EP0054601B2 - Zwanglaufdampferzeugeranlage - Google Patents

Zwanglaufdampferzeugeranlage Download PDF

Info

Publication number
EP0054601B2
EP0054601B2 EP81100601A EP81100601A EP0054601B2 EP 0054601 B2 EP0054601 B2 EP 0054601B2 EP 81100601 A EP81100601 A EP 81100601A EP 81100601 A EP81100601 A EP 81100601A EP 0054601 B2 EP0054601 B2 EP 0054601B2
Authority
EP
European Patent Office
Prior art keywords
evaporator
tubes
water
steam
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP81100601A
Other languages
English (en)
French (fr)
Other versions
EP0054601B1 (de
EP0054601A1 (de
Inventor
Pawel Miszak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4352617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0054601(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0054601A1 publication Critical patent/EP0054601A1/de
Application granted granted Critical
Publication of EP0054601B1 publication Critical patent/EP0054601B1/de
Publication of EP0054601B2 publication Critical patent/EP0054601B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a forced-flow steam generator system with the features of the preamble of claim 1
  • Such a system is known from FR-PS 1 574 394.
  • the water separator is switched on between the wall-forming evaporator heating surface and the wall-forming first superheater heating surface connected to it.
  • the water exiting this separator is connected on the one hand via a circulation pump to the inlet of the evaporator heating surface and on the other hand is provided with a drain pipe in which a valve controlled by the level in the separator is arranged.
  • the level-dependent control signal also acts on the feed pump
  • another separator is connected, the water outlet of which is connected to the feed water line and the steam outlet of which is connected to a bulkhead superheater heating surface, which is suspended in the combustion chamber near its outlet.
  • the further water separator which can be bridged on the steam side by means of a bypass line, has the purpose of taking up the excess water that is supplied to the evaporator when starting up and not separated by the first water separator and returning it to the feed water line.
  • the water not separated by the first water separator therefore also flows through the wall-forming superheater heating surface before it reaches the further separator.
  • a further disadvantage of the steam generator which operates above the limit load of 50% of full load with forced passage and below this limit load with forced circulation, is that a switchover must take place when the limit load is passed, by switching on the level control signal of the first separator as the load increases and the circulation pump must be switched off, whereas with decreasing load the level control signal must be switched off while the circulation pump is switched on.
  • the second separator is taken out of operation when the load increases by opening the bypass line. Due to the fact that water flows through the wall-forming superheater heating surface at partial load, the efficiency is reduced, and more so the lower the load. Since the drain line is shut off during forced circulation operation of the known steam generator, this mode of operation cannot be maintained for a long time because salt deposits occur in the evaporator.
  • the known steam generator which is mainly intended for base load, is therefore not suitable for continuous operation at part load or for rapid load changes.
  • the invention has for its object to improve a forced-flow steam generator system of the type mentioned so that it enables safe continuous operation at part load and, moreover, rapid load changes and that the design effort is reduced.
  • This heating surface is thus protected against temperature shocks, and the efficiency of the steam generator system is also improved.
  • a mixing section is created in the connecting line from the wall-forming evaporator to the final evaporator, which ensures that the working fluid emerging from the wall-forming evaporator, which is still partially undevaporated, has been heated differently when this evaporator flows through is present as a homogeneous mixture at the inlet into the final evaporator.
  • the final evaporator thus compensates for the disadvantage of uneven heating, which is caused by the vertical arrangement of the tubes of the wall-forming evaporator.
  • the wall-forming evaporator can be designed so that there is always a certain amount of water in the flow of working fluid at its outlet. This ensures good cooling of this evaporator.
  • the feature of the internal grooves allows the combustion chamber walls to be subjected to higher thermal loads. With these walls, the side of the tubes exposed to flame radiation is heated to a greater extent, so that Film evaporation can occur on the inside facing this heating, which leads to impermissible pipe wall temperatures.
  • the helically arranged grooves on the inside of the working medium are forced to rotate due to its longitudinal flow, as a result of which the heavier, liquid phase of the working medium is centrifuged against the wall. It is thus possible to increase the thermal strength of the pipes beyond what is to be expected from the increase in surface area.
  • the system contains a condenser 1, in which steam from a turbine group 2 is condensed.
  • An additional water line 3 with an additional water pump 4 and an additional water treatment system 5 is connected to the condenser 1.
  • a condensate line 6 leads via a condensate pump 7, a condensate treatment system 8 and two condensate preheaters 9 and 10 to the inlet of a degasser 12 seated on a feed water vessel 13.
  • a feed water line 15 with a feed pump 16 and two high-pressure preheaters 17 and 19 leads from the water area of the feed water container 13 to the input of an economizer 20 of a once-through steam generator 22.
  • the outlet of the economizer 20 is connected via a connecting line 23 to the distributor 25 of an evaporator heating surface 26.
  • This consists of tubes 27 which are tightly welded to one another and form a funnel-like base 29 and four flat walls 29 of a combustion chamber 30 of the steam generator 22. In the walls 29, the tubes 27 run vertically; in section A they are provided with helical internal grooves.
  • the combustion chamber 30 has a furnace 32.
  • the wall-forming tubes 27 are alternately bent outwards from the walls 29 at the height of one and the other of two horizontal planes E and F and led to collectors 35. These collectors 35 are connected via a line 36 to a final evaporator 40, which consists of a system of finned tubes 41 and is arranged in a flue gas duct 60 starting from the combustion chamber 30 directly below the economizer 20.
  • the outlet of the final evaporator 40 is connected via a line 42 to the inlet of a water separator 44, from the bottom of which a line 45 with a level-controlled valve 46 leads back to the feed water vessel 13.
  • a connecting pipe 50 is connected, which opens into a ring distributor 51, from which wall pipes 53 lead to a ring collector 55.
  • the wall tubes 53 alternately enter the combustion chamber walls 29 in the horizontal planes E and F. They are tightly welded to one another and to the tubes 27, so that the flue gas duct 60 connects seamlessly to the combustion chamber 30.
  • the train 60 is bounded in its uppermost part by uncooled sheet metal walls 62 and a ceiling 63, to which a chimney 65 connects.
  • a second superheater 72 and a final superheater 75 are connected in series to the collector 55 of the wall pipes 53 forming a first superheater, and a live steam line 77 leads from the outlet of the final superheater 75 to a high-pressure turbine 78, the outlet of which is via a feed line 90 connected to an intermediate superheater 82, which is arranged in the flue gas duct 60 between the two superheaters 72 and 75. From the outlet of the intermediate superheater 82, a return line 84 leads to a low-pressure turbine 86 which, together with the high-pressure turbine 78 and a generator 88, sits on a common shaft, forms the turbine group 2.
  • the condensate treatment system 8 is designed such that the treated condensate has practically no salt, which corresponds to a conductivity of 0.2 ⁇ Siemens, and that the silicon content is below 0.02 ppm. Salt deposits in the evaporator are therefore negligible.
  • the additional water treatment system 5 serves to relieve the load on the condensate treatment system 8 and also to protect the condenser 1.
  • the system is particularly suitable for sliding pressure operation, with full load operation before there may be supercritical pressure.
  • the feed pump delivers subcritical pressure, since this condition also occurs at part load in systems operated under sliding pressure, which are operated at full load with supercritical pressure.
  • the condensate accumulating in the condenser 1 is practically completely desalinated together with the make-up water flowing in via line 3 in the condensate treatment system 8, which preferably contains a cation exchanger, a C0 2 Riesler, an anion exchanger and a mixed bed filter. It is then heated by the two preheaters 9 and 10, which are connected to the two lowermost withdrawals 11 of the low-pressure turbine 86 in a manner not shown, and fed into the degasser 12, from which it flows into the feed vessel 13.
  • the working medium is now no longer called condensate, but called feed water - is now brought to a pressure dependent on the load of the system, possibly supercritical pressure at full load, in the two high-pressure preheaters 17 and 18, which come from two tapping points 19 of the low-pressure turbine 86 with the feed pump Tap steam are fed, the feed water is heated. A further heating, in the assumed operation with subcritical pressure close to the evaporation temperature, takes place in the economizer 20. Subsequently, the water is divided as evenly as possible onto the tubes 27. Adjustable throttling elements are installed in the mouths of the tubes 27 because the heating of the individual pipes are not exactly the same among themselves, the working fluid flows of the individual pipes absorb an uneven amount of heat and accordingly an unevenly large amount of water evaporates in the different pipes.
  • the steam-water mixture of different water content now flowing into the collector 35 is mixed on its way through the line 36 and - with possibly still considerable differences in the water content - distributed into the parallel pipes 41 of the final evaporator 40. Since the final evaporator 40 is arranged in a weakly heated area of the flue gas stream, that is to say in an area where the flue gas temperature is not much higher than the temperature of the evaporating water, its flue gas-side surface can, even if the working medium is distributed very unevenly on the pipes, do not assume dangerously high temperatures.
  • the working medium flows from the final evaporator 40, preferably slightly overheated at full load, into the separator 44. After any water that may still be there has been separated off, the now dry steam flows through the wall tubes 53 forming the first superheater at high speed and guaranteeing good heat transfer and homogeneous temperature.
  • the temperature difference between the welded tubes 27 of the evaporator 26 and the tubes 53 of the first superheater is mainly determined by the position of the final evaporator 40 in the flue gas stream. This position is chosen so that the temperature difference mentioned does not lead to inadmissibly high thermal stresses.
  • means for influencing the flue gas-side heat supply to the final evaporator can be provided, which can be brought about, for example, by flue gas circulation or through a shunt channel through which flue gases can be directed past the final evaporator.
  • the temperature difference can also be checked by a bypass line to the final evaporator 40 or, for example, by a temperature-controlled injection element in the area of the line 42.
  • the superheated steam flows out of the ring chamber 55 through the second superheater 72, in which further heating takes place, and then via an injection element 74 in the line 73 through the final superheater 75.
  • a temperature measuring element is provided on the connecting live steam line 77, the one not shown Control means acts on the injection member 74.
  • the steam in the reheater 82 is reheated and fed to the low-pressure turbine 86, in which it is expanded to the vacuum generated in the condenser 1.
  • a bypass line with throttle element parallel to the final evaporator 40, so that a partial flow of the working medium can be bypassed the final evaporator in the event of operation with high load.
  • the temperature difference between the tubes 27 and 53 in the region where they are welded to one another can thus be reduced, as a result of which the thermal stresses are reduced.
  • Thermal stresses in the areas of levels E and F can also be reduced by directly welding the tubes 27 and 53 to each other only over short lengths and the sealing being achieved by means of a skin construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

  • Die Erfindung betrifft eine Zwanglaufdampferzeugeranlage mit den Merkmalen des Oberbegriffs des Anspruchs 1
  • Eine solche Anlage ist aus der FR-PS 1 574 394 bekannt. Bei dieser Anlage ist zwischen der wandbildenden Verdampferheizfläche und der daran angesolossenen, wandbildenden, ersten Überhitzerheizfläche arbeitsmittelseitig der Wasserabscheider eingeschaltet. Der Wasser austritt dieses Abscheiders ist einerseits über eine Umwälzpumpe mit dem Eintritt der Verdampferheizfläche verbunden und andererseits mit einer Abschlämmleitung versehen, in der ein vom Niveau im Abscheider gesteuertes Ventil angeordnet ist. Das vom Niveau abhängige Steuersignal wirkt außerdem auf die Speisepumpe Am Austritt der wandbildenden Überhitzerheizfläche ist ein weiterer Abscheider angeschlossen, dessen Wasseraustritt mit der Speisewassedeitung und dessen Dampfaustritt mit einer Schottenüberhitzerheizfläche verbunden ist, die in der Brennkammer nahe deren Austritt aufgehängt ist. Der weitere Wasserabscheider, der dampfseitig mittels einer Bypassleitung überbrückt werden kann, hat den Zweck, das dem Verdampfer beim Anfahren im Überschuß zugeführte und vom ersten Wasserabscheider nicht abgeschiedene Wasser aufzunehmen und in die Speisewasserleitung zurückzuführen. Das vom ersten Wasserabscheider nicht abgeschiedene Wasser durchströmt also auch die wandbildende Überhitzerheizfläche, bevor es in den weiteren Abscheider gelangt.
  • Ein solches Auftreten von Wasser in der wandbildenden Überhitzerheizfläche finde auch bei Teillast statt, und zwar geht die Wassermenge mit größer werdender Last zurück.
  • Infolge von plötzlichem Lastwechsel oder von Störungen in der Brennstoffzufuhr kann es vorkommen, daß auch bei höherer Last des Dampferzeugers Wasser schwallartig aus dem ersten Abscheider in die wandbildende Überhitzerheizfläche eintritt, was für diese Heizfläche nachteilig ist.
  • Weiter ist bei dem Dampferzeuger, der oberhalb der Grenzlast von 50% der Vollast mit Zwangdurchlauf und unterhalb dieser Grenzlast mit Zwangumlauf arbeitet, nachteilig, daß beim Passieren der Grenzlast ein Umschalten stattfinden muß, indem bei zunehmender Last das Niveausteuersignal des ersten Abscheiders eingeschaltet sowie die Umwälzpumpe ausgeschaltet werden müssen, wogegen bei abnehmender Last das Niveausteuersignal ausgeschaltet werden muß, während die Umwälzpumpe eingeschaltet wird. Außerdem wird der zweite Abscheider bei zunehmender Last durch Öffnen der Bypassleitung außer Betrieb genommen. Dadurch daß bei Teillast Wasser durch die wandbildende Überhitzerheizfläche strömt, wird der Wirkungsgrad herabgesetzt, und zwar um so mehr, je tiefer die Last ist. Da bei Zwangumlaufbetrieb des bekannten Dampferzeugers die Abschlämmleitung abgesperrt ist, läßt sich diese Betriebsweise über lange Zeit nicht aufrechterhalten, weil im Verdampfer Salzablagerungen auftreten.
  • Der bekannte, also hauptsächlich für Grundlast bestimmte Dampferzeuger ist deshalb weder für Dauerbetrieb bei Teillast noch für schnelle Lastwechsel geeignet.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Zwanglaufdampferzeugeranlage der eingangs genannten Art so zu verbessern, daß sie einen sicheren Dauerbetrieb bei Teillast und überdies schnelle Lastwechsel ermöglicht und daß der konstruktive Aufwand verringert wird.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Kennzeichens des Anspruchs 1 gelöst. Durch die Verbindung des Wasseraustritts des Wasserabscheiders mit dem Arbeitsmittelstrom zwischen der Aufbereitungsanlage und der Hochdruckspeisepumpe wird das Anordnen einer Umwälzpumpe sowie eines zweiten Wasserabscheiders unnötig. Dies vereinfacht den Aufbau der Dampferzeugeranlage, und zwar auch dahingehend, daß Einrichtungen zum Ein-und Ausschalten des Niveausteuersignal und der Umwälzpumpe entfallen. Dadurch wird das Betreiben der Anlage einfacher indem bei einem Lastwechsel über die Grenzlast von 50% hinweg keine Umschaltoperationen notwendig sind. Durch das Vorsehen des Endverdampfers zwischen dem wandbildenden Verdampfer und dem Wasserabscheider wird verhindert, daß bei niedriger Teillast Wasser aus dem wandbildenden Verdampfer in die wandbildende Überhitzerheizfläche gelangt. Diese Heizfläche wird damit vor Temperaturschocks geschützt, und außerdem wird der Wirkungsgrad der Dampferzeugeranlage verbessert. Durch das Anbringen des Endverdampfers im Rauchgasstrom unmittelbar vor dem Economiser wird in der Verbindungsleitung vom wandbildenden Verdampfer zum Endverdampfer eine Mischstrecke geschaffen, die dafür sorgt, daß das aus dem wandbildenden Verdampfer austretende, zum Teil noch unverdampfte Arbeitsmittel, das beim Duchströmen dieses Verdampfers unterschliedlich beheizt worden ist, am Eintritt in den Endverdampfer als möglichst homogenes Gemisch vorliegt Durch den Endverdampferwird also der Nachteil der ungleichen Beheizung, der durch die vertikale Anordnung der Rohre des wandbildenden Verdampfers bedingt ist, ausgeglichen. Ein weiterer Vorteil des Anbringens des Endverdampfers besteht darin, daß der wandbildende Verdampfer so ausgelegt werden kann, daß an seinem Austritt stets ein bestimmter Wasseranteil im Arbeitsmittelstrom vorhanden ist. Hierdurch wird eine gute Kühlung dieses Verdampfers sichergestellt Das Merkmal der Innennuten schließlich gestattet, die Brennkammerwände thermisch höher zu belasten. Bei diesen Wänden wird die der Flammenstrahlung ausgesetzte Seite der Rohre stärker beheizt, so daß auf der dieser Beheizung zugewendeten Innenseite Filmverdampfung auftreten kann, die zu unzulässigen Rohrwandtemperaturen führt. Durch die schraubenförmig angeordneten Nuten an der Innenseite wird dem Arbeitsmittel wegen seiner Längsströmung eine Rotation aufgezwungen, wodurch die schwerere, flüssige Phase des Arbeitsmittels an die Wand zentrifugiert wird. Es gelingt dadurch, die thermische Belastbarkeit der Rohre über das durch die Oberflächenvergrößerung zu erwartende Maß hinaus zu erhöhen.
  • Vor Jahrzehnten, als die heutige Wasseraufbereitungstechnik noch nicht bekannt war, traten in den Endpartien der die Brennkammer begrenzenden Verdampferrohre wasserseitig Salzbeläge auf, die die Rohre vom kühlenden Arbeitsmittel isolierten, so daß sie sich zu hoch erhitzten und platzten. Um diese Erscheinung zu vermeiden, wurde die Endpartie des Verdampfers in ein schwach beheiztes Gebiet des Dampferzeugers verlegt (DE-AS 1000 828). Dadurch wurde zweierlei erreicht: Wegen der geringeren Temperaturdifferenz zwischen Rauchgas und Arbeitsmittel dehnte sich die Endverdampfung auf eine längere Rohrstrecke aus, wodurch der Aufbau der Salzbeläge langsamervorsich ging. Die Salzbelägewurden dann periodisch durch Spülen entfernt. Wegen der geringeren Wärmebelastung ergaben selbst mehrfach dickere Salzbeläge noch keine unzulässige Uberhitzung der Rohre. Mit dem Aufkommen der modernen Wasseraufbereitungstechniken, die zu den im Anspruch 1 angegebenen hohen Reinheitswerten führten, wurde das Anbringen des Endverdampfers im schwachbeheizten Gebiet aufgegeben.
  • Die Weiterbildung der Erfindung nach Anspruch 2 ergibt eine Verkleinerung des Gewichtes und des Materialbedarfs der druckführenden Teile des Dampferzeugers.
  • Die Erfindung wird nun an einem in der Zeichnung schematisch dargestellten Ausführungsbeispiel näher erläutert :
  • Die Anlage enthält einen Kondensator 1, in dem Dampf einer Turbinengruppe 2 kondensiert wird. Am Kondensator 1 ist eine Zusatzwasserleitung 3 mit Zusatzwasserpumpe 4 und einer Zusatzwasser-Aufbereitungsanlage 5 angeschlossen. Vom Sumpf des Kondensators führt eine Kondensatleitung 6 über eine Kondensatpumpe 7, eine Kondensataufbereitungsanlage 8 und zwei Kondensatvorwärmer 9 und 10 zum Eintritt eines auf einem Speisewassergefäß 13 sitzenden Entgasers 12.
  • Aus dem Wasserbereich des Speisewasserbehälters 13 führt eine Speisewasserleitung 15 mit einer Speisepumpe 16 und zwei Hochdruckvorwärmem 17 und 19 zum Eingang eines Economisers 20 eines Zwangdurchlaufdampferzeugers 22.
  • Der Austritt des Economisers 20 ist über eine Verbindungsleitung 23 am Verteiler 25 einer Verdampferheizfläche 26 angeschlossen. Diese besteht aus miteinander dicht verschweißten Rohren 27, die einen trichterartig ausgebildeten Boden 29 und vier ebene Wände 29 einer Brennkammer 30 des Dampferzeugers 22 bilden. In den Wänden 29 verlaufen die Rohre 27 vertikal ; in einem Abschnitt A sind sie mit schraubenlinig verlaufenden Innennuten versehen. Die Brennkammer 30 weist eine Feuerung 32 auf.
  • Die wandbildenden Rohre 27 sind abwechslungsweise auf der Höhe der einen und der anderen von zwei horizontalen Ebenen E und F aus den Wänden 29 nach außen abgebogen und zu Sammlern 35 geführt. Diese Sammler 35 sind über eine Leitung 36 mit einem Endverdampfer 40 verbunden, der aus einem System von Rippenrohren 41 besteht und in einem von der Brennkammer 30 ausgehenden Rauchgaszug 60 unmittelbar unterhalb des Economisers 20 angeordnet ist. Der Austritt des Endverdampfers 40 ist über eine Leitung 42 mit dem Eingang eines Wasserabscheiders 44 verbunden, von dessen Grunde eine Leitung 45 mit niveaugesteuertem Ventil 46 zum Speisewassergefäß 13 zurückführt.
  • Am Dampfaustritt des Abscheiders 44 ist ein Verbindungsrohr 50 angeschlossen, das in einen Ringverteiler 51 mündet, von dem aus Wandrohre 53 zu einem Ringsammler 55 führen. Die Wandrohre 53 treten abwechslungsweise in den Horizontalebenen E und F in die Brennkamerwände 29 ein. Sie sind miteinander und mit den Rohren 27 dicht verschweißt, sodaß der Rauchgaszug 60 sich nahtlos an die Brennkammer 30 anschließt. Der Zug 60 ist in seiner obersten Partie durch ungekühlte Blechwände 62 und eine Decke 63 begrenzt, an die sich ein Kamin 65 anschließt.
  • Am Sammler 55 der einen ersten Überhitzer bildenden Wandrohre 53 sind über Leitungsabschnitte 70 und 73 ein zweiter Überhitzer 72 und ein Endüberhitzer 75 in Reihe angeschlossen, und vom Austritt des Endüberhitzers 75 führt eine Frischdampfleitung 77 zu einer Hochdruckturbine 78. Deren Austritt ist über eine Zuleitung 90 mit einem Zwischenüberhitzer 82 verbunden, der im Rauchgaszug 60 zwischen den beiden Überhitzern 72 und 75 angeordnet ist Vom Austritt des Zwischenüberhitzers 82 führt eine Rückleitung 84 zu einer Niederdruckturbine 86, die zusammen mit der Hochdruckturbine 78 und einem Generator 88, auf einer gemeinsamen Welle sitzend, die Turbinengruppe 2 bildet.
  • Die Kondensataufbereitungsanlage 8 ist derart ausgelegt, daß das behandelte Kondensat praktisch kein Salz mehr aufweist, was einer Leitfähigkeit von 0,2 µ Siemens entspricht, und daß der Siliziumgehalt unter 0,02 ppm liegt Damit sind Salzabscheidungen im Verdampfer vernachlässigbar.
  • Die Zusatzwasseraufbereitungsanlage 5 dient der Entlastung der Kondensataufbereitungsanlage 8 wie auch dem Schutze des Kondensators 1.
  • Die Anlage eignet sich unter anderen vorzüglich für Gteitdruckbetrieb, wobei im Vollastbetrieb vorzugsweise überkritischer Druck herrschen kann. Bei der nun folgenden Beschreibung der Wirkungsweise der Anlage wird zunächst vorausgesetzt, die Speisepumpe liefere unterkritischen Druck, da dieser Zustand bei Teillast auch in im Gleitdruck betriebenen Anlagen auftritt, die bei Vollast mit überkritischem Druck gefahren werden.
  • Im Normalbetrieb wird das im Kondensator 1 anfallende Kondensat zusammen mit dem über Leitung 3 zuströmenden Zusatzwasser in der Kondensataufbereitungsanlage 8, die vorzugsweise einen Kationenaustauscher, einen C02-Riesler, einen Anionenaustauscher und einen Mischbettfilter enthält, praktisch völlig entsalzt. Anschließend wird es durch die beiden Vorwärmer 9 und 10, die an den beiden untersten Entnahmen 11 der Niederdruckturbine 86 auf nicht gezeichnete Weise angeschlossen sind, erwärmt und in den Entgaser 12 eingespeist, aus dem es in das Speisegefäß 13 fließt. Das Arbeitsmitteljetzt nicht mehr Kondensat, sondern Speisewasser genannt-wird nun von der Speisepumpe auf einen von der Last der Anlage abhängigen Druck, bei Vollastbetrieb gegebenenfalls überkritischen Druck, gebracht In den beiden Hochdruckvorwärmern 17 und 18, die von zwei Entnahmestellen 19 der Niederdruckturbine 86 aus mit Anzapfdampf gespeist werden, wird das Speisewasser erhitzt. Eine weitere Erhitzung, bei dem angenommenen Betrieb mit unterkritischem Druck bis nahe an die Verdampfungstemperatur, erfolgt im Economiser 20. Anschließend wird das Wasser möglichst gleichmäßig auf die Rohre 27 aufgeteilt ZurVergleichmäßigung der Mengenströme sind in den Mündungen der Rohre 27 einstellbare Drosselorgane eingebaut Da die Beheizung der einzelnen Rohre unter sich nicht genau gleich ist, nehmen die Arbeitsmittelströme der einzelnen Rohre ungleich viel Wärme auf und dementsprechend verdampft in den verschiedenen Rohren eine ungleich große Wassermenge.
  • Durch passende Einstellung der Drosselorgane versucht man, die Arbeitsmittelströme in den Rohren des Verdampfers 26 so einzustellen, daß am Ende jedes Verdampferrohres 27 ein gleicher Wasseranteil unverdampft bleibt. Da wegen Änderungen der Flammenlage oder wegen variierender rauchgasseitiger Verschmutzung der Rohre die Beheizung der einzelnen Rohre sich verändert, ist der Verdampfer 26 so klein bemessen, daß mit sehr großer Wahrscheinlichkeit auch bei Teillastbetrieb selbst im Austrittquerschnitt desjenigen Rohres 27 mit ungünstigsten Verhältnissen noch ein kleiner Anteil unverdampften Wassers strömt Auf diese Weise ist vermieden, daß einzelne Rohre eine überhöhte Temperatur annehmen.
  • Das nun in die Sammler 35 einströmende DampfIWasser-Gemisch unterschiedlichen Wassergehaltes wird auf seinem Wege durch die Leitung 36 durchmischt und - mit gegebenenfalls noch erheblichen Unterschieden im Wassergehalt- in die parallelgeschalteten Rohre 41 des Endverdampfers 40 verteilt. Da der Endverdampfer 40 in einem schwach beheizten Gebiet des Rauchgasstromes angeordnet ist, das heißt in einem Gebiet, wo die Rauchgastemperatur nicht viel höher ist als die Temperatur des verdampfenden Wassers, kann seine rauchgasseitige Oberfläche, selbst bei sehr ungleichmäßiger Verteilung des Arbeitsmittels auf die Rohre, keine gefährlich hohe Temperaturen annehmen.
  • Beim Entwurf des Endverdampfers 40 kann ein Optimum angestrebt werden bezüglich des Aufwandes für gute Verteilung des Dampf/Wasser Gemisches am Eintritt der Parallelrohre des Endverdampfers 40 oder bezüglich der Heizflächengröße des Endverdampfers 40.
  • Aus dem Endverdampfer 40 strömt das Arbeitsmittel, bei Vollast vorzugsweise leicht überhitzt, in den Abscheider44. Nachdem dort eventuell noch vorhandenes Wasser abgeschieden worden ist, strömt der nun trockene Dampf mit hoher, einen guten Wärmeübergang garantierender Geschwindigkeit und homogener Temperatur durch die den ersten Überhitzer bildenden Wandrohre 53.
  • Die Temperaturdifferenz zwischen den miteinander verschweißten Rohren 27 des Verdampfers 26 und den Rohren 53 des ersten Überhitzers ist hauptsächlich durch die Lage des Endverdampfers 40 im Rauchgasstrom bestimmt. Diese Lage wird so gewählt, daß die genannte Temperaturdifferenz zu keinen unzulässig hohen Wärmespannungen führt. Zur Begrenzung der Temperaturdifferenz können Mittel zur Beeinflussung des rauchgasseitigen Wärmeangebotes an den Endverdampfer vorgesehen sein, was beispielsweise durch Rauchgasumwälzung bewirkt werden kann oder durch einen Nebenschlußkanal, durch den Rauchgase am Endverdampfer vorbeigeleitet werden können. Arbeitsmittelseitig läßt sich die Temperaturdifferenz ebenfalls durch eine Bypassleitung zum Endverdampfer 40 oder etwa durch ein temperaturgesteuertes Einspritzorgan im Bereich der Leitung 42 kontrollieren.
  • Aus dem Ringsammer 55 strömt der überhitze Dampf durch den zweiten Überhitzer 72, in dem eine weitere Erwärmung stattfindet, und sodann überein Einspritzorgan 74 in der Leitung 73 durch den Endüberhitzer 75. An deranschließenden Frischdampfleitung 77 ist ein nicht gezeichnetes Temperaturmeßorgan vorgesehen, das über nicht gezeichnete Regelmittel auf das Einspritzorgan 74 einwirkt.
  • Nach einer ersten mit einer Temperatursenkung verbundenen Entspannung in der Hochdruckturbine 78 wird der Dampf im Zwischenüberhitzer 82 erneut erhitzt und der Niederdruckturbine 86 zugeführt, in der er auf das im Kondensator 1 erzeugte Vakuum entspannt wird.
  • Während im Normalbetrieb die Speisewassermenge beispielsweise von der Austrittstemperatur des Endverdampfers 40 beeinflußt wird, wird zum Anfahren und in einem unter einer bestimmten Grenzlast liegenden Lastbereich die Fördermenge der Speisepumpe 16 vorzugsweise konstant gehalten. Am Austritt des Endverdampfers 40 ergibt sich dabei ein lastabhängiger Wassergehalt. Das Wasser wird im Abscheider44 ausgeschieden und über das Ventil 46, das vom Niveau im Abscheider 44 gesteuert wird, in das Speisewassergefäß 13 zurückgeführt.
  • Bei Anlagen für überkritischen Betrieb kann es zweckmäßig sein, parallel zum Endverdampfer 40 eine Bypassleitung mit Drosselorgan anzuordnen, so daß bei Betrieb mit hoher Last ein Teilstrom des Arbeitsmittels im Nebenschluß am Endverdampfer vorbei geführt werden kann. Damit kann die Temperaturdifferenz zwischen den Rohren 27 und 53 im Bereich, wo sie miteinander verschweißt sind, herabgesetzt werden, wodurch die Wärmespannungen verringert werden.
  • Wärmespannungen im Bereich der Ebenen E und F lassen sich auch herabsetzen, indem die Rohre 27 und 53 jeweils nur über kurze Längen miteinander direkt verschweißt werden und die Abdichtung durch eine Skin-Konstruktion erzielt wird.

Claims (1)

1. Zwanglaufdampferzeugeranlage mit Beheizung durch fossile Brennstoffe, mit folgenden bezüglich des Arbeitsmittelstromes in Reihe geschalteten Bauteilen :
- einer Wasseraufbereitungsanlage (8) zum Entsalzen des Speisewassers, die für eine Leitfähigkeit des Speisewassers von weniger als 0,2 Mikrosiemens/cm und eine Verminderung des Siliziumgehaltes des Speisewassers unter 0,02 ppm ausgelegt ist
- einer Hochdruckspeisepumpe (16)
- einem Ekonomiser (20)
- einem aus dicht verschweissten vertikalen Rohren (27) bestehenden, Brennkammerwände (29) des Dampferzeugers bildenden Verdampfer (26)
- einem Wasserabscheider (44)
- mehreren Ueberhitzerheizflächen (53,75,72), wobei an den vertikalen Verdampfer-Rohren (27) wandbildende Rohre (53) der ersten Ueberhitzerheizfläche angeschlossen sind, welche Rohre (53) miteinander und mit denen des Verdampfers (26) dicht verschweisst sind und an den Anschlussstellen (51) über Dampfaustrittsleitungen (50) mit dem Wasserabscheider (44) verbunden sind, und wobei die Zwanglaufdampferzeugeranlage für den Lastbereich oberhalb 50% der Vollastfüreinfachen Durchlauf des Arbeitsmittels durch den Verdampfer (26) ausgelegt ist, dadurch gekennzeichnet, dass der Wasseraustritt des Wasserabscheiders (44) über eine Rückführleitung (45) mit dem Arbeitsmittelstrom zwischen der Wasseraufbereitungsanlage (8) und der Hochdruckspeisepumpe (16) verbunden ist, dass im Arbeitsmitteistrom zwischen dem Verdampfer (26) und dem Wasserabscheider (44) ein Endverdampfer (40) vorgesehen ist, der im Rauchgaszug (60) zwischen der letzten vom Rauchgas allseitig umströmten Ueberhitzerheizfläche (72) und dem Ekonomiser (20) angeordnet ist, und dass die den Endverdampfer (40) bildende, aus Rohren (41) bestehende Heizfläche gasseitig durch Rippen vergrössert ist, die sich vorzugsweise in Umfangsrichtung der Rohre erstrecken.
EP81100601A 1980-12-23 1981-01-28 Zwanglaufdampferzeugeranlage Expired - Lifetime EP0054601B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH949780 1980-12-23
CH9497/80 1980-12-23

Publications (3)

Publication Number Publication Date
EP0054601A1 EP0054601A1 (de) 1982-06-30
EP0054601B1 EP0054601B1 (de) 1984-09-19
EP0054601B2 true EP0054601B2 (de) 1991-08-28

Family

ID=4352617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81100601A Expired - Lifetime EP0054601B2 (de) 1980-12-23 1981-01-28 Zwanglaufdampferzeugeranlage

Country Status (8)

Country Link
US (1) US4430962A (de)
EP (1) EP0054601B2 (de)
JP (1) JPS57117705A (de)
AU (1) AU542220B2 (de)
CA (1) CA1176517A (de)
DE (1) DE3166099D1 (de)
FI (1) FI68458C (de)
YU (1) YU238181A (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657675A5 (de) * 1982-09-17 1986-09-15 Sulzer Ag Druckmediumbetaetigte stellmotoranordnung.
DE3447265A1 (de) * 1984-12-22 1986-06-26 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren und vorrichtung zur erzeugung von hochgespanntem und ueberhitztem dampf
JPH0539282Y2 (de) * 1985-01-29 1993-10-05
DE3511877A1 (de) * 1985-04-01 1986-10-02 Kraftwerk Union AG, 4330 Mülheim Durchlaufdampferzeuger
US4843824A (en) * 1986-03-10 1989-07-04 Dorothy P. Mushines System for converting heat to kinetic energy
US4896496A (en) * 1988-07-25 1990-01-30 Stone & Webster Engineering Corp. Single pressure steam bottoming cycle for gas turbines combined cycle
JP2516661B2 (ja) * 1988-07-25 1996-07-24 三菱重工業株式会社 再熱式排ガスボイラ
US5048466A (en) * 1990-11-15 1991-09-17 The Babcock & Wilcox Company Supercritical pressure boiler with separator and recirculating pump for cycling service
SE469606B (sv) * 1991-12-20 1993-08-02 Abb Carbon Ab Foerfarande vid start och laaglastdrift av genomstroemningspanna och anordning foer genomfoerande av foerfarandet
DE59301406D1 (de) * 1992-09-30 1996-02-22 Siemens Ag Verfahren zum Betreiben einer Kraftwerksanlage sowie danach arbeitende Anlage
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
DE19504308C1 (de) * 1995-02-09 1996-08-08 Siemens Ag Verfahren und Vorrichtung zum Anfahren eines Durchlaufdampferzeugers
DE19528438C2 (de) * 1995-08-02 1998-01-22 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US7487640B2 (en) * 2004-01-20 2009-02-10 Siemens Aktiengesellschaft Method and device for removing water from a steam plant
US7093566B2 (en) * 2004-11-12 2006-08-22 Maxitherm Inc. Vapor generator
US7874140B2 (en) * 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US7621237B2 (en) * 2007-08-21 2009-11-24 Hrst, Inc. Economizer for a steam generator
JP5054642B2 (ja) * 2008-09-09 2012-10-24 アクアインテック株式会社 管路補修システム
EP2182278A1 (de) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger
EP2589760B1 (de) * 2011-11-03 2020-07-29 General Electric Technology GmbH Dampfkraftwerk mit Hochtemperatur-Wärmespeicher
KR101245088B1 (ko) * 2012-08-13 2013-03-18 서영호 전기로를 이용한 발전장치
RU2525569C2 (ru) * 2012-09-10 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный университет Парогазовая надстройка паротурбинного энергоблока с докритическими параметрами пара
DE102012217717A1 (de) 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Verfahren zur Rückgewinnung von Prozessabwässern einer Dampfkraftanlage
RU2533601C2 (ru) * 2012-12-04 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Энергетическая установка с парогазовой установкой
EP2746656A1 (de) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Entwässerung einer Kraftwerksanlage
PT3086032T (pt) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Gerador de vapor de passagem única de sal fundido
FI128782B (fi) * 2016-01-28 2020-12-15 Andritz Oy Talteenottokattilan lämmöntalteenottopintojen järjestely
CN109269138B (zh) * 2018-09-03 2020-10-30 南京天加环境科技有限公司 一种防止压缩机回液的多联机系统及其控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (de) * 1940-10-01 1943-06-23 Duerrwerke Ag Zwangdurchlauf-Dampferzeuger mit einem unmittelbar an die Verdampfungsheizflaeche angeschlossenen UEberhitzer
DE1000828B (de) * 1954-04-30 1957-01-17 Siemens Ag Entsalzungseinrichtung fuer Zwangstrom-Dampferzeuger und Verfahren hierfuer
DE1015818B (de) * 1955-11-15 1957-09-19 Siemens Ag Zwangstrom-Dampferzeuger fuer sehr hohe Betriebsdruecke, insbesondere fuer ueberkritischen Druck
NL124519C (de) * 1958-06-26
JPS3511402Y1 (de) * 1958-07-23 1960-05-26
CH477651A (de) * 1967-07-13 1969-08-31 Sulzer Ag Hochdruck-Zwangdurchlaufdampferzeugeranlage mit aus gasdicht geschweissten Rohren bestehender Brennkammer und Verfahren zum Betrieb der Anlage
US3789806A (en) * 1971-12-27 1974-02-05 Foster Wheeler Corp Furnace circuit for variable pressure once-through generator
US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
JPS5472301A (en) * 1977-11-21 1979-06-09 Mitsubishi Heavy Ind Ltd Boiler
CH635184A5 (de) * 1978-12-22 1983-03-15 Sulzer Ag Dampferzeugeranlage.
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator

Also Published As

Publication number Publication date
DE3166099D1 (en) 1984-10-25
CA1176517A (en) 1984-10-23
EP0054601B1 (de) 1984-09-19
US4430962A (en) 1984-02-14
YU238181A (en) 1984-02-29
FI813379L (fi) 1982-06-24
AU7836481A (en) 1982-07-01
AU542220B2 (en) 1985-02-14
FI68458B (fi) 1985-05-31
EP0054601A1 (de) 1982-06-30
JPS57117705A (en) 1982-07-22
FI68458C (fi) 1985-09-10
JPH0348402B2 (de) 1991-07-24

Similar Documents

Publication Publication Date Title
EP0054601B2 (de) Zwanglaufdampferzeugeranlage
DE2430208C3 (de) Atomkraftanlage mit Dampferzeuger und Zwischenüberhitzer für teilentspannten Dampf
EP1710498A1 (de) Dampferzeuger
DE19717158C2 (de) Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
DE2109825C3 (de) Dampferzeuger mit in einem vertikalen Druckbehälter angeordneten Rohrbündel
EP1701091A1 (de) Durchlaufdampferzeuger
DE69733812T2 (de) Heizkessel
DE1147239B (de) Dampferzeuger mit mindestens zwei Brennkammersystemen
DE1927949A1 (de) Dampferzeugungs- und -ueberhitzungsvorrichtung,insbesondere fuer mit geschmolzenem Metall,geschmolzenem Metallsalz od.dgl. als Waermeuebertrager arbeitende Kernreaktoren
DE1426698B2 (de) Vorrichtung zum anfahren eines zwangsdurchlaufdampferzeugers
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
CH653758A5 (de) Zwangsdurchlaufkessel.
DE3121297C2 (de) Vorrichtung zum Regeln der Temperatur eines korrosiven Gases, insbesondere Synthesegas
DE2006409C3 (de) Im Gleitdruckverfahren betriebener Zwanglaufdampferzeuger
DE2523873C3 (de) Dampferzeuger
EP0024689A1 (de) Dampferzeuger mit Zwischenwand zwischen zwei Brennkammern
EP2564117B1 (de) Dampferzeuger
DE3126321C2 (de) Durchlaufdampferzeuger mit Economiser und Absperrorganen
DE1965078B2 (de) Verfahren zum gleitdruckbetrieb eines zwanglaufdampferzeu gers
DE2716292C3 (de) Verfahren zur Inbetriebnahme von mit Druckfeuerung betriebenen Dampferzeugern
DE1290940B (de) Einrichtung zum Anfahren und fuer den Schwachlastbetrieb von Zwangdurchlaufdampferzeugern
DE832293C (de) Einrichtung zur Verhuetung von Rohrreissern bei Wasserrohrkesseln mit selbsttaetigemWasserumlauf
AT132508B (de) Einrichtung zur Überhitzung von Dampf.
DE1122082B (de) Zwangdurchlaufdampferzeuger
DE2132454B2 (de) Mit Kohlenstaubfeuerung zu betreibender Großdampferzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810128

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT NL SE

REF Corresponds to:

Ref document number: 3166099

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19850614

NLR1 Nl: opposition has been filed with the epo

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19850614

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.01/86,PAGE 120 CORR.:SIEMENS AG

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19910828

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR IT NL SE

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931222

Year of fee payment: 14

ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950129

EAL Se: european patent in force in sweden

Ref document number: 81100601.4

EUG Se: european patent has lapsed

Ref document number: 81100601.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961223

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO