EP0066243B1 - Appareil pour le transfert d'image au moyen d'un faisceau électronique - Google Patents

Appareil pour le transfert d'image au moyen d'un faisceau électronique Download PDF

Info

Publication number
EP0066243B1
EP0066243B1 EP82104569A EP82104569A EP0066243B1 EP 0066243 B1 EP0066243 B1 EP 0066243B1 EP 82104569 A EP82104569 A EP 82104569A EP 82104569 A EP82104569 A EP 82104569A EP 0066243 B1 EP0066243 B1 EP 0066243B1
Authority
EP
European Patent Office
Prior art keywords
specimen
chamber
spare
transferring
subchamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82104569A
Other languages
German (de)
English (en)
Other versions
EP0066243A2 (fr
EP0066243A3 (en
Inventor
Kazuyoshi Sugihara
Toru Tojo
Ichiro Mori
Toshiaki Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of EP0066243A2 publication Critical patent/EP0066243A2/fr
Publication of EP0066243A3 publication Critical patent/EP0066243A3/en
Application granted granted Critical
Publication of EP0066243B1 publication Critical patent/EP0066243B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67796Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations with angular orientation of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment

Definitions

  • the present invention relates to an electron-beam image transfer device for transferring a pattern on a photoelectric mask onto a specimen such as a semiconductor wafer for instance.
  • This device has such practical advantage that it offers high productivity because it is capable of high-speed image transfer and that it permits the use of the conventional techniques because the photoelectric mask used is similar in construction to the photomask and that it enables the transfer of an image onto an irregular surface because of a deep depth of focus. For these reasons, this device is highly promising for use in the processing of submicron patterns.
  • the effectiveness of equipment like this is mentioned in literature such as R. Ward, J. Vac. Sci. Technology, 1b(b), Nov/Dec, 1979.
  • Fig. 1 is a schematic diagram showing an exemplary electron-beam image transfer device.
  • numeral 1 shows a vacuum vessel which constitutes the image transfer chamber. This vessel 1 is evacuated to somewhere around 133x10- 6 Pa by means of a vacuum pump.
  • a specimen holding means 4 for holding a specimen 3
  • a photoelectric mask holding means 6 for holding a photoelectric mask 5.
  • the specimen 3 and the photoelectric mask 5 are spaced about 10 mm apart in facing relation to each other.
  • Fig. 1 shows a schematic diagram showing an exemplary electron-beam image transfer device.
  • numeral 1 shows a vacuum vessel which constitutes the image transfer chamber. This vessel 1 is evacuated to somewhere around 133x10- 6 Pa by means of a vacuum pump.
  • a specimen holding means 4 for holding a specimen 3
  • a photoelectric mask holding means 6 for holding a photoelectric mask 5.
  • the specimen 3 and the photoelectric mask 5 are spaced about 10 mm apart in facing relation to each other.
  • said photoelectric mask is formed by a quartz plate 5a which passes ultraviolet rays, a master pattern 5b which consists of ultraviolet ray absorbing material forming the desired pattern on the quartz plate, and a photoelectric surface 5c made of Csl which emits photoelectrons when it receives the ultraviolet rays coming through the master pattern 5b.
  • the surface of said specimen 3 which faces the photoelectric mask 5 is coated with electron-beam sensitive resist 3a.
  • a detector 7 detects the relative position of the specimen 3 and the photoelectric mask so that they may be properly positioned by thus obtained information.
  • the light source 8 is provided outside said evacuated vessel 1.
  • the light source 8 emits ultraviolet rays which are caused to strike said photoelectric mask 5 through an ultraviolet ray passing window 10 when a shutter 9 is opened.
  • Outside the evacuated vessel 1 are also provided Helmholtz coils 11 and a DC power source 12.
  • a magnetic field is produced along the direction in which said specimen 3 and mask 5 face each other by means of said coil 11 and an electric field is produced in the same direction as said direction by means of said power source 12.
  • the numerals 13,14,15 in Fig. 1 indicate a support plate, shock- absorbing rubber, and mount, respectively.
  • the object of the present invention is to provide an electron-beam image transfer device which makes it possible to greatly increase the productivity and to prevent the adverse effects of dust and temperature changes.
  • the specimen or the photoelectric mask can be changed without destroying the vacuum in the main chamber and therefore it is possible to greatly enhance the productivity and to prevent the qualitative deterioration of the specimen due to the external conditions such as moisture.
  • the transfer of specimen and photoelectric mask between the subchamber and the main chamber is achieved automatically by means of the transfer devices, thus so much increasing the productivity.
  • the specimen itself is transferred and positioned. Therefore it is not necessary to use extra members to be transferred and positioned with the specimen.
  • the wafer is sucked, so that the wafer itself can be transferred.
  • the positioning of the specimen is carried out twice at the same time. One time in the spare chamber and the other time in the main chamber.
  • the former positioning of the specimen may be roughly carried out within the range of ⁇ 50 um, the latter positioning of the specimen may be precisely carried out within the range of ⁇ 1 pm.
  • the positioning time can be shortened, the positioning mechanism can be miniaturized.
  • numeral 20 designates a cylindrical evacuated vessel in which an image transfer chamber is formed, which is vertically positioned so that an ultraviolet ray passing window 21 formed on one end of of it may be on top.
  • first wafer spare chamber 22a and the second wafer spare chamber 23a connecting with said image transfer chamber and extending in opposite directions.
  • the main chamber is composed of these spare chambers and the image transfer chamber.
  • the image transfer chamber is also connected with a vacuum pump 24, by means of which the image transfer chamber and the spare chambers are evacuated to a vacuum of about 133x10-6 Pa.
  • the specimen holding plate 26 On which a specimen (wafer) 25 is supported in fixed position with the electron-beam sensitive resist coated side up and a mask support mechanism 28 which holds a photoelectric mask 27 with the mask pattern side faced downward.
  • the specimen stand 26 and the mask support mechanism 28 are constructed by XYZBL p p-tables, respectively which enable accurate positioning of specimen 25 and photoelectric mask 27 (photoelectric mask cassette) in a desired position.
  • Numeral 29 indicates the detector to detect the position of specimen 25. The specimen 25 is properly positioned according to the signal from this detector.
  • a circular opening 30 is formed in a part of the upper wall of said first projection 22.
  • This opening 30 may be closed with the first moving member 31, the lower end of which is contact with the outside surface of the upper wall of the projection 22.
  • a subchamber 32 so that it connects with the first wafer spare chamber 22a in the projection 22 via said opening 30.
  • a hydraulic cylinder or air cylinder 34 supported by a supporting member 33 and the lower end of a piston of the cylinder 34 is coupled with the moving member 31.
  • the moving member 31 is moved up and down by means of the hydraulic or air cylinder 34. When it is moved upward, the opening 30 is exposed to the outside.
  • an opening in facing relation to said opening 30 In a part of the lower wall of said projection 22 is formed an opening in facing relation to said opening 30. Through this opening protrudes a supporting table 35 from beneath, maintaining a state of airtightness.
  • a driving mechanism 37 is mounted to the shaft 36 extruding to the lower end of the supporting table 35. This driving mechanism 37 causes the supporting table 35 to move up and down via the shaft 36 and is constructed by a combination of a bolt, nut, and motor, for instance.
  • the upper surface of said supporting table is flat and has an electrostatic chuck 38 capable of sucking the specimen 25 thereon as shown in Fig. 5.
  • a flange 39 is formed on the outer circumference of the supporting table 35 near its top surface and a mechanical seal (wilson seal) 40 which is formed with ring-shaped rubber plate is provided on top of the flange 39.
  • a mechanical seal wipe seal
  • the mechanical seal 40 comes into contact with the inside surface of the upper wall of said projection 22 in a manner to surround said opening 30 so that the flange 39 closes the opening 30 from inside. That is to say that the connection between the first wafer spare chamber 22a and the subchamber 32 is closed by the flange 39.
  • numeral 41 indicates an O-ring which is disposed on the upper wall of the projection 22 and comes into contact with the lower end surface of the moving member 31 to more securely shut off the subchamber 32 from outside.
  • the first specimen feeding mechanism 42 is so composed as described above. This mechanism makes it possible to feed the specimen (wafer) into the first wafer spare chamber 22a without destroying a state of airtightness.
  • the transfer mechanism 43 In said first wafer spare chamber is placed a transfer mechanism 43 by which the specimen which has been fed outside is transferred onto the specimen stand 26.
  • the transfer mechanism 43 has a plate-like arm 44, which is supported by a pair of supporting rails 45 extending in the first wafer spare chamber 22a horizontally along the chamber's wall in such a manner that it moves along the rails 45.
  • a bearing 46 On one side wall of the protruding end of the first projection 22 is mounted a bearing 46 which supports a shaft 47 in such a manner that it can rotate.
  • the bearing 47 and shaft 46 are so disposed that a state of vacuum within the first wafer spare chamber 22a can be maintained.
  • a pulley 48 is fixed to one end of said shaft 47 extending into the first wafer spare chamber 22a.
  • FIG. 6 indicates electrostatic chucks displaced on the arm 44.
  • the chucks hold the specimen 53 by suction so that the specimen 25 is transferred by the arm 44.
  • a vacuum pump 92 for evacuating this chamber, as illustrated in Fig. 4.
  • Said first feeding mechanism 42 functions to feed a specimen from outside into the first wafer spare chamber 22a and the transferring mechanism 43 functions to transfer the specimen 25 onto the specimen stand 26.
  • Another feeding mechanism 42 and transferring mechanism 43 of substantially the same construction as above- mentioned mechanism are disposed in the wafer spare chamber 23a. This transferring mechanism functions to transfer a specimen with an impressed pattern into the second wafer spare chamber 23a and the feeding mechanism functions to transfer the specimen to outside.
  • an index station 54 containing specimens (wafers) and a second transferring mechanism 55 which transfers the specimen from the index station 54 to the electrostatic chuck 38 on said supporting stand 35.
  • the index station 54 has a wafer carrier 56 which is capable of containing one lot of 25 wafers properly spaced in the vertical direction.
  • This carrier 56 is mounted in a fixed position on a wafer carrier stand 59 which is supported by a vertically movable supporting stand 57 via a supporting column 58.
  • a feed thread 60 is rotatably provided parallel to the supporting column 58.
  • This thread 60 meshes with the supporting stand 57 which is supported by the guiding bearing 61 disposed on the supporting column 58 and the rotating shaft of the motor 62 is connected to the feed thread 60.
  • the feed thread 60 is caused to rotate by means of the motor 62 so that the supporting stand 57, that is, the wafer carrier 56 is vertically moved.
  • Said second feeding mechanism 55 has a base 63, on which is provided a supporting column 64 which is extendable in a vertical direction. On the upper end of the supporting column 64 is fitted rotatably a rotative arm 65, to which is fitted a supporting arm 66 which is extendable in a horizontal direction.
  • the base 63 contains a driving mechanism to move the supporing column 64 up and down
  • the supporting column 64 contains a driving mechanism to rotate the rotative arm 65 through 90 degrees
  • the rotative arm 65 contains a driving mechanism to protract or retract the supporting arm 66.
  • a vacuum chuck 67 is disposed on top of the end of the supporting arm 66. Thus, as illustrated in Fig. 7, when the supporting arm.
  • the arm 66 is in facing relation to the wafer carrier 56, the arm is protracted or retracted so that the vacuum chuck 67 comes into a position under a specific wafer in the carrier 56. Then the carrier is moved downward so that the wafer is sucked by the vacuum chuck 67 and thereafter the supporting arm 66 is moved back into its former position and rotated through 90 degrees.
  • the mechanism is so designed that when the arm is rotated as stated above the wafer position coincides with the position of the electrostatic chuck 38 on the supporting stand 35.
  • a positioning mechanism 68 to place the orientation flat of a wafer in the prescribed position when the wafer is placed on the supporting stand 35 in the first wafer spare chamber 22a.
  • This mechanism 68 which is displaced in the first wafer spare chamber, has four horizontally movable driving rollers 69, 70, 71, 72. These rollers are connected with the rotating shafts of four motors 73, 74, 75, 76, respectively, so that they are rotated by these motors.
  • the third and fourth rollers 71 and 72 are disposed closely adjacent to each other.
  • the first and second rollers 69 and 70 are displaced roughly equidistant from the rollers 71 and 72.
  • a supporting stand 77 In the proximity of said third and fourth driving rollers 71 and 72 is disposed a supporting stand 77 and on the underside of the extending portion of the supporting stand 77 are disposed a pair of light-emitting elements 78 spaced at a prescribed distance in between the third and fourth driving rollers 71 and 72. These light-emitting elements 78 are positioned above the periphery of the wafer (specimen 25). Under the periphery of the wafer 25 is also disposed a pair of photosensitive elements 79 in facing relation to the light-emitting elements 78.
  • These photosensitive elements 79 are connected to switching circuits so as to stop said four motors 73, 74, 75, 76 when both of these photosensitve elements have received the light from the light-emitting elements 78.
  • the positioning mechanism 68 After the wafer 25 has been brought into the standby position and the suction of the electrostatic chuck 38 has been released, the following operations are performed. First, the four driving rollers 69, 70, 71, 72 are moved horizontally inward until they come into contact with the peripheral edge of the wafer 25 and at the same time they are rotated in the same direction by the respective motors. As a result the wafer 25 is rotated in a direction opposite to the rollers.
  • the orientation flat of the wafer When the orientation flat of the wafer has come into the prescribed position as illustrated in Figs. 9 and 10 the light from the light-emitting elements 78 which has so far been shut off by the periphery of the wafer reaches the photosensitive elements 79 through the orientation flat. As a result the signal from the photosensitive elements 79 stops the motors and consequently the driving rollers. Thus the wafer 25 stops rotating and may be set in the prescribed position. Thereafter the electostatic chuck 38 sucks the wafer 25 and at the same time the driving rollers are detached from the wafer and moved back into the standby position.
  • said evacuated vessel 20 is connected to the mask feeding mechanism 80 disposed at roughly right angles to the projections 22 and 23.
  • This feeding mechanism 80 is stocked in advance with a plurality of photoelectric masks 27, which are fed one by one into the mask holder 28 (Fig. 3) in the evacuated vessel 20.
  • This mask feeding mechanism 80 has such a construction as illustrated in Fig. 11, in which numeral 81 indicates a mask subchamber which is connected to the evacuated vessel 20 via a gate valve 82.
  • This mask subchamber 81 houses a photoelectric mask cassette magazine 83 which holds the photoelectric masks 27 properly spaced in the vertical direction.
  • This magazine 83 is fixed to the upper end of a supporting column 84 which is vertically disposed.
  • the lower end of the supporting column 84 extends downward through the lower wall of the subchamber 81.
  • a means to move said column up and down such as the piston of a hydraulic or air cylinder 85 for instance.
  • the middle section of the supporting column 84 is surrounded by a bellows 86 disposed on the lower wall of the subchamber 81 so that the cassette magazine 83 can be moved up and down by means of the driving cylinder 85 without destroying a state of vacuum in the subchamber 81.
  • a mask transfer mechanism 87 In the horizontal projection 81 a of said subchamber 81 is disposed a mask transfer mechanism 87, which has a transfer arm 88 movably disposed in a horizontal direction within the projection 81 a.
  • a rack On the side of the transfer arm 88 is formed a rack which meshes with a pinion fitted to the end of the rotating shaft of a DC motor 89 so that the arm 88 can be moved horizontally by means of the motor 89.
  • This motor 89 is placed outside the projection 81a a and its rotating shaft extends into the projection 81a via an airtight bearing 90 which is disposed in the upper wall of the projection 81a.
  • the motor 89 is operated at such a state as illustated in Fig. 11 and the arm 88 is moved forward so that its end brought into the cassette magazine 83 and then the driving cylinder 85 is driven to move the magazine 83 slightly downward.
  • a particular photoelectric mask 27 in the magazine 83 is placed onto the end of the arm 88. Thereafter the motor 89 is operated again so that the arm 88 is moved further forward and the photoelectric mask 27 is brought into the mask holder in the evacuated vessel 20 through the gate valve 82. To remove an unwanted photoelectric mask out of the mask holder, the above procedure is reversed to transfer it from the mask holder back to the cassette magazine 83 by means of the arm 88.
  • Numeral 91 in Fig. 11 indicates a vacuum pump for evacuating the mask subchamber 81.
  • a specific photoelectric mask 27 is transferred from the photoelectric mask cassette magazine 83 into the image transfer chamber by means of the transfer arm 88 and the mask is held by the mask holder 28.
  • the specimen (wafer) 25 is sucked off the wafer carrier 56 onto the electrostatic chuck 38 on the supporting stand 35 which is provided on the first wafer spare chamber 22a side.
  • the electrostatic chuck 38 has been moved beforehand upward as illustrated in Fig. 5 and the moving member 31 has also been moved upward by means of the driving cylinder 34 and therefore the electrostatic chuck 38 is exposed to the outside through the opening 30 to permit the specimen 25 to be placed thereon.
  • the moving member 31 When the specimen 25 is sucked onto the electrostatic chuck 38, the moving member 31 is moved downward into the lower position as shown in Fig. 5, thereby to make the subchamber 32 airtight.
  • This subchamber 32 is evacuated by means of the vacuum pump 92 and subsequently the supporting stand 35 is moved downward, that is, until the specimen 25 comes into the prescribed position within the first wafer spare chamber 22a.
  • the specimen 25 is properly positioned by means of the positioning mechanism 68 and then moved onto the specimen stand 26 by means of the transfer mechanism 43 and sucked thereon.
  • the specimen 25 On the specimen stand 26, the specimen 25 is set in the prescribed position in relation to the photoelectric mask 27 by the movement of the specimen stand 26 while its position being detected by the detecting mechanism 29.
  • the Helmholtz coils 11 are energized to generate a magnetic field along the direction in which the specimen 25 and the photoelectric mask 27 face each other and at the same time an electric field is impressed in the same direction as the magnetic field by means of the power source 12. Then the shutter 9 is opened to allow the ultraviolet rays from the light source 8 to pass through the ultraviolet ray passing window to irradiate onto the photoelectric mask 27. As a result the photoelectric mask 27 releases photoelectrons according to the mask pattern and the photoelectrons are focused by said magnetic field and electric field to fall onto the specimen 25. Thus the resist on the specimen 25 is exposed to the photoelectrons according to said mask pattern so that the pattern is transferred onto the specimen 25.
  • the specimen 25 on which the pattern has been transferred is moved into the second wafer spare chamber 23a by means of the transferring mechanism 43 which is disposed on the second wafer spare chamber 23a side and delivered therefrom to the outside via the feeding mechanism 42.
  • the specimen removing operation is carried out simultaneously with the next specimen feeding operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Robotics (AREA)
  • Electron Beam Exposure (AREA)

Claims (4)

1. Appareil de transfert d'image par faisceau d'électrons destiné à transférer une configuration sur un masque photoélectrique sur un spécimen comportant:
une enceinte sous vide comprenant une chambre de transfert d'image et une première et une seconde chambre de réserve (22a);
un support de spécimen (26) disposé dans la chambre de transfert d'image pour aspirer le spécimen (25) afin de le maintenir de façon amovible dans une position fixée;
un support de masque (28) disposé dans la chambre de transfert d'image pour maintenir le masque photoélectrique (27) en position fixée, de façon amovible faisant face audit spécimen;
un dispositif destiné à appliquer un champ magnétique et un champ électrique au spécimen et au masque photoélectrique dans la direction dans laquelle ils se font face;
une première et une seconde sous-chambre (32, 81) disposées à proximité de ladite enceinte sous vide pour loger le spécimen (25) et le masque photoélectrique (27) est reliées à la chambre de transfert d'image par la première et la seconde chambre de réserve (22a), respectivement;
une pièce (38) sur laquelle le spécimen est directement aspiré pour transférer le spécimen dans la première chambre de réserve (22a) depuis la première sous-chambre (32);
un premier mécanisme de positionnement (68) qui corrige grossièrement la position du spécimen, prévu dans la première chambre de réserve (22a);
un second dispositif de positionnement qui corrige avec précision la position du spécimen aspiré sur le support de spécimen (26), prévu dans la chambre de transfert d'image;
une première et une seconde porte disposées entre la première et la seconde sous-chambre (32, 81) et la première et la seconde chambre de réserve;
un premier mécanisme de transfert destiné à transférer le spécimen (25) depuis la première chambre de réserve jusque dans la chambre de transfert d'image, ledit premier mécanisme de transfert comprenant une pièce (53) qui aspire le spécimen et qui le transporte depuis ladite pièce (38) afin de transférer le spécimen à la première chambre de réserve depuis la première sous-chambre jusqu'au support de spécimen (26);
un second mécanisme de transfert destiné à transférer le masque photoélectrique depuis ladite seconde sous-chambre dans la chambre de transfert d'image; et
un dispositif d'évacuation destiné à vider ladite chambre de transfert d'image, lesdites chambres de réserve et lesdites sous-chambres.
2. Appareil de transfert d'image par faisceau d'électrons, selon la revendication 1, dans lequel une autre première sous-chambre, une autre première chambre de réserve sont prévues et une autre première porte capable d'une liaison sélective et d'un joint étanche à l'air entre ladite autre première chambre de réserve et autre première sous-chambre et un autre premier mécanisme de transfert étant prévu pour transférer le spécimen depuis le support de spécimen jusqu'à l'autre première chambre de réserve.
3. Appareil de transfert d'image par faisceau d'électrons selon la revendication 2, dans lequel ladite première chambre de réserve et ladite autre première chambre de réserve s'étendent horizontalement dans des directions opposées et lesdits premiers méchanismes de transfert peuvent être déplacés dans la direction dans laquelle s'étendent les chambres de réserve.
4. Appareil de transfert d'image par faisceau d'électrons selon la revendiation 3, dans lequel la pièce (38) destinée à transférer le spécimen depuis la première sous-chambre jusqu'à la première chambre de réserve est monté sur un support de spécimen qui est mobile veticalement entre une position inférieure située dans ladite première chambre de réserve et une position supérieure située à l'extérieur de la première chambre de réserve avec un état de vide qui y est maintenu, dans lequel une pièce mobile (31) est prévue, mobile verticalement entre une position inférieure dans laquelle elle est en contact avec la surface extérieure de l'enceinte sous vide pour définir ladite première sous-chambre entre l'enceinte sous vide et la pièce mobile (31) et une position supérieure dans laquelle la pièce mobile s'écarte de la surface extérieure de l'enceinte sous vide pour exposer la première sous-chambre à l'atmosphère et dans lequel sont prévus, pour déplacer le support de spécimen vers le haut quand la pièce mobile (31) se trouve dans sa position inférieure et la déplacer ensuite vers le bas après que la pièce mobile a été déplacée vers le haut pour permettre l'avance du spécimen, et la première sous-chambre est vidée par le dispositif d'évacation de manière que le spécimen placé sur le support puisse être transféré au moyen du premier mécanisme de transfert.
EP82104569A 1981-05-26 1982-05-25 Appareil pour le transfert d'image au moyen d'un faisceau électronique Expired EP0066243B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP56079563A JPS57194531A (en) 1981-05-26 1981-05-26 Electron beam transfer device
JP79563/81 1981-05-26

Publications (3)

Publication Number Publication Date
EP0066243A2 EP0066243A2 (fr) 1982-12-08
EP0066243A3 EP0066243A3 (en) 1983-04-27
EP0066243B1 true EP0066243B1 (fr) 1988-08-24

Family

ID=13693471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82104569A Expired EP0066243B1 (fr) 1981-05-26 1982-05-25 Appareil pour le transfert d'image au moyen d'un faisceau électronique

Country Status (4)

Country Link
US (1) US4467210A (fr)
EP (1) EP0066243B1 (fr)
JP (1) JPS57194531A (fr)
DE (1) DE3278942D1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2142158A (en) * 1983-05-25 1985-01-09 Philips Electronic Associated Electron lithography masks
GB2155201B (en) * 1984-02-24 1988-07-13 Canon Kk An x-ray exposure apparatus
JPS60189745A (ja) * 1984-03-10 1985-09-27 Canon Inc 密着露光方法
US4604020A (en) * 1984-03-26 1986-08-05 Nanometrics Incorporated Integrated circuit wafer handling system
DE3584141D1 (de) * 1984-11-20 1991-10-24 Fujitsu Ltd Verfahren zum projizieren eines photoelektrischen bildes.
JPH0787084B2 (ja) * 1985-02-06 1995-09-20 株式会社日立製作所 真空装置の試料交換機構
EP0555890B1 (fr) * 1985-10-24 1998-09-02 Texas Instruments Incorporated Bras et méthode de transfert de plaquettes
CA1300357C (fr) * 1986-04-04 1992-05-12 Materials Research Corporation Methode et appareil pour le traitement et la manutention de materiaux en forme de plaquettes
KR940000696B1 (ko) * 1986-04-15 1994-01-27 햄프셔 인스트루 먼트스 인코포레이티드 엑스레이 석판인쇄 장치
JPH01159950A (ja) * 1987-12-16 1989-06-22 Fuji Photo Film Co Ltd 電子顕微鏡の記録媒体収納用マガジン
JP2541141Y2 (ja) * 1990-12-28 1997-07-09 神鋼電機株式会社 半導体製造装置におけるウェハ−の移載装置の取付け構造
US6661009B1 (en) * 2002-05-31 2003-12-09 Fei Company Apparatus for tilting a beam system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430029A (en) * 1967-01-06 1969-02-25 Smith Corp A O Rapid load system for electron beam welder
FR2046833B1 (fr) * 1969-06-17 1973-01-12 Ass Elect Ind
US3679497A (en) * 1969-10-24 1972-07-25 Westinghouse Electric Corp Electron beam fabrication system and process for use thereof
DE2028862A1 (de) * 1970-06-11 1971-12-16 Steigerwald K Druckschleusensystem fur eine Kammer, in der ein vom Umgebungsdruck abweichender Druck herrscht
US3968885A (en) * 1973-06-29 1976-07-13 International Business Machines Corporation Method and apparatus for handling workpieces
US4013262A (en) * 1974-12-13 1977-03-22 Varian Associates Rotary apparatus for moving workpieces through treatment beam with controlled angle of orientation and ion implanter incorporating such apparatus
US4039810A (en) * 1976-06-30 1977-08-02 International Business Machines Corporation Electron projection microfabrication system
JPS54100668A (en) * 1978-01-26 1979-08-08 Toshiba Corp Electron-beam exposure unit
DE3019728A1 (de) * 1979-05-31 1980-12-04 Jenoptik Jena Gmbh Einrichtung zum schleusen von objekten fuer korpuskularstrahlgeraete

Also Published As

Publication number Publication date
US4467210A (en) 1984-08-21
JPS57194531A (en) 1982-11-30
EP0066243A2 (fr) 1982-12-08
EP0066243A3 (en) 1983-04-27
DE3278942D1 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
KR100736300B1 (ko) 웨이퍼 취급 시스템 및 리소그래피 패터닝에 사용되는 방법
EP0066243B1 (fr) Appareil pour le transfert d'image au moyen d'un faisceau électronique
US5164974A (en) X-ray exposure apparatus
US5197089A (en) Pin chuck for lithography system
EP0065143B1 (fr) Dispositif de transmission d'image par rayon électronique et procédé d'alignement de masque et de plaquette semi-conductrice
JP3571243B2 (ja) プロキシミティ露光方法及び装置
US5023462A (en) Photo-cathode image projection apparatus for patterning a semiconductor device
JP3725671B2 (ja) プロキシミティ露光装置及び方法並びに液晶ディスプレイの製造方法
JP2505952B2 (ja) 半導体製造装置
US5398271A (en) Exposure apparatus
KR100539404B1 (ko) 마스크 로더를 가진 노광장치
JPH0345528B2 (fr)
JP3101332B2 (ja) X線露光装置
JPH05217885A (ja) 周辺露光装置
JPS60178112A (ja) ウエハ搬送装置
JPH0438814A (ja) X線露光装置
JPS5936928A (ja) 電子ビ−ム転写装置
JPH07142348A (ja) 露光装置
JP2610481B2 (ja) 露光装置及び処理装置及び処理方法
JPS63307729A (ja) 半導体ウエハの露光方法
JPH07123110B2 (ja) X線転写装置及び方法
JPS62295430A (ja) 縦形移動テ−ブル
JPS63300515A (ja) 光電子像転写装置
JPS60178631A (ja) X線転写装置
JPH0476837A (ja) フィーチャアライナ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820621

AK Designated contracting states

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KABUSHIKI KAISHA TOSHIBA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3278942

Country of ref document: DE

Date of ref document: 19880929

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930510

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930514

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930602

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST