EP0054601B2 - Chaudière à vapeur à circulation forcée - Google Patents

Chaudière à vapeur à circulation forcée Download PDF

Info

Publication number
EP0054601B2
EP0054601B2 EP81100601A EP81100601A EP0054601B2 EP 0054601 B2 EP0054601 B2 EP 0054601B2 EP 81100601 A EP81100601 A EP 81100601A EP 81100601 A EP81100601 A EP 81100601A EP 0054601 B2 EP0054601 B2 EP 0054601B2
Authority
EP
European Patent Office
Prior art keywords
evaporator
tubes
water
steam
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP81100601A
Other languages
German (de)
English (en)
Other versions
EP0054601A1 (fr
EP0054601B1 (fr
Inventor
Pawel Miszak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4352617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0054601(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0054601A1 publication Critical patent/EP0054601A1/fr
Application granted granted Critical
Publication of EP0054601B1 publication Critical patent/EP0054601B1/fr
Publication of EP0054601B2 publication Critical patent/EP0054601B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a forced-flow steam generator system with the features of the preamble of claim 1
  • Such a system is known from FR-PS 1 574 394.
  • the water separator is switched on between the wall-forming evaporator heating surface and the wall-forming first superheater heating surface connected to it.
  • the water exiting this separator is connected on the one hand via a circulation pump to the inlet of the evaporator heating surface and on the other hand is provided with a drain pipe in which a valve controlled by the level in the separator is arranged.
  • the level-dependent control signal also acts on the feed pump
  • another separator is connected, the water outlet of which is connected to the feed water line and the steam outlet of which is connected to a bulkhead superheater heating surface, which is suspended in the combustion chamber near its outlet.
  • the further water separator which can be bridged on the steam side by means of a bypass line, has the purpose of taking up the excess water that is supplied to the evaporator when starting up and not separated by the first water separator and returning it to the feed water line.
  • the water not separated by the first water separator therefore also flows through the wall-forming superheater heating surface before it reaches the further separator.
  • a further disadvantage of the steam generator which operates above the limit load of 50% of full load with forced passage and below this limit load with forced circulation, is that a switchover must take place when the limit load is passed, by switching on the level control signal of the first separator as the load increases and the circulation pump must be switched off, whereas with decreasing load the level control signal must be switched off while the circulation pump is switched on.
  • the second separator is taken out of operation when the load increases by opening the bypass line. Due to the fact that water flows through the wall-forming superheater heating surface at partial load, the efficiency is reduced, and more so the lower the load. Since the drain line is shut off during forced circulation operation of the known steam generator, this mode of operation cannot be maintained for a long time because salt deposits occur in the evaporator.
  • the known steam generator which is mainly intended for base load, is therefore not suitable for continuous operation at part load or for rapid load changes.
  • the invention has for its object to improve a forced-flow steam generator system of the type mentioned so that it enables safe continuous operation at part load and, moreover, rapid load changes and that the design effort is reduced.
  • This heating surface is thus protected against temperature shocks, and the efficiency of the steam generator system is also improved.
  • a mixing section is created in the connecting line from the wall-forming evaporator to the final evaporator, which ensures that the working fluid emerging from the wall-forming evaporator, which is still partially undevaporated, has been heated differently when this evaporator flows through is present as a homogeneous mixture at the inlet into the final evaporator.
  • the final evaporator thus compensates for the disadvantage of uneven heating, which is caused by the vertical arrangement of the tubes of the wall-forming evaporator.
  • the wall-forming evaporator can be designed so that there is always a certain amount of water in the flow of working fluid at its outlet. This ensures good cooling of this evaporator.
  • the feature of the internal grooves allows the combustion chamber walls to be subjected to higher thermal loads. With these walls, the side of the tubes exposed to flame radiation is heated to a greater extent, so that Film evaporation can occur on the inside facing this heating, which leads to impermissible pipe wall temperatures.
  • the helically arranged grooves on the inside of the working medium are forced to rotate due to its longitudinal flow, as a result of which the heavier, liquid phase of the working medium is centrifuged against the wall. It is thus possible to increase the thermal strength of the pipes beyond what is to be expected from the increase in surface area.
  • the system contains a condenser 1, in which steam from a turbine group 2 is condensed.
  • An additional water line 3 with an additional water pump 4 and an additional water treatment system 5 is connected to the condenser 1.
  • a condensate line 6 leads via a condensate pump 7, a condensate treatment system 8 and two condensate preheaters 9 and 10 to the inlet of a degasser 12 seated on a feed water vessel 13.
  • a feed water line 15 with a feed pump 16 and two high-pressure preheaters 17 and 19 leads from the water area of the feed water container 13 to the input of an economizer 20 of a once-through steam generator 22.
  • the outlet of the economizer 20 is connected via a connecting line 23 to the distributor 25 of an evaporator heating surface 26.
  • This consists of tubes 27 which are tightly welded to one another and form a funnel-like base 29 and four flat walls 29 of a combustion chamber 30 of the steam generator 22. In the walls 29, the tubes 27 run vertically; in section A they are provided with helical internal grooves.
  • the combustion chamber 30 has a furnace 32.
  • the wall-forming tubes 27 are alternately bent outwards from the walls 29 at the height of one and the other of two horizontal planes E and F and led to collectors 35. These collectors 35 are connected via a line 36 to a final evaporator 40, which consists of a system of finned tubes 41 and is arranged in a flue gas duct 60 starting from the combustion chamber 30 directly below the economizer 20.
  • the outlet of the final evaporator 40 is connected via a line 42 to the inlet of a water separator 44, from the bottom of which a line 45 with a level-controlled valve 46 leads back to the feed water vessel 13.
  • a connecting pipe 50 is connected, which opens into a ring distributor 51, from which wall pipes 53 lead to a ring collector 55.
  • the wall tubes 53 alternately enter the combustion chamber walls 29 in the horizontal planes E and F. They are tightly welded to one another and to the tubes 27, so that the flue gas duct 60 connects seamlessly to the combustion chamber 30.
  • the train 60 is bounded in its uppermost part by uncooled sheet metal walls 62 and a ceiling 63, to which a chimney 65 connects.
  • a second superheater 72 and a final superheater 75 are connected in series to the collector 55 of the wall pipes 53 forming a first superheater, and a live steam line 77 leads from the outlet of the final superheater 75 to a high-pressure turbine 78, the outlet of which is via a feed line 90 connected to an intermediate superheater 82, which is arranged in the flue gas duct 60 between the two superheaters 72 and 75. From the outlet of the intermediate superheater 82, a return line 84 leads to a low-pressure turbine 86 which, together with the high-pressure turbine 78 and a generator 88, sits on a common shaft, forms the turbine group 2.
  • the condensate treatment system 8 is designed such that the treated condensate has practically no salt, which corresponds to a conductivity of 0.2 ⁇ Siemens, and that the silicon content is below 0.02 ppm. Salt deposits in the evaporator are therefore negligible.
  • the additional water treatment system 5 serves to relieve the load on the condensate treatment system 8 and also to protect the condenser 1.
  • the system is particularly suitable for sliding pressure operation, with full load operation before there may be supercritical pressure.
  • the feed pump delivers subcritical pressure, since this condition also occurs at part load in systems operated under sliding pressure, which are operated at full load with supercritical pressure.
  • the condensate accumulating in the condenser 1 is practically completely desalinated together with the make-up water flowing in via line 3 in the condensate treatment system 8, which preferably contains a cation exchanger, a C0 2 Riesler, an anion exchanger and a mixed bed filter. It is then heated by the two preheaters 9 and 10, which are connected to the two lowermost withdrawals 11 of the low-pressure turbine 86 in a manner not shown, and fed into the degasser 12, from which it flows into the feed vessel 13.
  • the working medium is now no longer called condensate, but called feed water - is now brought to a pressure dependent on the load of the system, possibly supercritical pressure at full load, in the two high-pressure preheaters 17 and 18, which come from two tapping points 19 of the low-pressure turbine 86 with the feed pump Tap steam are fed, the feed water is heated. A further heating, in the assumed operation with subcritical pressure close to the evaporation temperature, takes place in the economizer 20. Subsequently, the water is divided as evenly as possible onto the tubes 27. Adjustable throttling elements are installed in the mouths of the tubes 27 because the heating of the individual pipes are not exactly the same among themselves, the working fluid flows of the individual pipes absorb an uneven amount of heat and accordingly an unevenly large amount of water evaporates in the different pipes.
  • the steam-water mixture of different water content now flowing into the collector 35 is mixed on its way through the line 36 and - with possibly still considerable differences in the water content - distributed into the parallel pipes 41 of the final evaporator 40. Since the final evaporator 40 is arranged in a weakly heated area of the flue gas stream, that is to say in an area where the flue gas temperature is not much higher than the temperature of the evaporating water, its flue gas-side surface can, even if the working medium is distributed very unevenly on the pipes, do not assume dangerously high temperatures.
  • the working medium flows from the final evaporator 40, preferably slightly overheated at full load, into the separator 44. After any water that may still be there has been separated off, the now dry steam flows through the wall tubes 53 forming the first superheater at high speed and guaranteeing good heat transfer and homogeneous temperature.
  • the temperature difference between the welded tubes 27 of the evaporator 26 and the tubes 53 of the first superheater is mainly determined by the position of the final evaporator 40 in the flue gas stream. This position is chosen so that the temperature difference mentioned does not lead to inadmissibly high thermal stresses.
  • means for influencing the flue gas-side heat supply to the final evaporator can be provided, which can be brought about, for example, by flue gas circulation or through a shunt channel through which flue gases can be directed past the final evaporator.
  • the temperature difference can also be checked by a bypass line to the final evaporator 40 or, for example, by a temperature-controlled injection element in the area of the line 42.
  • the superheated steam flows out of the ring chamber 55 through the second superheater 72, in which further heating takes place, and then via an injection element 74 in the line 73 through the final superheater 75.
  • a temperature measuring element is provided on the connecting live steam line 77, the one not shown Control means acts on the injection member 74.
  • the steam in the reheater 82 is reheated and fed to the low-pressure turbine 86, in which it is expanded to the vacuum generated in the condenser 1.
  • a bypass line with throttle element parallel to the final evaporator 40, so that a partial flow of the working medium can be bypassed the final evaporator in the event of operation with high load.
  • the temperature difference between the tubes 27 and 53 in the region where they are welded to one another can thus be reduced, as a result of which the thermal stresses are reduced.
  • Thermal stresses in the areas of levels E and F can also be reduced by directly welding the tubes 27 and 53 to each other only over short lengths and the sealing being achieved by means of a skin construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Claims (1)

1. Installation à marche forcée génératrice de vapeur à chauffage par des combustibles fossiles, comportant les éléments constitutifs suivants, montés en série par rapport au flux du fluide de travail :
- une installation (8) de traitement d'eau servant au dessalement de l'eau d'alimentation, qui est conçue pour une conductivité de l'eau d'alimentation de moins de 0,2 microsiemens/cm et une réduction de la teneur en silicium de l'eau d'alimentation au-dessous de 0,02 ppm
- une pompe d'alimentation (16) à haute pression
- un économiseur (20)
- un évaporateur (26) consistant en des tubes verticaux (27) soudés hermétiquement et formant des parois (29) de la chambre de combustion du générateur de vapeur
- un séparateur d'eau (44)
- plusieurs surfaces chaudes de surchauffeurs (53, 75, 72), des tubes (53) formant la paroi de la première surface chaude de surchauffeur étant raccordés aux tubes verticaux (27) de l'évaporateur, ces tubes (53) étant soudés hermétiquement les uns aux autres et à ceux de l'évaporateur (26) et étant reliés au séparateur d'eau (44) dans les zones de raccordement (51), par l'intermédiaire de conduits (50) de sortie de la vapeur et le générateur de vapeur à circulation forcée étant conçu pour la zone de charge au-dessus de 50 % de la pleine charge pour le passage simple du fluide de travail dans l'évaporateur (26), caractérisée par le fait que la sortie d'eau du séparateur d'eau (44) est raccordée au flux du fluide de travail par l'intermédiaire d'un conduit de réintroduction (45), entre l'installation (8) de traitement d'eau et la pompe d'alimentation (16) à haute pression ; par le fait qu'il est prévu, dans le flux du fluide de travail, entre l'évaporateur (26) et le séparateur d'eau (44), un évaporateur final (40) qui est intercalé, dans le cameau (60) à gaz de combustion, entre la dernière surface chaude du surchauffeur (72), entourée de toutes parts par les gaz de cameau et l'économiseur (20) et par le fait que la surface chaude formant l'évaporateur final (40) et consistant en des tubes (41) est agrandie du côté des gaz par des nervures s'étendant de préférence dans le sens périphérique desdits tubes.
EP81100601A 1980-12-23 1981-01-28 Chaudière à vapeur à circulation forcée Expired - Lifetime EP0054601B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH949780 1980-12-23
CH9497/80 1980-12-23

Publications (3)

Publication Number Publication Date
EP0054601A1 EP0054601A1 (fr) 1982-06-30
EP0054601B1 EP0054601B1 (fr) 1984-09-19
EP0054601B2 true EP0054601B2 (fr) 1991-08-28

Family

ID=4352617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81100601A Expired - Lifetime EP0054601B2 (fr) 1980-12-23 1981-01-28 Chaudière à vapeur à circulation forcée

Country Status (8)

Country Link
US (1) US4430962A (fr)
EP (1) EP0054601B2 (fr)
JP (1) JPS57117705A (fr)
AU (1) AU542220B2 (fr)
CA (1) CA1176517A (fr)
DE (1) DE3166099D1 (fr)
FI (1) FI68458C (fr)
YU (1) YU238181A (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657675A5 (de) * 1982-09-17 1986-09-15 Sulzer Ag Druckmediumbetaetigte stellmotoranordnung.
DE3447265A1 (de) * 1984-12-22 1986-06-26 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren und vorrichtung zur erzeugung von hochgespanntem und ueberhitztem dampf
JPH0539282Y2 (fr) * 1985-01-29 1993-10-05
DE3511877A1 (de) * 1985-04-01 1986-10-02 Kraftwerk Union AG, 4330 Mülheim Durchlaufdampferzeuger
US4843824A (en) * 1986-03-10 1989-07-04 Dorothy P. Mushines System for converting heat to kinetic energy
US4896496A (en) * 1988-07-25 1990-01-30 Stone & Webster Engineering Corp. Single pressure steam bottoming cycle for gas turbines combined cycle
JP2516661B2 (ja) * 1988-07-25 1996-07-24 三菱重工業株式会社 再熱式排ガスボイラ
US5048466A (en) * 1990-11-15 1991-09-17 The Babcock & Wilcox Company Supercritical pressure boiler with separator and recirculating pump for cycling service
SE469606B (sv) * 1991-12-20 1993-08-02 Abb Carbon Ab Foerfarande vid start och laaglastdrift av genomstroemningspanna och anordning foer genomfoerande av foerfarandet
EP0595009B1 (fr) * 1992-09-30 1996-01-10 Siemens Aktiengesellschaft Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
DE19504308C1 (de) * 1995-02-09 1996-08-08 Siemens Ag Verfahren und Vorrichtung zum Anfahren eines Durchlaufdampferzeugers
DE19528438C2 (de) * 1995-08-02 1998-01-22 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
CN100578083C (zh) * 2004-01-20 2010-01-06 西门子公司 用于从蒸汽动力设备中脱水的方法和装置
US7093566B2 (en) * 2004-11-12 2006-08-22 Maxitherm Inc. Vapor generator
US7874140B2 (en) * 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US7621237B2 (en) * 2007-08-21 2009-11-24 Hrst, Inc. Economizer for a steam generator
JP5054642B2 (ja) * 2008-09-09 2012-10-24 アクアインテック株式会社 管路補修システム
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger
EP2589760B1 (fr) * 2011-11-03 2020-07-29 General Electric Technology GmbH Centrale thermique à vapeur avec réservoir de chaleur haute température
KR101245088B1 (ko) 2012-08-13 2013-03-18 서영호 전기로를 이용한 발전장치
RU2525569C2 (ru) * 2012-09-10 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный университет Парогазовая надстройка паротурбинного энергоблока с докритическими параметрами пара
DE102012217717A1 (de) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Verfahren zur Rückgewinnung von Prozessabwässern einer Dampfkraftanlage
RU2533601C2 (ru) * 2012-12-04 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Энергетическая установка с парогазовой установкой
EP2746656A1 (fr) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Drainage d'une centrale
PT3086032T (pt) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Gerador de vapor de passagem única de sal fundido
FI128782B (fi) * 2016-01-28 2020-12-15 Andritz Oy Talteenottokattilan lämmöntalteenottopintojen järjestely
CN109269138B (zh) * 2018-09-03 2020-10-30 南京天加环境科技有限公司 一种防止压缩机回液的多联机系统及其控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (de) * 1940-10-01 1943-06-23 Duerrwerke Ag Zwangdurchlauf-Dampferzeuger mit einem unmittelbar an die Verdampfungsheizflaeche angeschlossenen UEberhitzer
DE1000828B (de) * 1954-04-30 1957-01-17 Siemens Ag Entsalzungseinrichtung fuer Zwangstrom-Dampferzeuger und Verfahren hierfuer
DE1015818B (de) * 1955-11-15 1957-09-19 Siemens Ag Zwangstrom-Dampferzeuger fuer sehr hohe Betriebsdruecke, insbesondere fuer ueberkritischen Druck
NL124519C (fr) * 1958-06-26
JPS3511402Y1 (fr) * 1958-07-23 1960-05-26
CH477651A (de) * 1967-07-13 1969-08-31 Sulzer Ag Hochdruck-Zwangdurchlaufdampferzeugeranlage mit aus gasdicht geschweissten Rohren bestehender Brennkammer und Verfahren zum Betrieb der Anlage
US3789806A (en) * 1971-12-27 1974-02-05 Foster Wheeler Corp Furnace circuit for variable pressure once-through generator
US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
JPS5472301A (en) * 1977-11-21 1979-06-09 Mitsubishi Heavy Ind Ltd Boiler
CH635184A5 (de) * 1978-12-22 1983-03-15 Sulzer Ag Dampferzeugeranlage.
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator

Also Published As

Publication number Publication date
CA1176517A (fr) 1984-10-23
JPS57117705A (en) 1982-07-22
YU238181A (en) 1984-02-29
FI68458C (fi) 1985-09-10
EP0054601A1 (fr) 1982-06-30
AU7836481A (en) 1982-07-01
FI68458B (fi) 1985-05-31
AU542220B2 (en) 1985-02-14
DE3166099D1 (en) 1984-10-25
FI813379L (fi) 1982-06-24
US4430962A (en) 1984-02-14
JPH0348402B2 (fr) 1991-07-24
EP0054601B1 (fr) 1984-09-19

Similar Documents

Publication Publication Date Title
EP0054601B2 (fr) Chaudière à vapeur à circulation forcée
DE2430208C3 (de) Atomkraftanlage mit Dampferzeuger und Zwischenüberhitzer für teilentspannten Dampf
EP1710498A1 (fr) Générateur de vapeur
DE19717158C2 (de) Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
DE2109825C3 (de) Dampferzeuger mit in einem vertikalen Druckbehälter angeordneten Rohrbündel
EP1701091A1 (fr) Générateur de vapeur à passage unique
DE69733812T2 (de) Heizkessel
DE1147239B (de) Dampferzeuger mit mindestens zwei Brennkammersystemen
DE1927949A1 (de) Dampferzeugungs- und -ueberhitzungsvorrichtung,insbesondere fuer mit geschmolzenem Metall,geschmolzenem Metallsalz od.dgl. als Waermeuebertrager arbeitende Kernreaktoren
DE1426698B2 (de) Vorrichtung zum anfahren eines zwangsdurchlaufdampferzeugers
WO2015039831A2 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur
CH653758A5 (de) Zwangsdurchlaufkessel.
DE3121297C2 (de) Vorrichtung zum Regeln der Temperatur eines korrosiven Gases, insbesondere Synthesegas
DE2006409C3 (de) Im Gleitdruckverfahren betriebener Zwanglaufdampferzeuger
DE2523873C3 (de) Dampferzeuger
EP0024689A1 (fr) Générateur de vapeur à paroi de séparation entre deux chambres de combustion
DE102011006390A1 (de) Verfahren zum Betreiben eines Durchlaufdampferzeugers und zur Durchführung des Verfahrens ausgelegter Dampferzeuger
EP2564117B1 (fr) Générateur de vapeur
DE3126321C2 (de) Durchlaufdampferzeuger mit Economiser und Absperrorganen
DE1965078B2 (de) Verfahren zum gleitdruckbetrieb eines zwanglaufdampferzeu gers
DE2716292C3 (de) Verfahren zur Inbetriebnahme von mit Druckfeuerung betriebenen Dampferzeugern
DE1290940B (de) Einrichtung zum Anfahren und fuer den Schwachlastbetrieb von Zwangdurchlaufdampferzeugern
DE2132454B2 (de) Mit Kohlenstaubfeuerung zu betreibender Großdampferzeuger
DE832293C (de) Einrichtung zur Verhuetung von Rohrreissern bei Wasserrohrkesseln mit selbsttaetigemWasserumlauf
AT132508B (de) Einrichtung zur Überhitzung von Dampf.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810128

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT NL SE

REF Corresponds to:

Ref document number: 3166099

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19850614

NLR1 Nl: opposition has been filed with the epo

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19850614

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.01/86,PAGE 120 CORR.:SIEMENS AG

ITF It: translation for a ep patent filed
PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19910828

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR IT NL SE

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931222

Year of fee payment: 14

ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950129

EAL Se: european patent in force in sweden

Ref document number: 81100601.4

EUG Se: european patent has lapsed

Ref document number: 81100601.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961223

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO