EP0060437B1 - Procédé de production électrochimique de benzanthrones et d'oxocomposés aromatiques polycycliques plans - Google Patents

Procédé de production électrochimique de benzanthrones et d'oxocomposés aromatiques polycycliques plans Download PDF

Info

Publication number
EP0060437B1
EP0060437B1 EP82101587A EP82101587A EP0060437B1 EP 0060437 B1 EP0060437 B1 EP 0060437B1 EP 82101587 A EP82101587 A EP 82101587A EP 82101587 A EP82101587 A EP 82101587A EP 0060437 B1 EP0060437 B1 EP 0060437B1
Authority
EP
European Patent Office
Prior art keywords
process according
reaction
oxidation
sulfuric acid
anode compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82101587A
Other languages
German (de)
English (en)
Other versions
EP0060437A1 (fr
Inventor
Horst Dr. Jäger
Eric Prof.Dr. Plattner
Jacques Dr. Bersier
Christos Comninellis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0060437A1 publication Critical patent/EP0060437A1/fr
Application granted granted Critical
Publication of EP0060437B1 publication Critical patent/EP0060437B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds

Definitions

  • the present invention relates to an electrochemical redox process which is carried out in an electrolysis cell which is separated by a diaphragm in the cathode and anode compartments, cathodic benzanthrones and simultaneously anodically planar polycyclic aromatic oxy compounds being produced.
  • the oxy compounds obtainable according to the present invention have hitherto often been produced by means of reduction or oxidation reactions, in which heavy metals or heavy metal salts of higher value are frequently used as industrial reduction or oxidizing agents. After working up, diluted metal salt solutions remain, the disposal of which poses considerable ecological problems.
  • So z. B. metals such as iron, zinc, aluminum or copper in concentrated sulfuric acid for the reductive conversion of anthraquinone into the semiquinone form are described, inter alia, in US Pat. No. 1,896,147 (reducing agent Fe), US Pat. No. 2,034,485 and USSR Patent 401,130 (reducing agent Fe and Cu), AM Lahin, Zhur. Obschei Khim. 18, 308 (1948), cf. CA 44, 1079b (reducing agent Zn, Al, C U S0 4 ) and U.S. Patent 1,791,309 (reducing agent Zn and Al).
  • iron has gained the greatest practical importance as a reducing agent.
  • iron as a reducing agent has major economic and ecological disadvantages, since at least 2 moles of iron must be used per mole of anthraquinone. This means that e.g. B. per mole of benzanthrone 2.0 moles of iron sulfate or per 1000 g of benzanthrone produced at least 1320 g of iron sulfate as a waste product.
  • large amounts of waste sulfuric acid are produced, because in order to isolate the benzanthrone formed, the sulfuric acid has to be diluted to approx. 20%, which then either has to be regenerated to concentrated sulfuric acid in an energy-intensive manner or whose removal is also an environmental problem.
  • the environmentally friendly electrochemical reaction procedure represents an alternative to the use of environmentally harmful reducing or oxidizing agents.
  • the object of the invention is therefore to develop an electrochemical redox process which couples the already known reduction reaction taking place on the cathode with an oxidation reaction taking place simultaneously on the anode.
  • the process according to the invention thus consists in the simultaneous electrochemical production of benzanthrones and polycyclic planar aromatic oxy compounds by working in an electrolysis cell which contains an acid and is separated by a diaphragm into a cathode and an anode compartment, an anthraquinone of the formula being used in the cathode compartment electrochemically converted into the semiquinone form and this with glycerin to the benzanthrone of the formula implemented, the benzene rings A and B can be substituted and at the same time the cations of a transition metal salt in the anode space from the lower to a higher oxidation state and uses these metal ions for the chemical oxidation of planar polycyclic aromatic compounds to the corresponding oxy compounds.
  • the products are isolated from the catholyte and anolyte.
  • Unsubstituted anthraquinone is preferably used as the starting material for the production of benzanthrones in the cathode compartment, which are important as vat dye intermediates, but also those anthraquinones whose rings A and B have one or more of the following substituents: alkyl (C i -C 4 ), such as. B. the methyl or ethyl group, further alkoxy (C i -C 4 ), such as the methoxy, ethoxy, n- and iso-propoxy and the n-, iso- and tert-butoxy radical; Finally, the hydroxyl group and the halogen atoms, such as chlorine, bromine and iodine, come into consideration as substituents
  • Polycyclic planar aromatic compounds which, according to the present invention, are converted into the corresponding oxy compounds in the anode compartment are, for example, those from the anthraquinone, benzanthrone and pyrene series.
  • Such starting compounds can e.g. B. also have alkyl side chains which are terminally oxidized to the aldehyde or to the acid
  • An example of the chemical oxidative reaction in the anode compartment is the conversion of 4,4'-bibenzanthrone to dioxoviolanthrone.
  • Dioxoviolanthrone can be easily reduced to dihydroxyviolanthrone, an important intermediate for the synthesis of vat dyes. It is advantageous for the recycling of the anolyte to carry out the reduction of dioxoviolanthrone to dihydroxyviolanthrone with SO 2 gas.
  • oxidation can be carried out either directly in the anode compartment with a smaller than stoichiometrically required amount of metal salt, or preferably separately from the anode compartment with an anolyte solution containing more than the stoichiometric amount of metal salt as the oxidizing agent.
  • any cell with a diaphragm can be selected as the electrolytic cell, the diaphragm being acid-resistant, against concentrated and dilute mineral acid, such as. B. sulfuric acid, phosphoric acid, and against organic acids, such as. B. acetic acid.
  • Materials from which the diaphragm is made are e.g. B. glass, clay, porous polytetrafluoroethylene or polymeric perfluorinated hydrocarbons in the form of an ion exchange membrane.
  • the pore size of the diaphragm is in the range of 1 to 300 ⁇ m.
  • the materials which are customary for electrochemical reactions such as metals, metal alloys, activated metals, metal oxide electrodes, carbon electrodes, or electrodes made of glass-like sintered carbon, can be used as the cathode.
  • electrodes made of sintered carbon and Pb0 2 on titanium are particularly suitable for in situ reactions in the anode compartment.
  • the acidic reaction medium in particular mineral acids having a pK a ⁇ 2 such.
  • the electrolyte can also contain reaction-inert organic solvents as solubilizers.
  • the electrochemical synthesis takes place at a temperature between 50 and 150 ° C. Because of the solubility or suspendability of the quinoid compounds formed as an intermediate z. B. in sulfuric acid electrolytes, however, in order to work in technically interesting concentrations, operating temperatures in the range of about 80 to 120 ° C, but especially 90 to 105 ° C must be selected.
  • a mixture of two redox pairs can also be present in the anode compartment, one of the two being present in each case in catalytic amounts, namely with molar ratios of 1: 100 to 1: 1000.
  • Redox couple mixtures are preferably used in which the component used in a lower concentration, namely 1 to 10 mmol per mole of transition metal sulfate, is a silver I salt, for example silver I sulfate, which forms silver during the reaction at the anode -II-sulfate is oxidized.
  • the addition of catalytic amounts of silver salt increases the yield when the transition metal salt is converted to its higher valence level. In the case of the oxidation of manganese II to manganese 111, the yield of manganese 111 can be increased by 20 to 50%, depending on the current density.
  • the electrochemically produced, higher-quality transition metal ions react in situ with the planar, polycyclic, aromatic compound dissolved in the anolyte and oxidize them to the corresponding oxy compounds, go back to the lower valence level even by taking up electrons, are finally reoxidized at the anode and stand again ready as an oxidizer.
  • the oxidizing agent is carried out in a cycle, it is therefore a less than stoichiometric amount required to oxidize the organic starting compound in the anode compartment.
  • the anode compartment contains no organic compound next to the metal salt or salt mixture when current is passed.
  • the electrolysis is stopped when the metal salt or the main component of the salt mixture is almost completely converted to the higher valence level.
  • This salt solution or suspension can now be removed from the anode compartment and used in a separate reaction vessel for the oxidation of planar polycyclic aromatics. Since the oxidizing agent used in this case is not regenerated, stoichiometric ratios between the oxidizing agent and the aromatic must be maintained.
  • the oxidant consumed at the end of the chemical oxidation reaction i.e. the solution of the metal salt now present in the lower oxidation state, after separation of the aromatic oxy compound, clarification by means of activated carbon and concentration, if appropriate, can be returned to the anode compartment and is again electrolytically oxidized here.
  • the products obtained can be isolated in the usual way from the catholyte, such as anolyte.
  • sulfuric acid as the reaction medium is, for. B. diluted to 60%, the precipitated product is filtered off and washed until neutral, or the product is extracted from the 60% sulfuric acid with a commercially available solvent.
  • the anolyte is concentrated to the original concentration and used in the next oxidation cycle.
  • the extraction temperature (absorption of the product in the organic solvent) is 70 to 110 ° C, advantageously 90 to 100 ° C.
  • anthraquinone (0.225 mol) are dissolved on the cathode side in 1300 g of 88% sulfuric acid in an electrolysis apparatus with a carbon cathode, Pt anode and tondiaphragm and 31.05 g of glycerin are added dropwise during the electrolysis.
  • the anode side of the electrolytic cell contains 130 g of 88% strength sulfuric acid, in which 10 g of MnSO 4 .H 2 O (0.059 mol) are suspended. At 95 ° C 51 700 coulombs are used for electrolysis (3.5 V, 3 A, 5 h).
  • the anolyte is poured into a beaker, 10.0 g (0.021 mol) of 4,4'-bibenzanthrone are added and the reaction mixture is stirred at 30 ° C. for 4 hours.
  • the dioxoviolanthrone formed is reduced in situ by the dropwise addition of 400 ml of 40% sodium bisulfite solution to dihydroxyviolanthrone.
  • the dihydroxyviolanthrone precipitate is finally filtered off, washed and dried
  • Dihydroxyviolanthrone serves as an intermediate for the synthesis of the vat dye of the formula which is obtained by methylation of dihydroxyviolanthrone.
  • the yield is approximately 99.5% when electrochemically represented dihydroxyviolanthrone is used.
  • an anode made of glassy sintered carbon and a sound diaphragm, 88.8% of 88.8% of anthraquinone (0.225 mol) are dissolved in 1300 g of sulfuric acid on the cathode side, and 31.05 g of glycerin are added dropwise when the current passes.
  • the anode side of the electrolysis cell also contains 1300 g of 88% sulfuric acid, in which 100 g of MnSO 4 -H 2 O (0.59 mol) are suspended. At 95 ° C 51 600 coulombs are used for electrolysis (3.5 V, 3 A, 5 h).
  • the anolyte is used as described in Example 1 for the oxidation of 4,4'-bibenzanthrone.
  • a Ti / Pb0 2 anode is used instead of a Pt anode.
  • the clay diaphragm is replaced by an ion exchange membrane made of perfluorinated polymeric hydrocarbons. The cathodic reaction and the anodic reaction take place simultaneously.
  • Dioxoviolanthrone can be reduced to dihydroxyviolanthrone as usual.
  • the anode side of the electrolytic cell contains 600 g of 88% sulfuric acid, in which 80 g of MnS0 4 -H 2 0 (0.47 mol) and 0.62 g of Ag 2 S0 4 (2 mmol) are suspended or dissolved.
  • the Mn-II-containing sulfuric acid is purified by adding 1 g of activated carbon, then heating to 40 ° C. and filtration.
  • the clarified anolyte is light yellow again and can be used in further oxidation cycles after concentration.
  • the current efficiency of the reoxidation of the manganese-II to manganese-III sulfate is influenced positively by catalytic amounts of silver ions and is also dependent on the current density and the degree of conversion.
  • a Ti / Pb0 2 anode is used instead of a Pt anode.
  • the clay diaphragm is replaced by an ion exchange membrane made of perfluorinated polymeric hydrocarbons. The cathodic reaction and the anodic reaction take place simultaneously in the electrolytic cell.
  • this dry residue contains the product naphthalene tetracarboxylic anhydride, naphthalene tetracarboxylic acid, and some starting material, tetrachloropyrene.
  • Example 1 in an electrolysis apparatus with carbon cathode, Pt anode and sound diaphragm on the cathode side 1300 g H 2 S0 4 88% with 88.8 g anthraquinone and after dissolving the anthraquinone and applying a voltage of 3 , 5 V, 31.05 g of glycerin was added dropwise.
  • the anode side of the electrolytic cell contains 130 g of 88% strength sulfuric acid, in which 10 g of MnSO 4 .H 2 O are suspended.
  • the dry residue contains naphthalene tetracarboxylic anhydride in addition to small amounts of starting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (19)

1. Procédé électrochimique pour la production de benzanthrones et de composés oxygénés aromatiques polycycliques plans, dans lequel on travaille dans une cellule d'électrolyse, divisée par un diaphragme en un compartiment cathodique et un compartiment anodique, et contenant un acide, procédé dans lequel on transforme, dans le compartiment cathodique, une anthraquinone de formule
Figure imgb0013
par voie éiectrochimique, en une forme semiquinone, et on fait réagir celle-ci avec de la glycérine pour obtenir une benzanthrone de formule
Figure imgb0014
les cycles benzéniques A et B pouvant être substitués, le procédé étant caractérisé en ce que simultanément, dans le compartiment anodique, on fait passer les cations d'un sel de métal de transition d'un degré d'oxydation inférieur à un degré d'oxydation supérieur; on utilise ces ions métalliques pour l'oxydation chimique de composés aromatiques polycycliques plans en les composés oxygénés correspondants, et on isole à partir des catholyte et anolyte les produits formés.
2. Procédé selon la revendication 1, caractérisé en ce que l'on part d'anthraquinones dont les cycles A et B comportent un ou plusieurs des substituants suivants, alkyle (Ci-C4), alcoxy (Ci-C4), hydroxy et halogène.
3. Procédé selon la revendication 1, caractérisé en ce que l'on réduit à la cathode l'anthraquinone en oxanthrone, et on fait réagir celle-ci avec de la glycérine, avec fermeture du cycle pour obtenir la benzanthrone.
4. Procédé selon la revendication 1, caractérisé en ce que dans l'anolyte, pendant ou après l'électrolyse, on transforme la 4,4'-bibenzanthrone, par oxydation chimique, en dioxoviolanthrone.
5. Procedé selon la revendication 1, caractérisé en ce que l'on utilise une cellule d'électrolyse avec un diaphragme ayant des pores de largeur de 1 à 300 um.
6. Procédé selon la revendication 1, caractérisé en ce que l'on utilise des acides minéraux ayant un pKa < 2.
7. Procédé selon la revendication 6, caractérisé en ce que l'on utilise de l'acide sulfurique ayant une concentration de 60 à 98 %.
8. Procédé selon la revendication 1, caractérisé en ce que l'on travaille à des températures comprises entre 50 et 150° C.
9. Procédé selon la revendication 1, caractérisé en ce que l'on oxyde à l'anode des ions de métaux de transition et que l'on obtient ainsi un couple redox présentant un potentiel de +0,5 à +2,5 Volts.
10. Procédé selon la revendication 9 caractérisé en ce que dans le compartiment anodique, se trouve un des couples redox suivants: Mn2+/Mn3+, Ce3+/Ce4+, Co2+/Co3+, Ag+/Ag2+.
11. Procédé selon la revendication 10, caractérisé en ce que le compartiment anodique contient du sulfate de manganèse II, qui est oxydé pendant l'électrolyse en sulfate de manganèse III.
12. Procédé selon la revendication 10, caractérisé en ce que le compartiment anodique contient un mélange de deux couples redox, dans un rapport molaire de 1 : 100 a 1 : 1000.
13. Procédé selon la revendication 1, caractérisé en ce que l'on effectue l'oxydation anodique en présence de quantités catalytiques d'un sel d'argent - (I), en une concentration de 1 à 10 mmoles par mole de sel de métal de transition.
14. Procédé selon la revendication 1, caractérisé en ce que, pour effectuer la réaction chimique, on transfére le contenu des compartiments cathodique et anodique, après le déroulement de la réaction redox électrochimique, depuis la cellule d'électrolyse dans des réacteurs séparés.
15. Procédé selon la revendication 14, caractérisé en ce que l'on purifie l'anolyte consommé dans la réaction d'oxydation chimique on le concentre et le replace dans le compartiment anodique de puis la cellule d'électrolyse, ou les ions de métal de transition subissent de nouveau une oxydation électrochimique.
16. Procédé selon la revendication 1, caractérisé en ce que l'on soumet l'anthraquinone à une réduction cathodique, dans l'acide sulfurique à 80-90 %, et on ajoute simultanément de la glycérine dans un rapport molaire de 1 : 1,1 à 1 : 2, on dilue l'acide sulfurique à 60 % après la fin de la réaction, et isole la benzanthrone précipitée.
17. Procédé selon la revendication 1, caractérisé en ce qu'à l'anode, le sulfate de manganèse Il est oxydé, dans de l'acide sulfurique à 80-90 % et en présence de 4,4'- bibenzanthrone, en sulfate de manganèse III, qui agit in situ en agent oxydant et transforme la 4,4'- bibenzanthrone en dioxoviolanthrone.
18. Procédé selon les revendications 1, 14 et 15, caractérisé en ce que, dans l'acide sulfurique à 80-90 %, le sulfate de manganèse Il s'oxyde à l'anode en sulfate de manganèse III, puis on utilise l'anolyte dans un réacteur séparé pour la conversion oxydante de la 4,4'-bibenzanthrone en dioxoviolanthrone, et qu'après isolement du produit, on ramène l'anolyte dans le compartiment anodique pour la réoxydation.
19. Procédé pour la finition du produit, caractérisé en ce que soit on dilue l'électrolyte acide minéral et on isole le produit précipité, soit on extrait le produit hors de l'électrolyte acide dilué au moyen d'un solvant organique, et on l'isole selon les procédés habituels.
EP82101587A 1981-03-05 1982-03-02 Procédé de production électrochimique de benzanthrones et d'oxocomposés aromatiques polycycliques plans Expired EP0060437B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH147581 1981-03-05
CH1475/81 1981-03-05
CH2996/81 1981-05-08
CH299681 1981-05-08

Publications (2)

Publication Number Publication Date
EP0060437A1 EP0060437A1 (fr) 1982-09-22
EP0060437B1 true EP0060437B1 (fr) 1988-08-10

Family

ID=25687761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101587A Expired EP0060437B1 (fr) 1981-03-05 1982-03-02 Procédé de production électrochimique de benzanthrones et d'oxocomposés aromatiques polycycliques plans

Country Status (3)

Country Link
US (1) US4394227A (fr)
EP (1) EP0060437B1 (fr)
DE (1) DE3278880D1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624757A (en) * 1986-01-06 1986-11-25 The Dow Chemical Company Electrocatalytic method for producing quinone methides
US4624759A (en) * 1986-01-06 1986-11-25 The Dow Chemical Company Electrolytic method for producing quinone methides
AT398316B (de) * 1989-06-01 1994-11-25 Verein Zur Foerderung Der Fors Verfahren zur reduktion von farbstoffen
SA112330516B1 (ar) 2011-05-19 2016-02-22 كاليرا كوربوريشن انظمة وطرق هيدروكسيد كهروكيميائية مستخدمة لأكسدة المعدن
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
US9752241B2 (en) 2012-01-23 2017-09-05 Macdermid Acumen, Inc. Electrolytic generation of manganese (III) ions in strong sulfuric acid using an improved anode
US10260000B2 (en) 2012-01-23 2019-04-16 Macdermid Acumen, Inc. Etching of plastic using acidic solutions containing trivalent manganese
US9534306B2 (en) 2012-01-23 2017-01-03 Macdermid Acumen, Inc. Electrolytic generation of manganese (III) ions in strong sulfuric acid
CN102995052A (zh) * 2012-10-25 2013-03-27 江西科技师范大学 一种检测Pd2+的聚苯绕蒽酮荧光分子传感器的制备方法
TWI633206B (zh) 2013-07-31 2018-08-21 卡利拉股份有限公司 使用金屬氧化物之電化學氫氧化物系統及方法
CN107109672B (zh) 2014-09-15 2019-09-27 卡勒拉公司 使用金属卤化物形成产物的电化学系统和方法
CN108290807B (zh) 2015-10-28 2021-07-16 卡勒拉公司 电化学、卤化和氧卤化的系统及方法
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
WO2019060345A1 (fr) 2017-09-19 2019-03-28 Calera Corporation Systèmes et procédés utilisant un halogénure de lanthanide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
CN113897631B (zh) * 2021-10-24 2023-05-09 昆明学院 电化学合成吡啶-2-酮衍生物的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203434A (en) * 1967-10-23 1970-08-26 Ici Ltd Oxidation of organic materials
US4311565A (en) * 1979-05-30 1982-01-19 Ciba-Geigy Ag Electrochemical process for the production of benzanthrone

Also Published As

Publication number Publication date
US4394227A (en) 1983-07-19
EP0060437A1 (fr) 1982-09-22
DE3278880D1 (en) 1988-09-15

Similar Documents

Publication Publication Date Title
EP0060437B1 (fr) Procédé de production électrochimique de benzanthrones et d&#39;oxocomposés aromatiques polycycliques plans
EP0012215B1 (fr) Sel de choline et d&#39;acide hydroxy-2-butane sulfonique et son utilisation comme sel conducteur
EP0028028B1 (fr) Procédés de préparation d&#39;un composé oxo, ainsi que les intermédiaires nécessaires
DE3717143C2 (de) Verfahren zur Herstellung von Dihydrocarbylsubstituiertem Dithiocarbamat von Molybdän VI
EP0022062B1 (fr) Procédé électrochimique pour la préparation de benzanthrone
DE2920562C2 (fr)
CH653710A5 (de) Verfahren zur herstellung von blauen eisenhexacyanoferrat-iii-pigmenten.
DE3703131A1 (de) 2.3.6.7-tetrafluornaphthalintetracarbonsaeurebisimide, verfahren zu ihrer herstellung und ihre verwendung
DE4325342A1 (de) Verfahren zur Herstellung einer Cer(IV)-ionen-enthaltenden wäßrigen sauren Lösung
DE2431409C2 (de) Verfahren zur Herstellung von 1-Aminoanthrachinon
DE3028758C2 (de) Verfahren zur Herstellung von Anisaldehyd
DE1962881A1 (de) Verfahren zur Herstellung von Kristallviolett-Lacton
DE1933419C3 (de) Verfahren zur Herstellung eines l,l&#39;-Dimethyl-4,4&#39;-bipyridyliumsalzes
DE2613969C3 (de) Verfahren zur Herstellung von bromierten Phenolen
EP0572854A1 (fr) Procédé pour la préparation de la dianthraquinonyl-N,N&#39;-dihydroazine et de ses dérivés chlorés
DE3003656A1 (de) Verfahren zur herstellung von 1,4-diamo-2,3-dicyano-anthrachinon
JPH0147554B2 (fr)
DE2403446C2 (de) Verfahren zur Herstellung hydrierter Indole
EP0221022A2 (fr) Procédé de préparation de 5-nitro-1,4-naphtoquinone
EP0134478B1 (fr) Procédé de préparation d&#39;un pigment à base de tétrachloro-4,4&#39;,7,7&#39; thioindigo
DE2321003A1 (de) Verfahren zur herstellung von 5nitro-naphthochinon-(1,4)
DE2331712A1 (de) Verfahren zur herstellung von 2methoxy-3,6-dichlorbenzoesaeure
DE1668151C3 (de) Verfahren zur Herstellung von Dimethylsulfoxid
DE1147237B (de) Verfahren zur Herstellung von N-Phenyl-N-(4-nitrosophenyl)-hydroxylamin
CH682661A5 (de) Verfahren zur Reduktion aromatischer Nitroverbindungen mit Hilfe dreiwertiger Titanverbindungen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB NL SE

Designated state(s): BE CH DE FR GB NL SE

17Q First examination report despatched

Effective date: 19870119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 3278880

Country of ref document: DE

Date of ref document: 19880915

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920210

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920224

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 11

Ref country code: BE

Payment date: 19920331

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

Ref country code: BE

Effective date: 19930331

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930302

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82101587.2

Effective date: 19931008