EP0070957B1 - Méthode et appareil pour simuler la séquence chronométrée des mouvements avec un dispositif servo-hydraulique - Google Patents

Méthode et appareil pour simuler la séquence chronométrée des mouvements avec un dispositif servo-hydraulique Download PDF

Info

Publication number
EP0070957B1
EP0070957B1 EP82100752A EP82100752A EP0070957B1 EP 0070957 B1 EP0070957 B1 EP 0070957B1 EP 82100752 A EP82100752 A EP 82100752A EP 82100752 A EP82100752 A EP 82100752A EP 0070957 B1 EP0070957 B1 EP 0070957B1
Authority
EP
European Patent Office
Prior art keywords
nominal value
cylinder
load
correction value
servo valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82100752A
Other languages
German (de)
English (en)
Other versions
EP0070957A1 (fr
Inventor
Josef Dipl.-Ing. Beran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Schenck AG
Original Assignee
Carl Schenck AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Schenck AG filed Critical Carl Schenck AG
Publication of EP0070957A1 publication Critical patent/EP0070957A1/fr
Application granted granted Critical
Publication of EP0070957B1 publication Critical patent/EP0070957B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/16Systems essentially having two or more interacting servomotors, e.g. multi-stage
    • F15B9/17Systems essentially having two or more interacting servomotors, e.g. multi-stage with electrical control means

Definitions

  • the invention relates to a method for emulating a defined temporal sequence of movements, in particular for emulating a predetermined course of acceleration, with a servohydraulic device consisting of a loading cylinder, in particular a catapult cylinder, a multi-stage servo valve and a control and regulating device, the movement sequence of the loading cylinder being controlled is and for this the last stage of the servo valve (main stage) is operated in position control, for which a fixed or variable setpoint is specified, as well as an arrangement for performing the method.
  • the servo valve was fully opened to achieve high acceleration in a servo-hydraulic device. This corresponds to a rectangular control of the valve. In this case, however, only a course of acceleration can be achieved on a connected load cylinder, which cannot be influenced after the valve has opened.
  • the load pressure (differential pressure) of a consumer is used for correcting the setpoint in the flow control.
  • the device works with several sensors and an electrical network.
  • the pressure feedback serves to stabilize the control device against consumer pressure fluctuations.
  • the object of the present invention is to provide a method and an arrangement for emulating a defined temporal movement sequence, in particular for emulating a predetermined acceleration curve, with a servo-hydraulic device, thereby avoiding the disadvantages of the prior art. It should be possible to replicate the desired movement sequence on an actuating cylinder as precisely as possible. Furthermore, the trailing behavior of the control should be improved. For different forms of acceleration, no major conversion work on the arrangement should be necessary.
  • Influencing the setpoint for the position control of the servo valve has the advantage that the tracking behavior of the position control loop becomes more favorable because the gain can be selected to be smaller and therefore easier to control. There are also advantages in emulating different forms of acceleration and in adjusting the control device.
  • the transfer functions of individual components of the arrangement can also be taken into account in the proposals according to the invention for improving the target value in addition to the load pressure in the consumer as influencing variables.
  • Several influencing variables can also be taken into account at the same time.
  • the correction value for improving the setpoint can be specified as a fixed function. Furthermore, it is possible to continuously form the correction value dependent on the load pressure and to continuously improve the target value.
  • An arrangement for carrying out the method according to the invention essentially has a compensation circuit which consists of a computing circuit for forming the correction value and a multiplication stage for multiplying the desired value and the correction value and the output of which is connected to the input of the control and regulating device.
  • Correction values for the load pressure and the dynamic transfer functions of individual components of the arrangement can be formed in a suitable manner in the computing circuit.
  • a suitable transducer for connected to the load pressure or the differential pressure or a sensor for the piston acceleration and connected to the arithmetic circuit. It may also be expedient to provide an additional auxiliary control loop on the consumer. So z. B. the piston in the load cylinder can be statically adjusted independently of the main control loop.
  • FIG. 1 a catapult cylinder with a multi-stage servo valve, a control device for the servo valve, a setpoint input device and a compensation circuit for influencing the setpoint value and in Fig. 2 a modified setpoint correction.
  • the catapult cylinder 20 is permanently installed in a receiving device, not shown.
  • the piston 21 of the cylinder acted on by the pressure medium acts via the piston rod 22, for example on a test slide 23 and generates the desired paths, speeds, accelerations etc. on this test slide.
  • the two piston surfaces of the piston 21 can be of the same size (synchronous piston or cylinder) or different large (differential piston or cylinder).
  • a 4-stage servo valve 1 with valve stages 1a to 1d is attached to the catapult cylinder 20.
  • the third valve stage 1 and the main valve 1d (fourth stage) are connected to the two-stage pilot valve 1a, b.
  • the main valve is connected to the catapult cylinder 20 via pressure medium supply lines 2. It can expediently also be arranged directly on the catapult cylinder and, for example, be connected to the cylinder via suitable bores.
  • the 2-stage pilot valve 1a, b is designed as a 2-stage servo valve or as a proportional valve.
  • a pressure medium storage system 4 (hydraulic accumulator) for supplying pressure medium to the device is connected to the pilot valve 1a, b and to the third and fourth valve stages 1c and 1d via supply lines 3.
  • the filling device for the storage system is not shown. Instead of the pressure medium storage system, another pressure medium supply device can also be provided.
  • a return line 5a leads from pilot valve 1a, b and from the fourth valve stage to a pressure medium reservoir 5.
  • a 2- or 3-stage or other multi-stage servo valve can also be provided.
  • servo valves other regulated valves, e.g. B. proportional valves can be used.
  • multi-stage servo valves are known, so that there is no need to provide further details.
  • the fourth and third valve stages of the servo valve 1d and 1c have valve spools 6a and 6b.
  • Transducers 7a and 7b are connected to these slides.
  • the position transducers serve as actual value transmitters for the position of the valve spool.
  • the control device for the four-stage servo valve has two control loops, namely an outer and an inner control loop.
  • the outer control loop 10 controls the position of the control spool 6a of the fourth valve stage 1d, while the inner control loop 11 controls the position of the control spool 6b of the third valve stage 1c.
  • the two control loops have controllers 12 and 13, which can be designed, for example, as PID or PD controllers.
  • the setpoint value coming from the setpoint input device 14 is fed to a compensation circuit 30, which is only shown schematically.
  • the compensation circuit 30 contains a computing circuit 31 in which a correction signal for the setpoint signal is formed.
  • a multiplication stage 32 the setpoint signal from the setpoint input device 14 is multiplied by the correction signal.
  • the product produces a corrected setpoint signal.
  • This is compared in the controller 12 with the actual value coming from the displacement sensor 7a of the fourth valve stage.
  • the control deviation is amplified and fed to the controller 13 of the inner control circuit 11 as a setpoint.
  • the actual value of this control loop comes from the displacement sensor 7b connected to the control slide 6b.
  • the controller 13 of the inner control circuit supplies the control signal for the 2-stage servo valve la, b.
  • the setpoint / actual value comparison in the controllers 12 and 13 takes place continuously, so that the desired setpoint function can be followed with high accuracy.
  • the control loops can be designed as analog or digital control loops.
  • the catapult cylinder 20 has an auxiliary control circuit 25 for the static adjustment of the cylinder.
  • a displacement sensor 24 is connected to one end of the piston rod 22.
  • This displacement sensor serves as an actual value transmitter for the auxiliary control circuit 25, which includes a controller 26 and a servo valve 27.
  • the servo valve 27 controls the pressure medium supply from a pressure medium source (not shown) to the catapult cylinder 20.
  • the specification of the setpoints for the control of the servo valve 1a-d is based on the fact that the servo valve is in principle a speed exciter.
  • the position or opening of the control slide of the last stage 1d of the servo valve corresponds under certain conditions to a certain speed on the piston or on the piston rod of the catapult cylinder. Therefore, the desired values or desired value functions, e.g. B. an acceleration function, derived by derivation of corresponding speed values or speed functions.
  • These speed values or functions form the uncorrected setpoint signals for the device.
  • the values can, for example, be stored in the device for setting the target value 14 and then called up there.
  • the transfer functions of the individual components can be determined by measuring the frequency response or by theoretical considerations.
  • the frequency response of individual components is determined by directly measuring the difference between the output and input signal.
  • Correction signals can be formed from the transfer functions, e.g. B. in the form of a signal that represents the inverse frequency response of the 4-stage servo valve or the entire controlled system.
  • the correction signals can be simulated by suitable analog or digital circuits in the compensation circuit 30 or the arithmetic circuit 31.
  • the correction signals are multiplied in the multiplication stage 32 by the setpoint from the setpoint setting device 14.
  • the product produces the corrected setpoint, which is fed to the controller 12 and which leads to greater tracking accuracy of the loading cylinder.
  • the load pressure in the actuating cylinder plays an important role for the control and tracking behavior of servohydraulic arrangements, in the arrangement shown the load pressure in the catapult cylinder 20.
  • the load pressure in the actuation cylinder creates non-linearities or difficulties which, for. B. can lead to large deviations in the values to be shown. To avoid these disadvantages, the load pressure is taken into account when specifying the setpoint.
  • a differential pressure sensor 35 is arranged on the catapult cylinder 20, with which the differential pressure in the two chambers of the catapult cylinder 20 is determined.
  • the differential pressure sensor 35 is connected to both cylinder chambers.
  • the differential pressure in the cylinder chambers of the actuating cylinder 20 is a measure of the load pressure acting on the piston 21.
  • the determined differential pressure values are via a line 36, z. B. in the form of electrical voltage values, the compensation circuit 30 and the computing circuit 31.
  • the load pressure is determined taking into account the respective piston surfaces.
  • a fixed function for the load pressure it may be sufficient to specify a fixed function for the load pressure.
  • the arithmetic circuit 31 is then designed so that it reproduces the desired function.
  • a sensor on the actuating cylinder can be omitted.
  • a comparable arrangement, for. B. a sensor for piston acceleration can be used.
  • the uncorrected target values present in the target value setting device 14 are improved with the aid of the load pressure on the catapult cylinder 20 in such a way that the influence of the load pressure is largely or completely eliminated.
  • the value coming from the differential pressure sensor 35 is fed to the arithmetic circuit 31. Since the feed pressure or system pressure p s is fixed, only the load pressure is required to form the correction value. The feed pressure can be entered into the circuit as a fixed value. The value obtained by the circuit is multiplied in the multiplication stage 32 by the uncorrected setpoint. The product gives the improved setpoint, which is fed to the controller 12. With this arrangement, the setpoints can be continuously adapted to the load pressure prevailing in the catapult cylinder 20.
  • the arithmetic circuit 31 is only shown schematically.
  • the individual operations or the individual switching steps for emulating the specified root expression can be implemented by a person skilled in the art with the aid of suitable circuits or elements.
  • the circuit can be designed as an analog or digital circuit.
  • the compensation circuit (s) and the setpoint specification device can also be designed as a programmable computing device. Such a computing device supplies the already corrected setpoint directly to the control and regulating device for the servo valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Claims (9)

1. Procédé de simulation d'un mouvement dont le déroulement dans le temps suit une loi définie, en particulier de simulation d'un mouvement d'accélération prédéterminé, comportant un servomécanisme hydraulique comprenant un vérin de charge (20), en particulier un vérin de lancement ou catapultage, une servovanne à plusieurs étages (1a à 1d) et un dispositif de commande et de réglage (12, 13), et le déroulement du mouvement du vérin de charge (20) étant commandé et le dernier étage (1d) de la servovanne (étage principal) étant, pour cela, actionné avec réglage du trajet, ce pour quoi une valeur prescrite fixe ou variable (w) est prédéfinie, caractérisé en ce que, pour améliorer la valeur prescrite pour le réglage de trajet du dernier étage (1d) de la servovanne (1a-1d), on fait intervenir, comme grandeur d'influence, la pression de charge (p,) dans le vérin de charge (20), en ce qu'on forme, à partir de la pression de charge, une valeur de correction fixe ou variable, en ce que l'on multiplie la valeur prescrite (w) prédéfinie par la valeur correctrice, et en ce que l'on transmet le produit de la valeur prescrite prédéfinie et de la valeur correctrice, en tant que valeur prescrite améliorée (w'), au dispositif de réglage (12, 13), la pression de charge (p,) intervenant selon la formule suivante :
Figure imgb0004
dans laquelle w = valeur prescrite, w' = valeur prescrite améliorée, ps = pression d'alimentation (pression maximale), p, = pression de charge dans le vérin de charge, k = constante.
2. Procédé selon la revendication 1, caractérisé en ce qu'on fait intervenir, comme autre grandeur d'influence, la fonction de transfert du dispositif de réglage (12, 13) et de la servovanne (1a-1d) et/ou du vérin de charge (20), en formant à partir de chaque grandeur d'influence une autre valeur correctrice et en multipliant l'autre valeur correctrice par la valeur prescrite améliorée (w'), puis en transmettant le produit au dispositif de réglage (12, 13).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on prédéfinit la valeur correctrice ou les valeurs correctrices sous forme de fonction fixe.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on forme en continu la valeur correctrice dépendant de la pression de charge (p,) et l'on améliore la valeur prescrite en continu.
5. Dispositif pour mettre en oeuvre le procédé selon la revendication 1, caractérisé en ce qu'il est prévu un montage de compensation (30) qui comprend un circuit de calcul (31) pour former la valeur correctrice et un étage multiplicateur (32) pour multiplier la valeur prescrite (w) provenant du dispositif de détermination de valeurs prescrites (14) par la valeur correctrice, et dont la sortie est reliée à une entrée de valeurs prescrites du dispositif de commande et de réglage (12, 13).
6. Dispositif selon la revendication 5, caractérisé par un capteur (35) de la pression de charge ou de la différence de pression (pression différentielle), raccordé au vérin de charge (20), ou un capteur de l'accélération du vérin de charge (20), relié au circuit de calcul (31).
7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que le montage de compensation (30) est suivi par un autre montage de compensation (30') dans lequel une autre valeur correctrice est formée dans un circuit de calcul (31') à partir d'une fonction de transfert du dispositif de réglage (12, 13) et de la servovanne (1a-1d) et/ou du vérin de charge (20), et celle-ci est multipliée, dans un étage multiplicateur (32'), par la valeur prescrite améliorée (w').
8. Dispositif selon l'une des revendications 5 à 7, caractérisé en ce que le ou les montage(s) de compensation (30, 30') et/ou le dispositif de détermination de valeurs prescrites (14) sont réalisés sous la forme de dispositif de calcul programmable.
9. Dispositif selon l'une des revendications 5 à 8, caractérisé en ce que le vérin de charge (20) comporte un circuit de réglage auxiliaire supplémentaire (25) comportant un dispositif de détermination de valeurs prescrites, un capteur de trajet (24), un dispositif de réglage (26) et une servovanne (27), qui sert à déplacer statiquement le vérin de charge (20).
EP82100752A 1981-07-15 1982-02-03 Méthode et appareil pour simuler la séquence chronométrée des mouvements avec un dispositif servo-hydraulique Expired EP0070957B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813127910 DE3127910A1 (de) 1981-07-15 1981-07-15 "verfahren und anordnung zur nachbildung eines definierten zeitlischen bewegungsablaufs mit einer servohydraulischen einrichtung"
DE3127910 1981-07-15

Publications (2)

Publication Number Publication Date
EP0070957A1 EP0070957A1 (fr) 1983-02-09
EP0070957B1 true EP0070957B1 (fr) 1986-09-10

Family

ID=6136954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100752A Expired EP0070957B1 (fr) 1981-07-15 1982-02-03 Méthode et appareil pour simuler la séquence chronométrée des mouvements avec un dispositif servo-hydraulique

Country Status (3)

Country Link
EP (1) EP0070957B1 (fr)
JP (1) JPS5818705A (fr)
DE (2) DE3127910A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421546C1 (de) * 1984-06-08 1985-11-14 Bayerische Motoren Werke AG, 8000 München Vorrichtung zur geregelten Verzögerung eines etwa geradlinig bewegten Körpers, insbesondere eines Kraftfahrzeugs
DE3430288C2 (de) * 1984-08-17 1986-07-17 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren für eine aktive Kompensationsregelung einer beliebigen Anzahl parallel betriebener Zylinder zur Erreichung synchroner Bewegungen
GB8426486D0 (en) * 1984-10-19 1984-11-28 Lucas Ind Plc Electro-hydraulic actuator systems
JPH0695298B2 (ja) * 1984-11-29 1994-11-24 石川島播磨重工業株式会社 電気・油圧サーボ制御装置
DE3810110A1 (de) * 1988-03-25 1989-10-12 Bosch Gmbh Robert Regeleinrichtung fuer ein zweistufiges ventil
US5829335A (en) * 1993-05-11 1998-11-03 Mannesmann Rexroth Gmbh Control for hydraulic drive or actuator
DE4315626C1 (de) * 1993-05-11 1994-07-14 Rexroth Mannesmann Gmbh Steuerung für einen hydraulischen Antrieb
US5615593A (en) * 1994-01-11 1997-04-01 Mcdonnell Douglas Corporation Method and apparatus for controllably positioning a hydraulic actuator
US5500580A (en) * 1994-09-19 1996-03-19 Hr Textron Inc. Integrated compliance servovalve
DE29908210U1 (de) 1999-05-07 1999-09-16 Trw Repa Gmbh Gassack
DE29910483U1 (de) * 1999-06-15 1999-12-02 Trw Repa Gmbh Prüfstand für Fahrzeugteile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2523600A1 (de) * 1975-05-28 1976-12-09 Bosch Gmbh Robert Elektrohydraulische steuereinrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485255A (en) * 1966-05-02 1969-12-23 Ltv Electrosystems Inc Fixed jet servo valve
US3477472A (en) * 1966-12-05 1969-11-11 Jean Mercier Servocontrol valve and system
US3390613A (en) * 1967-05-31 1968-07-02 Hobson Ltd H M Electrohydraulic actuators
DE2104162A1 (de) * 1970-07-21 1972-01-27 Werkzeugmasch Okt Veb Schaltungsanordnung zur Sollwert Bereitstellung und Korrektur für Vor schubantnebe von Werkzeugmaschinen
GB1462879A (en) * 1973-10-10 1977-01-26 Sperry Rand Ltd Hydraulic actuator controls

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2523600A1 (de) * 1975-05-28 1976-12-09 Bosch Gmbh Robert Elektrohydraulische steuereinrichtung

Also Published As

Publication number Publication date
DE3273084D1 (en) 1986-10-16
EP0070957A1 (fr) 1983-02-09
JPS5818705A (ja) 1983-02-03
DE3127910A1 (de) 1983-01-27

Similar Documents

Publication Publication Date Title
DE2221964C2 (de) Vibrationstestgerät
DE3153303C2 (de) Verfahren und Einrichtung zum Begrenzen der bei Belastungsänderungen auftetenden thermischen Beanspruchung einer Dampfturbine
DE102018203956B4 (de) Maschinelle Lernvorrichtung, Servosteuerungsvorrichtung, Servosteuerungssystem und maschinelles Lernverfahren
DE2622344C2 (fr)
EP0070957B1 (fr) Méthode et appareil pour simuler la séquence chronométrée des mouvements avec un dispositif servo-hydraulique
EP1915650B1 (fr) Procede de regulation et regulateur destines a un systeme mecanique/hydraulique
DE2715841C2 (de) Servoanlage zum Steuern einer Steuerfläche eines Flugzeugs
DE102017213650A1 (de) Verfahren zum Regeln eines hydraulischen Systems, Regeleinheit für ein hydraulisches System und hydraulisches System
DE102017004803A1 (de) Verfahren zum Betrieb einer Pulverpresse mit Lagenregelung und Pulverpresse zur Ausführung des Verfahrens
EP0308762A1 (fr) Dispositif de régulation de la position d'un mécanisme d'avancement hydraulique, notamment d'une estampe ou presse hydraulique
DE102019204484A1 (de) Trajektorien-Planungseinheit, Ventilanordnung und Verfahren
DE2713802C2 (de) Vorrichtung zum Regeln der kontinuierlichen Zufuhr eines hydraulischen oder pneumatischen Antriebsmittels
DE1523535C3 (de) Selbstanpassender Regelkreis
DE1272306B (de) Elektrische Verbundregelungs-Einrichtung
EP0557541A1 (fr) Régulation à action directe, en particulier pour une cage de laminoir
DE1798196A1 (de) Regeleinrichtung
DE4327313C2 (de) Verfahren zur Druckregelung einer hydrostatischen Maschine mit verstellbarem Fördervolumen
DE2822709A1 (de) Kombiniertes rueckkopplungsregelungssystem
DE3039129C2 (de) Lageregelverfahren und -system für einen Stellzylinderantrieb
DE3149081C2 (de) Verfahren und Schaltungsanordnung zur Verbesserung der Regelgüte bei servohydraulischen Einrichtungen
DE60224490T2 (de) Verfahren und Vorrichtung zur Drehzahlsteuerung einer Dampfturbine
DE3624328C2 (fr)
DE3346179C2 (fr)
DE10312698A1 (de) Einrichtung zur ablösenden Regelung von Druck und Förderstrom eines hydraulischen Druckmittels
DE19825859A1 (de) Kompensationseinrichtung, Verfahren und Stelleinrichtung zur Kompensation von Kriech- und Hystereseeffekten im Übertragungsverhalten von Stellgliedern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19830513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3273084

Country of ref document: DE

Date of ref document: 19861016

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910228

Ref country code: CH

Effective date: 19910228

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST