EP0069051B1 - Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten - Google Patents

Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten Download PDF

Info

Publication number
EP0069051B1
EP0069051B1 EP82730089A EP82730089A EP0069051B1 EP 0069051 B1 EP0069051 B1 EP 0069051B1 EP 82730089 A EP82730089 A EP 82730089A EP 82730089 A EP82730089 A EP 82730089A EP 0069051 B1 EP0069051 B1 EP 0069051B1
Authority
EP
European Patent Office
Prior art keywords
container
reservoir according
reinforced concrete
containers
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82730089A
Other languages
English (en)
French (fr)
Other versions
EP0069051A2 (de
EP0069051A3 (en
Inventor
Wilfried Dr.-Ing. Krabbe
Hans Dr.-Ing. Schäfer
Hans-Dieter Dr.-Ing. Dietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philipp Holzmann AG
Original Assignee
Philipp Holzmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philipp Holzmann AG filed Critical Philipp Holzmann AG
Publication of EP0069051A2 publication Critical patent/EP0069051A2/de
Publication of EP0069051A3 publication Critical patent/EP0069051A3/de
Application granted granted Critical
Publication of EP0069051B1 publication Critical patent/EP0069051B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • F17C13/126Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for large storage containers for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete

Definitions

  • the invention relates to a container for the storage of frozen liquids, in particular liquefied gases, consisting of an all-round closed reinforced concrete or prestressed concrete outer container and an inner steel container open at the top with the insertion of an insulating material, which serves to hold the liquid, the insulating material in the also open annular space between the two containers consists of a granulate on a mineral basis.
  • a container is known from the article " prestressed concrete container for liquefied natural gas" in the magazine Beton, issue 28/1978, pages 163 ff.
  • a steel inner container open at the top is used to hold the liquefied gas, the steel inner container being completely surrounded by a reinforced concrete outer container with the interposition of an insulating material.
  • the outer container must be earthquake-proof, on the other hand, it must also be able to withstand loads in the event of a gas cloud explosion.
  • the load case must also be countered that it suddenly tears open. Since steel tends to become brittle at the low temperatures at which liquefied gas is stored, material defects in the steel can actually cause an initially small crack to expand into a continuous crack. The result of this is that the frozen liquid gas emerges from the crack and pours into the annular gap between the steel inner container and the reinforced concrete outer container and flows into the annular gap from the exit point in both directions.
  • This excessive hydrostatic pressure can, however, also occur in the liquid gas containers which have been customary hitherto and in which insulation is arranged between the steel inner container and the reinforced concrete outer container.
  • This insulation usually consists of expanded pearlite.
  • the starting material is a volcanic silicate rock, in which the bound water is converted into steam by briefly heating to about 1000 °, so that the glass melt is inflated to a multiple of its original volume.
  • the insulation While between the bottom of the steel inner container and the reinforced concrete outer container, the insulation consists of foam glass, which is able to withstand the static pressure of the steel inner container and the liquid gas contained therein, the pearlite granulate serves for insulation in the annular space between the two containers, which has the advantage of a high Insulation ability, non-flammable and relatively inexpensive.
  • the pearlite granulate has a very low specific weight, which means that if the steel inner container is torn open, the insulation of the liquid which then emerges would not provide any appreciable resistance and would be displaced upward out of the annular gap by the liquid gas which escapes, so that the same consequences would then occur as if there was no insulating material between the two containers.
  • the invention has for its object to avoid inadmissible local pressure stresses of the reinforced concrete outer container for a container of the type mentioned in the event of a crack in the steel inner container.
  • At least one annular blocking body is arranged between the reinforced concrete outer container and the steel inner container, which is attached to the reinforced concrete outer container or to the steel inner container and leaves a space between the two containers.
  • the emerging liquid in the event of a sudden opening of the steel inner container, the emerging liquid cannot abruptly displace the light granulate, so that the flow velocity of the emerging liquid is greatly reduced and the two partial flows on the side opposite the exit point are no longer gushing can meet.
  • the blocking body does not establish a connection between the two containers, the formation of a cold bridge is prevented and an unhindered pressure equalization is permitted.
  • a locking body is preferably arranged parallel to the floor at the level of the upper edge of the steel inner container, but further locking bodies can also be provided in levels below the upper edge of the steel inner container.
  • a locking body can also be attached to the roof dome of the reinforced concrete outer container, which extends approximately parallel to the container axis in the direction of the upper end of the steel inner container.
  • Fig. 1 shows a reinforced concrete outer container, which consists of a base plate 1, a wall 2 and a roof dome 3.
  • an inner container 5 made of steel is arranged separated by insulation 4, which is open at the top and serves to hold liquefied natural gas.
  • the wall thickness of the steel inner container 5 is about 14-30 mm
  • the thickness of the insulation 4 is about 1 m
  • the wall thickness of the reinforced concrete outer container is about 50 cm.
  • the insulation under the bottom of the steel container consists of foam glass, which is able to withstand the static load on the container 5 filled with liquid gas, while the insulation on the ceiling consists of mineral wool.
  • the annular gap between the two containers is filled with a granulate of pearlite.
  • the non-combustible perlite granulate has the advantage that it can be easily introduced into the annular gap, but that it can also be removed just as easily by suction for inspection purposes or for necessary repair work.
  • the locking body 6 is designed as an annular disc which is fastened to the wall 2 of the reinforced concrete outer container with the aid of crossbars 9.
  • the attachment can be done by means of screws 10 and bolts 11 anchored in reinforced concrete.
  • a sheet metal cladding 12 On the inside of the reinforced concrete wall 2 there is a sheet metal cladding 12 in the usual way, while on the outside of the steel inner container 5 there is also a mineral fiber mat 13, which serves as a compressible buffer layer when the inner container 5 expands.
  • the radial dimensions of the disk 6 are smaller than the distance between the outside of the sheet metal cladding 12 and the outside of the mineral fiber mat 13, so that an intermediate space 14 remains through which pressure compensation can take place. If necessary, holes or slots 15 can also be additionally made in the annular disk 6.
  • the liquid gas then escaping would be strongly prevented from flowing rapidly in the space between the containers, since the blocking body 6 ensures that the pearlite granules only to a limited extent through the space 14 and possibly the holes or Slots 15 can emerge, so that the space between the Containers only slowly seeped and a gushing collision of partial liquid flows is prevented.
  • the liquid gas penetrates into the interspace evaporation gases can also escape through the interspace 14 and, if appropriate, the holes or slots 15.
  • Model tests have shown that the covered surface of the space between the containers should be about 50% to 90% of the total surface.
  • Fig. 1 it is indicated that, if necessary, further locking bodies 7 and 8 can also be provided in levels below the upper edge of the container, which are of the same design as the steel body shown in Fig. 2.
  • the locking body 6 it is possible to fasten the locking body 6 to the roof dome 3, the locking body extending approximately parallel to the container axis and extending to the upper end of the steel inner container 5.
  • the space for the limited passage of the pearlite granules in the event of bursting is here formed by one or more openings 15 in the blocking body 6 above the insulation above the steel inner container 5.
  • the end of the locking body 6 overlaps the upper end of the steel inner container 5.
  • the locking body could also be attached to the upper end of the steel inner container 5 and then form a distance from the roof dome 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • Die Erfindung betrifft einen Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten, insbesondere von verflüssigten Gasen, bestehend aus einem allseitig geschlossenen Stahlbeton- oder Spannbetonaussenbehälter und aus einem darin unter Einfügung eines Isoliermaterials eingesetzten, oben offenen Stahlinnenbehälter, der zur Aufnahme der Flüssigkeit dient, wobei das Isoliermaterial im ebenfalls offenen ringförmigen Zwischenraum zwischen den beiden Behältern aus einem Granulat auf mineralischer Basis besteht. Ein solcher Behälter ist aus dem Aufsatz "Spann- betonbehälter für verflüssigtes Erdgas" in der Zeitschrift Beton, Heft 28/1978, Seiten 163 ff. bekannt.
  • In letzter Zeit hat der Einsatz von Erdgas als Energieträger im Privatbereich und der Wirtschaft zunehmend an Bedeutung gewonnen. Abgesehen vom Transport des Gases von weit abgelegenen Förderorten zu Abnehmern durch Rohrleitungen erfolgt der Transport auch nach Verflüssigung des Gases auf dem Seeweg. Das verflüssigte Gas erfordert dann entsprechende Lagerungsvorrichtungen beim Abnehmer, wobei vorgeschriebene Sicherheitsbedingungen erfüllt sein müssen.
  • In der Regel dient ein nach oben offener Stahlinnenbehälter zur Aufnahme des verflüssigten Gases, wobei der Stahlinnenbehälter von einem Stahlbetonaussenbehälter unter Zwischenschaltung eines Isoliermaterials vollständig umgeben ist.
  • Für den Betrieb solcher Behälter müssen umfangreiche Sicherheitsvorkehrungen getroffen sein. So muss der Aussenbehälter einerseits erdbebensicher sein, andererseits aber auch Belastungen bei einer Gaswolkenexplosion überstehen können. Für den Innenbehälter muss aber auch dem Lastfall begegnet werden, dass dieser plötzlich aufreisst. Da Stahl bei den niedrigen Temperaturen, mit denen verflüssigtes Gas gelagert wird, zur Sprödigkeit neigt, können Materialfehler im Stahl tatsächlich dazu führen, dass eine zunächst kleine Bruchstelle sich zu einem durchgehenden Riss aufweitet. Die Folge davon ist, dass das tiefgekühlte Flüssiggas aus dem Riss austritt und sich in den Ringspalt zwischen dem Stahlinnenbehälter und dem Stahlbetonaussenbehälter ergiesst und von der Austrittsstelle in beiden Richtungen in den Ringspalt einströmt.
  • Betrachtet man zunächst den vereinfachten Fall, dass sich in dem Ringspalt kein Isoliermaterial befindet, verläuft der Strom der Flüssigkeit in beiden Richtungen innerhalb des Ringspaltes, bis sich die beiden Teilströme etwa an der der Bruchstelle diametral gegenüberliegenden Seite treffen, und Modellversuche haben gezeigt, dass dann an dieser Stelle des Aufeinandertreffens ein Druck auf den Stahlbetonbehälter einwirkt, der örtlich bis zu dem sechsfachen hydrostatischen Druck beträgt, so dass damit der Stahlbetonaussenbehälter unzulässig beansprucht werden kann.
  • Dieser überhöhte hydrostatische Druck kann aber auch bei den bisher üblichen Flüssiggasbehältern auftreten, bei denen zwischen dem Stahlinnenbehälter und dem Stahlbetonaussenbehälter eine Isolierung angeordnet ist. Diese Isolierung besteht nämlich üblicherweise aus expandiertem Perlit. Ausgangsmaterial ist dabei ein vulkanisches Silikatgestein, bei dem durch kurzfristiges Erhitzen auf etwa 1000° das gebundene Wasser in Dampf verwandelt wird, so dass die Glasschmelze auf ein vielfaches ihres ursprünglichen Volumens aufgebläht wird.
  • Während zwischen dem Boden des Stahlinnenbehälters und dem Stahlbetonaussenbehälter die Isolierung aus Schaumglas besteht, die in der Lage ist, dem statischen Druck des Stahlinnenbehälters und des darin befindlichen Flüssiggases standzuhalten, dient zur Isolierung im Ringraum zwischen den beiden Behältern das Perlitgranulat, das den Vorteil einer hohen Isolationsfähigkeit besitzt, nicht brennbar und verhältnismässig preiswert ist.
  • Wie jedes wärmeisolierende Material hat jedoch das Perlitgranulat ein sehr geringes spezifisches Gewicht, was im Falle eines Aufreissens des Stahlinnenbehälters bedeutet, dass die Isolierung der dann austretenden Flüssigkeit keinen nennenswerten Widerstand entgegensetzen würde und von dem austretenden Flüssiggas nach oben aus dem Ringspalt verdrängt würde, so dass dann die gleichen Folgen eintreten würden, als sei zwischen den beiden Behältern kein Isoliermaterial vorhanden.
  • Um dem entgegenzutreten, wären zwei Lösungen denkbar. Eine dieser Lösungen bestände darin, das Perlitmaterial durch ein anderes Isoliermaterial zu ersetzen, das einer Ausbreitung des Flüssiggases bei einem Riss des Innenbehälters entgegenwirkt. Dies wäre beispielsweise durch Ausschäumen des Zwischenraumes mit einem Kunststoff möglich, der im aufgeschäumten Zustand ausreichend widerstandsfähig ist. Dem stehen jedoch technische und ökonomische Gesichtspunkte entgegen. So sind Kunststoffschaumstoffe brennbar und schon aus diesem Grunde ungeeignet. Ferner ist kein technisches Verfahren bekannt, um eine homogene Schaumauskleidung dieses Ausmasses herzustellen, denn der Ringspalt hat bei Behältern gängiger Grösse eine Dicke von etwa 1 m bei einem Umfang von etwa 300 m. Ausserdem würde ein vollständiges Auskleiden des Ringspaltes den Zugang zum Stahlinnenbehälter beispielsweise zu Kontrollzwecken verhindern. Die Kosten des Kunststoffmaterials und dessen Einbringung in den Ringspalt wären zudem erheblich grösser als bei Verwendung des Perlitgranulats, das den Vorzug der Nichtbrennbarkeit besitzt, weil es auf mineralischer Basis beruht.
  • Ausgehend von der Verwendung eines solchen mineralischen Granulats könnte man zwar daran denken, den Ringspalt auf seiner Oberseite zu verschliessen, um so bei einem Riss des Innenbehälters eine Verdrängung des Isoliermaterials zu verhindern. Ein solcher Verschluss ist jedoch aus mehreren Gründen nicht möglich. Zum einen würde hierdurch eine unerwünschte Kältebrücke geschaffen, da eine unmittelbare Verbindung zwischen Stahlinnenbehälter und Stahlbetonaussenbehälter geschaffen würde. Ausserdem würde dann ein Druckausgleich nach aussen unterbunden, der beispielsweise notwendig ist, wenn das tiefgekühlte Flüssiggas in den Stahlinnenbehälter eingefüllt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem Behälter der eingangs genannten Art für den Fall eines Risses im Stahlinnenbehälter unzulässige örtliche Druckbeanspruchungen des Stahlbetonaussenbehälters zu vermeiden.
  • Die gestellte Aufgabe wird gemäss der Erfindung dadurch gelöst, dass zwischen dem Stahlbetonaussenbehälter und dem Stahlinnenbehälter mindestens ein ringförmiger Sperrkörper angeordnet ist, der am Stahlbetonaussenbehälter oder am Stahlinnenbehälter befestigt ist und einen Zwischenraum zwischen den beiden Behältern frei lässt.
  • Durch die erfindungsgemässe Massnahme wird erreicht, dass bei dem Lastfall des plötzlichen Aufreissens des Stahlinnenbehälters die austretende Flüssigkeit das leichte Granulat nicht schlagartig verdrängen kann, so dass die Strömungsgeschwindigkeit der austretenden Flüssigkeit stark reduziert wird und an der der Austrittsstelle gegenüberliegenden Seite die beiden Teilströme nicht mehr schwallartig aufeinandertreffen können.
  • Dabei wird - da der Sperrkörper keine Verbindung zwischen den beiden Behältern herstellt - sowohl die Ausbildung einer Kältebrücke verhindert als auch ein ungehinderter Druckausgleich zugelassen.
  • Durch Wahl der Grösse des von dem Sperrkörper gelassenen Zwischenraumes im Ringspalt und gegebenenfalls durch Löcher oder Schlitze im Sperrkörper lässt sich erreichen, dass die Druckbelastung des Spannbetonbehälters zu keinem Zeitpunkt und an keiner Stelle grösser ist als die hydrostatische Belastung.
  • Vorzugsweise ist ein Sperrkörper parallel zum Boden in Höhe des oberen Randes des Stahlinnenbehälters angeordnet, jedoch können auch weitere Sperrkörper in Ebenen unterhalb des oberen Randes des Stahlinnenbehälters vorgesehen werden.
  • Es kann aber auch ein Sperrkörper an der Dachkuppel des Stahlbetonaussenbehälters befestigt werden, der sich etwa parallel zur Behälterachse in Richtung auf das obere Ende des Stahlinnenbehälters erstreckt.
  • Die Erfindung wird nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In der Zeichnung bedeuten:
    • Fig. 1 eine Querschnittsdarstellung eines Behälters zur Einlagerung von Flüssiggas;
    • Fig. 2 einen Ausschnitt aus Fig. 1 in vergrössertem Massstab und
    • Fig. 3 eine andere Ausführungsform zur Anbringung des Sperrkörpers.
  • Fig. 1 zeigt einen Stahlbetonaussenbehälter, der aus einer Bodenplatte 1, einer Wand 2 und einer Dachkuppel 3 besteht. Innerhalb des Aussenbehälters ist getrennt durch eine Isolierung 4 ein Innenbehälter 5 aus Stahl angeordnet, der nach oben hin offen ist und zur Aufnahme von verflüssigtem Erdgas dient. Bei einem solchen Behälter mit einem Fassungsvermögen von 50.000 m3 beträgt die Wandstärke des Stahlinnenbehälters 5 etwa 14-30 mm, die Dicke der Isolierung 4 etwa 1 m und die Wandstärke des Stahlbetonaussenbehälters etwa 50 cm. Die Isolierung unter dem Boden des Stahlbehälters besteht dabei aus Schaumglas, das in der Lage ist, die statische Belastung des mit Flüssiggas gefüllten Behälters 5 auszuhalten, während die Isolierung an der Decke aus Mineralwolle besteht. Der Ringspalt zwischen den beiden Behältern ist mit einem Granulat aus Perlit gefüllt. Das nicht brennbare Perlitgranulat hat den Vorteil, dass es auf einfache Weise in den Ringspalt eingebracht werden kann, dass es aber auch für Inspektionszwecke oder für erforderliche Reparaturarbeiten genauso leicht durch Absaugen wieder entfernt werden kann.
  • Um nun bei dem Auftreten eines plötzlichen Aufreissens zu verhindern, dass die aus dem Spalt zu beiden Seiten aus dem Behälter austretenden Teilströme im Zwischenraum zwischen den beiden Behältern an der der Austrittsstelle gegenüberliegenden Seite unter Verdrängung des Perlitgranulats schwallartig aufeinandertreffen, ist nun gemäss der Erfindung wenigstens in der Nähe des oberen Endes des Stahlinnenbehälters 5 ein ringförmiger Sperrkörper 6 vorgesehen, wobei Fig. 2 eine mögliche Ausführungs- und Befestigungsform für einen solchen Sperrkörper zeigt.
  • Dort ist der Sperrkörper 6 als ringförmige Scheibe ausgebildet, die mit Hilfe von Traversen 9 an der Wand 2 des Stahlbeton-Aussenbehälters befestigt ist. Die Befestigung kann dabei mittels Schrauben 10 und im Stahlbeton verankerten Bolzen 11 erfolgen. Auf der Innenseite der Stahlbetonwand 2 befindet sich in üblicher Weise eine Blechverkleidung 12, während auf der Aussenseite des Stahlinnenbehälters 5 in ebenfalls üblicher Weise eine Mineralfasermatte 13 angebracht ist, die als kompressible Pufferschicht bei einer Ausdehnung des Innenbehälters 5 dient.
  • Die radialen Abmessungen der Scheibe 6 sind kleiner als der Abstand zwischen der Aussenseite der Blechverkleidung 12 und der Aussenseite der Mineralfasermatte 13, so dass ein Zwischenraum 14 verbleibt, durch den ein Druckausgleich erfolgen kann. Gegebenenfalls können auch in der ringförmigen Scheibe 6 zusätzlich noch Löcher oder Schlitze 15 angebracht werden.
  • Sollte der Lastfall des plötzlichen Aufreissens des Stahlinnenbehälters eintreten, würde das dann austretende Flüssiggas an einer raschen Strömung im Zwischenraum zwischen den Behältern stark gehindert, da der Sperrkörper 6 dafür sorgt, dass das Perlitgranulat nur in begrenztem Masse durch den Zwischenraum 14 und gegebenenfalls die Löcher oder Schlitze 15 austreten kann, so dass der Zwischenraum zwischen den Behältern nur langsam vollsickert und ein schwallartiges Aufeinandertreffen von Teilflüssigkeitsströmen unterbunden wird. Beim Eindringen des Flüssiggases in den Zwischenraum durch Verdampfung sich bildende Gase können ebenfalls durch den Zwischenraum 14 und gegebenenfalls die Löcher oder Schlitze 15 entweichen. Modellversuche haben ergeben, dass die abgedeckte Oberfläche des Behälterzwischenraums etwa 50% bis 90% der Gesamtoberfläche betragen sollte.
  • In Fig. 1 ist angedeutet, dass gegebenenfalls auch noch weitere Sperrkörper 7 bzw. 8 in Ebenen unterhalb des oberen Randes der Behälter vorgesehen werden können, die gleich ausgebildet sind wie der in Fig. 2 dargestellte Stahlkörper.
  • Natürlich sind auch andere Ausführungsformen des Sperrkörpers denkbar, und die Befestigung kann auch am Stahlinnenbehälter erfolgen.
  • Beispielsweise ist es gemäss Fig. 3 möglich, den Sperrkörper 6 an der Dachkuppel 3 zu befestigen, wobei der Sperrkörper sich etwa parallel zur Behälterachse erstreckt und bis zum oberen Ende des Stahlinnenbehälters 5 verläuft. Der Zwischenraum für den begrenzten Durchtritt des Perlitgranulats im Berstfall wird hier durch eine oder mehrere Öffnungen 15 im Sperrkörper 6 oberhalb der Isolierung über dem Stahlinnenbehälter 5 gebildet. Hierbei überlappt das Ende des Sperrkörpers 6 das obere Ende des Stahlinnenbehälters 5. Stattdessen könnte jedoch auch der Sperrkörper am oberen Ende des Stahlinnenbehälters 5 befestigt werden und dann einen Abstand zur Dachkuppel 3 bilden.

Claims (8)

1. Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten, insbesondere von verflüssigten Gasen, bestehend aus einem allseitig geschlossenen Stahlbeton- oder Spannbetonaussenbehälter (2) und aus einem darin unter Einfügung eines Isoliermaterials (4) eingesetzten, oben offenen Stahlinnenbehälter (5), der zur Aufnahme der Flüssigkeit dient, wobei das Isoliermaterial (4) im ebenfalls oben offenen ringförmigen Zwischenraum zwischen den beiden Behältern (2, 5) aus einem Granulat auf mineralischer Basis besteht, dadurch gekennzeichnet, dass zwischen dem Stahlbetonaussenbehälter (2) und dem Stahlinnenbehälter (5) mindestens ein ringförmiger Sperrkörper (6) angeordnet ist, der am Stahlbetonaussenbehälter (2) oder am Stahlinnenbehälter (5) befestigt ist und einen Zwischenraum zwischen den beiden Behältern frei lässt.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass ein Sperrkörper (6) parallel zum Boden in Höhe des oberen Randes des Stahlinnenbehälters (5) angeordnet ist.
3. Behälter nach Anspruch 2, dadurch gekennzeichnet, dass weitere Sperrkörper (7, 8) in Ebenen unterhalb des oberen Randes des Behälters (5) angeordnet sind.
4. Behälter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der bzw. die Sperrkörper (6, 7, 8) aus ringförmigen Scheiben bestehen.
5. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass ein Sperrkörper (6) an der Dachkuppel (3) des Stahlbetonaussenbehälters (2) befestigt ist und sich etwa parallel zur Behälterachse in Richtung auf das obere Ende des Stahlinnenbehälters (5) erstreckt.
6. Behälter nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass der Zwischenraum dadurch gebildet wird, dass der bzw. die Sperrkörper (6) geringere Abmessungen besitzen als der Zwischenraum zwischen den Behältern.
7. Behälter nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass der bzw. die Sperrkörper (6) Löcher oder Schlitze (15) aufweisen.
8. Behälter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der bzw. die Sperrkörper (6, 7, 8) mittels Traversen (9) versteift sind.
EP82730089A 1981-07-01 1982-06-29 Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten Expired EP0069051B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3125846 1981-07-01
DE3125846A DE3125846C2 (de) 1981-07-01 1981-07-01 Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten

Publications (3)

Publication Number Publication Date
EP0069051A2 EP0069051A2 (de) 1983-01-05
EP0069051A3 EP0069051A3 (en) 1983-04-27
EP0069051B1 true EP0069051B1 (de) 1986-09-17

Family

ID=6135795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82730089A Expired EP0069051B1 (de) 1981-07-01 1982-06-29 Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten

Country Status (5)

Country Link
EP (1) EP0069051B1 (de)
DE (2) DE3125846C2 (de)
NL (1) NL8104136A (de)
NO (1) NO152383C (de)
YU (1) YU44968B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222064A1 (de) * 1982-06-11 1983-12-15 Georg Noell GmbH, 2000 Hamburg Behaelter zur einlagerung von tiefgekuehlten fluessigkeiten
FR2606061B1 (fr) * 1986-10-30 1989-02-03 Francois Entr Sa Cie Reservoir de stockage de fluide sous pression
US7266457B1 (en) 1999-05-21 2007-09-04 Hesperos, Llc High throughput functional genomics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302815A (en) * 1963-02-28 1967-02-07 Elmwood Liquid Products Inc Insulated shipper container
DE2134323A1 (de) * 1971-07-09 1973-01-18 Linde Ag Speicherbehaelter fuer verfluessigte gase mit ueber 10 m hoehe.-
DE2443641A1 (de) * 1974-09-12 1976-03-25 Gruenzweig Hartmann Glasfaser Mantelisolierung von senkrecht stehenden tieftemperatur-lagertanks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Aufsatz "Spannbetonbehälter für verflüssigtes Erdgas" in der Zeitschrift Beton, Heft 28/1978, Seiten 163 ff *

Also Published As

Publication number Publication date
EP0069051A2 (de) 1983-01-05
DE3273334D1 (en) 1986-10-23
NO822303L (no) 1983-01-03
EP0069051A3 (en) 1983-04-27
NO152383C (no) 1985-09-18
DE3125846A1 (de) 1983-01-20
YU142282A (en) 1988-02-29
DE3125846C2 (de) 1985-05-02
NL8104136A (nl) 1983-02-01
YU44968B (en) 1991-06-30
NO152383B (no) 1985-06-10

Similar Documents

Publication Publication Date Title
DE931660C (de) Behaelter zur Lagerung verfluessigter Gase
DE1191245C2 (de) Schiff zum Lagern und Transportieren verfluessigter Gase bei etwa Atmosphaerendruck
DE3315988A1 (de) Lagerbehaelter fuer fluessigkeiten
WO2005115551A1 (de) Brandhemmende einrichtung an lagertanks
DE2307865A1 (de) Gebaeude fuer die herstellung, verarbeitung und/oder lagerung von explosiven materialien
EP0069051B1 (de) Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten
DE1751556A1 (de) Behaelter zur Einlagerung von verfluessigtem Gas mit niedriger Temperatur
DE937216C (de) Raeucherkammer
DE1951051A1 (de) Kryogenischer Lagerbehaelter
EP0096235B1 (de) Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten
EP0401154B1 (de) Behälter zur Einlagerung von tiefgekühlten Flüssigkeiten
DE3633333C2 (de)
DE2753881A1 (de) Verfahren und einrichtung zur untertagespeicherung
DE2124915C2 (de) Vorratstank für Tieftemperaturflüssigkeiten
DE2138046A1 (de) Druckbehälter
DE3135729A1 (de) "schutzvorrichtung zum begrenzen eines spaltes"
DE2712197A1 (de) Doppelwandiger behaelter aus stahlbeton oder spannbeton fuer kalte fluessigkeiten, z.b. fluessiggas
EP0066276B1 (de) Doppelwandiger Behälter für tiefkalte Flüssigkeiten
DE3209010C1 (de) Behaelter
CH664415A5 (de) Rotationssymmetrischer sicherheitsbehaelter.
DE3121945C2 (de) Doppelwandiger Behälter für tiefkalte Flüssigkeiten
DE2029100A1 (de) Türanordnung fur eine Kondensatorkammer eines Kernreaktorhauses
DE2843532A1 (de) Behaelter fuer fluessiggas
DE1434651A1 (de) Lagerbehaelter fuer Fluessigkeiten
DE2101075A1 (de) Schiff zum Transport von Flüssiggas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19831027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860917

REF Corresponds to:

Ref document number: 3273334

Country of ref document: DE

Date of ref document: 19861023

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970616

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970627

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980720

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503