformable plastiquement ou bien liquide par fusion.
7. Bougie d'allumage selon une des revendications 1 à 6, caractérisée en ce que le noyau métallique (24 à 24"') est constitué d'aluminium, de cuivre, d'argent ou d'alliages métalliques qui contiennent une portion importante d'au moins une de ces substances (par exemple du laiton, du bronze d'aluminium, du bronze d'étain).
8. Bougie d'allumage selon une des revendications 1 à 7, caractérisée en ce que l'extrémité côté chambre de combustion du noyau métallique (24) constitue elle-même l'électrode médiane (27).
9. Bougie d'allumage selon la revendication 8, caractérisée en ce que l'orifice (28) dans le fond (20) du corps isolant (18) a un diamètre de l'ordre de 50 à 300 µ.
10. Bougie d'allumage selon une des revendications 1 à 7, caractérisée en ce que l'électrode médiane (27') est constituée par une broche métallique mince ou bien par une piste conductrice qui est fixée dans un orifice (28') du fond (20') du corps isolant.
11. Bougie d'allumage selon la revendication 10, caractérisée en ce que le diamètre de la broche métallique (27') se situe entre 0,2 et 1 mm, de préférence entre 0,3 et 0,6 mm.
12. Bougie d'allumage selon la revendication 10 ou 11, caractérisée en ce que la broche métallique (27') est constituée d'un métal noble, de préférence en platine.
13. Bougie d'allumage selon une des revendications 1 à 7, caractérisée en ce que l'électrode médiane (27", 27"') est constituée d'une pièce en céramique électriquement conductrice qui est fixée dans un orifice (28", 28"') du fond (20", 20"') du corps isolant.
14. Bougie d'allumage selon une des revendications 10 à 13, caractérisée en ce que l'électrode médiane (27' à 27"') fait saillie au maximum d'environ 1 mm hors de l'extrémité côté chambre de combustion du corps isolant (18' à 18"'), mais se termine toutefois, de préférence, à l'extrémité côté chambre de combustion du corps isolant (18' à 18"').
EP82109767A 1981-11-07 1982-10-22 Bougie d'allumage pour moteurs à combustion interne Expired EP0078954B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813144253 DE3144253A1 (de) 1981-11-07 1981-11-07 Zuendkerze fuer brennkraftmaschinen
DE3144253 1981-11-07

Publications (2)

Publication Number Publication Date
EP0078954A1 EP0078954A1 (fr) 1983-05-18
EP0078954B1 true EP0078954B1 (fr) 1985-05-29

Family

ID=6145845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82109767A Expired EP0078954B1 (fr) 1981-11-07 1982-10-22 Bougie d'allumage pour moteurs à combustion interne

Country Status (5)

Country Link
US (1) US4539503A (fr)
EP (1) EP0078954B1 (fr)
JP (1) JPS5887791A (fr)
DE (2) DE3144253A1 (fr)
ES (1) ES517155A0 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446128A1 (de) * 1984-12-18 1986-06-19 Robert Bosch Gmbh, 7000 Stuttgart Zuendkerze fuer brennkraftmaschinen
US4910428A (en) * 1986-04-01 1990-03-20 Strumbos William P Electrical-erosion resistant electrode
US6603245B1 (en) * 1988-09-23 2003-08-05 Jay W. Fletcher Three-dimensional multiple series gap spark plug
DE68924526T2 (de) * 1989-01-09 1996-04-04 Ngk Spark Plug Co Zündkerzenzusammenbau.
AU683482B2 (en) * 1993-07-06 1997-11-13 Caterpillar Inc. Spark plug with automatically adjustable gap
US5550425A (en) * 1995-01-27 1996-08-27 The United States Of America As Represented By The Secretary Of The Navy Negative electron affinity spark plug
WO2001009998A1 (fr) * 1999-07-29 2001-02-08 Robert Bosch Gmbh Bougie d'allumage d'un moteur a combustion interne
JP2001284012A (ja) * 2000-03-28 2001-10-12 Denso Corp 内燃機関用スパークプラグ及びその製造方法
US7443089B2 (en) * 2006-06-16 2008-10-28 Federal Mogul World Wide, Inc. Spark plug with tapered fired-in suppressor seal
JP4719191B2 (ja) * 2007-07-17 2011-07-06 日本特殊陶業株式会社 内燃機関用スパークプラグ
DE212009000022U1 (de) * 2008-01-28 2010-09-23 Honeywell International Inc. Gegen Kaltverschmutzung widerstandsfähige Zündkerzen
US8590516B2 (en) * 2009-10-02 2013-11-26 Robert Hull Internal combustion engine
DE102009059649B4 (de) * 2009-12-19 2011-11-24 Borgwarner Beru Systems Gmbh HF-Zündeinrichtung
KR101848287B1 (ko) * 2010-10-28 2018-04-12 페더럴-모굴 이그니션 컴퍼니 저온 플라즈마 점화 아크 억제
JPWO2013077382A1 (ja) * 2011-11-24 2015-04-27 イマジニアリング株式会社 点火プラグ及び内燃機関
US9337624B2 (en) * 2012-10-12 2016-05-10 Federal-Mogul Ignition Company Electrode material for a spark plug and method of making the same
US11378042B1 (en) * 2021-12-10 2022-07-05 Dan H. Johnson Internal combustion engine ignition device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1110255A (fr) *
FR489637A (fr) * 1917-04-03 1919-02-25 Robert Frederick Spiller Bougie d'allumage pour moteurs à combustion interne
GB112556A (en) * 1917-04-03 1918-01-17 Charles Hurst Ltd Improvements relating to Electric Ignition Plugs for Internal Combustion Engines.
GB198345A (en) * 1922-05-23 1924-03-20 Bosch Robert Improvements in sparking plugs
DE539210C (de) * 1929-11-28 1931-11-26 Fr Des Bougies A Electrode De Zuendkerze fuer Explosionsmotoren
FR865791A (fr) * 1939-06-30 1941-06-03 Perfectionnements apportés aux bougies d'allumage
GB547119A (en) * 1941-07-15 1942-08-13 Lodge Plugs Ltd Improvements relating to sparking plugs for internal combustion engines
US3061756A (en) * 1960-07-05 1962-10-30 Monsanto Chemicals Spark plug
US3113232A (en) * 1961-01-23 1963-12-03 Gen Motors Corp Low tension spark plug
US3130338A (en) * 1961-02-23 1964-04-21 Harold W Andersen Spark plug with automatic means for varying its heat dissipation capacity
US3525894A (en) * 1968-06-26 1970-08-25 Gen Motors Corp Spark plug with a conductive glass seal electrode of glass and a metal alloy
US3743877A (en) * 1971-10-12 1973-07-03 W Strumbos Multiple heat range spark plug
US3868534A (en) * 1972-11-29 1975-02-25 Bell Canada Northern Electric Electrochemiluminescent device having a mixed solvent
US4261085A (en) * 1977-12-14 1981-04-14 Ngk Spark Plug Co., Ltd. Method of making an ignition plug insulator having an electrically conductive end
DE2824408C3 (de) * 1978-06-03 1985-08-01 Dornier System Gmbh, 7990 Friedrichshafen Verfahren zur Herstellung eines elektronisch
CA1138626A (fr) * 1978-12-16 1983-01-04 Gkn Floform Limited Fabrication d'electrodes bimetalliques pour bougies d'allumage
US4400643A (en) * 1979-11-20 1983-08-23 Ngk Spark Plug Co., Ltd. Wide thermal range spark plug
JPS5684889A (en) * 1979-11-20 1981-07-10 Ngk Spark Plug Co Thermally wide range structure ignition plug
DE3038720A1 (de) * 1980-10-14 1982-06-03 Robert Bosch Gmbh, 7000 Stuttgart Zuendkerze fuer brennkraftmaschine

Also Published As

Publication number Publication date
DE3263919D1 (en) 1985-07-04
JPS5887791A (ja) 1983-05-25
ES8308167A1 (es) 1983-08-01
EP0078954A1 (fr) 1983-05-18
ES517155A0 (es) 1983-08-01
US4539503A (en) 1985-09-03
DE3144253A1 (de) 1983-05-19

Similar Documents

Publication Publication Date Title
EP0078954B1 (fr) Bougie d'allumage pour moteurs à combustion interne
DE69304812T2 (de) Zündkerze
DE19650728B4 (de) Zündkerze
DE68920725T2 (de) Temperaturregelung von zündkerzen.
DE19623795C2 (de) Zündkerze für eine Brennkraftmaschine mit innerer Verbrennung
DE69301799T2 (de) Herstellungsverfahren für Zündkerze
EP0505368B1 (fr) Procede pour la fabrication d'electrodes pour bougies d'allumage ainsi que lesdites electrodes de bougie
DE19623989C2 (de) Zündkerze für eine Brennkraftmaschine
DE2857574C2 (de) Zündkerze
DE3533124A1 (de) Zuendkerze mit gleitfunkenstrecke
DE3446128A1 (de) Zuendkerze fuer brennkraftmaschinen
DE4431143B4 (de) Zündkerze für eine Brennkraftmaschine
DE3434762A1 (de) Keramik-gluehkerze
EP0101547B1 (fr) Bougie d'allumage à haute tension
DE4203251A1 (de) Zuendkerze
EP4128456B1 (fr) Bougie d'allumage destinée à des moteurs à combustion interne
EP0735323B1 (fr) Bougie à incandescence
DE4203250A1 (de) Silber-nickel-verbundwerkstoff fuer elektrische kontakte und elektroden
EP0073939A1 (fr) Bougie d'allumage pour haute tension
DE2614274C3 (de) Hochspannungszundkerze
EP0106232B1 (fr) Bougie à incandescence pour moteurs à combustion interne avec allumage externe
DE10156949B4 (de) Zündkerze
DE9101496U1 (de) Hochspannungszündkerze
DE3625363A1 (de) Zuendkerze fuer brennkraftmaschinen und verfahren zur herstellung einer solchen zuendkerze
DE102022115908A1 (de) Zündkerze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821022

AK Designated contracting states

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3263919

Country of ref document: DE

Date of ref document: 19850704

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

ITPR It: changes in ownership of a european patent

Owner name: OFFERTA DI LICENZA AL PUBBLICO

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921012

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921027

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST